共查询到20条相似文献,搜索用时 0 毫秒
1.
Catalán P Müller J Hasterok R Jenkins G Mur LA Langdon T Betekhtin A Siwinska D Pimentel M López-Alvarez D 《Annals of botany》2012,109(2):385-405
Background and Aims
Brachypodium distachyon is being widely investigated across the world as a model plant for temperate cereals. This annual plant has three cytotypes (2n = 10, 20, 30) that are still regarded as part of a single species. Here, a multidisciplinary study has been conducted on a representative sampling of the three cytotypes to investigate their evolutionary relationships and origins, and to elucidate if they represent separate species.Methods
Statistical analyses of 15 selected phenotypic traits were conducted in individuals from 36 lines or populations. Cytogenetic analyses were performed through flow cytometry, fluorescence in situ hybridization (FISH) with genomic (GISH) and multiple DNA sequences as probes, and comparative chromosome painting (CCP). Phylogenetic analyses were based on two plastid (ndhF, trnLF) and five nuclear (ITS, ETS, CAL, DGAT, GI) genes from different Brachypodium lineages, whose divergence times and evolutionary rates were estimated.Key Results
The phenotypic analyses detected significant differences between the three cytotypes and demonstrated stability of characters in natural populations. Genome size estimations, GISH, FISH and CCP confirmed that the 2n = 10 and 2n = 20 cytotypes represent two different diploid taxa, whereas the 2n = 30 cytotype represents the allotetraploid derived from them. Phylogenetic analysis demonstrated that the 2n = 20 and 2n = 10 cytotypes emerged from two independent lineages that were, respectively, the maternal and paternal genome donors of the 2n = 30 cytotype. The 2n = 20 lineage was older and mutated significantly faster than the 2n = 10 lineage and all the core perennial Brachypodium species.Conclusions
The substantial phenotypic, cytogenetic and molecular differences detected among the three B. distachyon sensu lato cytotypes are indicative of major speciation processes within this complex that allow their taxonomic separation into three distinct species. We have kept the name B. distachyon for the 2n = 10 cytotype and have described two novel species as B. stacei and B. hybridum for, respectively, the 2n = 20 and 2n = 30 cytotypes. 相似文献2.
3.
4.
Background
Agrobacterium-mediated transformation is widely used to produce insertions into plant genomes. There are a number of well-developed Agrobacterium-mediated transformation methods for dicotyledonous plants, but there are few for monocotyledonous plants.Methods
Three hydrolase genes were transiently expressed in Brachypodium distachyon plants using specially designed vectors that express the gene product of interest and target it to the plant cell wall. Expression of functional hydrolases in genotyped plants was confirmed using western blotting, activity assays, cell wall compositional analysis and digestibility tests.Key Results
An efficient, new, Agrobacterium-mediated approach was developed for transient gene expression in the grass B. distachyon, using co-cultivation of mature seeds with bacterial cells. This method allows transformed tissues to be obtained rapidly, within 3–4 weeks after co-cultivation. Also, the plants carried transgenic tissue and maintained transgenic protein expression throughout plant maturation. The efficiency of transformation was estimated at around 5 % of initially co-cultivated seeds. Application of this approach to express three Aspergillus nidulans hydrolases in the Brachypodium cell wall successfully confirmed its utility and resulted in the expected expression of active microbial proteins and alterations of cell wall composition. Cell wall modifications caused by expression of A. nidulans α-arabinofuranosidase and α-galactosidase increased the biodegradability of plant biomass.Conclusions
This newly developed approach is a quick and efficient technique for expressing genes of interest in Brachypodium plants, which express the gene product throughout development. In the future, this could be used for broad functional genomics studies of monocots and for biotechnological applications, such as plant biomass modification for biofuel production. 相似文献5.
Yoshihiko Onda Kei Hashimoto Takuhiro Yoshida Tetsuya Sakurai Yuji Sawada Masami Yokota Hirai Kiminori Toyooka Keiichi Mochida Kazuo Shinozaki 《Proceedings. Biological sciences / The Royal Society》2015,282(1811)
Brachypodium distachyon is an emerging model plant for studying biological phenomena in temperate grasses. Study of the growth scale is essential to analyse spatio-temporal changes in molecular factors throughout the life cycle. For sensitive and robust staging based on morphology in B. distachyon, we demonstrated the utility of the BBCH (Biologische Bundesanstalt, Bundessortenamt and CHemical industry) scale, which is comparable to the Zadoks scale conventionally used for Triticeae crops. We compared the chronological progression of B. distachyon accessions Bd21 and Bd3-1, in addition to the progression of Chinese Spring wheat. The comparison of growth stages illustrates the morphological similarities and differences in the timing of life cycle events. Furthermore, we compared metabolite accumulation patterns across different growth stages and across different stress conditions using a widely targeted metabolome analysis. Metabolic profiling determined commonalities and specificities in chemical properties that were dependent on organisms, growth stages and/or stress conditions. Most metabolites accumulated equivalently in B. distachyon and wheat. This qualitative similarity indicated the superiority of B. distachyon as a model for Triticeae crops. The growth scale of B. distachyon should provide a conceptual framework for comparative analysis and for knowledge integration between this model grass and crops in the Pooideae subfamily. 相似文献
6.
Background
Brachypodium distachyon is emerging as a widely recognized model plant that has very close relations with several economically important Poaceae species. MAPK cascade is known to be an evolutionarily conserved signaling module involved in multiple stresses. Although the gene sequences of MAPK and MAPKK family have been fully identified in B. distachyon, the information related to the upstream MAPKKK gene family especially the regulatory network among MAPKs, MAPKKs and MAPKKKs upon multiple stresses remains to be understood.Results
In this study, we have identified MAPKKKs which belong to the biggest gene family of MAPK cascade kinases. We have systematically investigated the evolution of whole MAPK cascade kinase gene family in terms of gene structures, protein structural organization, chromosomal localization, orthologs construction and gene duplication analysis. Our results showed that most BdMAPK cascade kinases were located at the low-CpG-density region, and the clustered members in each group shared similar structures of the genes and proteins. Synteny analysis showed that 62 or 21 pairs of duplicated orthologs were present between B. distachyon and Oryza sativa, or between B. distachyon and Arabidopsis thaliana respectively. Gene expression data revealed that BdMAPK cascade kinases were rapidly regulated by stresses and phytohormones. Importantly, we have constructed a regulation network based on co-expression patterns of the expression profiles upon multiple stresses performed in this study.Conclusions
BdMAPK cascade kinases were involved in the signaling pathways of multiple stresses in B. distachyon. The network of co-expression regulation showed the most of duplicated BdMAPK cascade kinase gene orthologs demonstrated their convergent function, whereas few of them developed divergent function in the evolutionary process. The molecular evolution analysis of identified MAPK family genes and the constructed MAPK cascade regulation network under multiple stresses provide valuable information for further investigation of the functions of BdMAPK cascade kinase genes.Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1452-1) contains supplementary material, which is available to authorized users. 相似文献7.
Yordem BK Conte SS Ma JF Yokosho K Vasques KA Gopalsamy SN Walker EL 《Annals of botany》2011,108(5):821-833
Background and Aims
Brachypodium distachyon is a temperate grass with a small stature, rapid life cycle and completely sequenced genome that has great promise as a model system to study grass-specific traits for crop improvement. Under iron (Fe)-deficient conditions, grasses synthesize and secrete Fe(III)-chelating agents called phytosiderophores (PS). In Zea mays, Yellow Stripe1 (ZmYS1) is the transporter responsible for the uptake of Fe(III)–PS complexes from the soil. Some members of the family of related proteins called Yellow Stripe-Like (YSL) have roles in internal Fe translocation of plants, while the function of other members remains uninvestigated. The aim of this study is to establish brachypodium as a model system to study Fe homeostasis in grasses, identify YSL proteins in brachypodium and maize, and analyse their expression profiles in brachypodium in response to Fe deficiency.Methods
The YSL family of proteins in brachypodium and maize were identified based on sequence similarity to ZmYS1. Expression patterns of the brachypodium YSL genes (BdYSL genes) were determined by quantitative RT–PCR under Fe-deficient and Fe-sufficient conditions. The types of PS secreted, and secretion pattern of PS in brachypodium were analysed by high-performance liquid chromatography.Key Results
Eighteen YSL family members in maize and 19 members in brachypodium were identified. Phylogenetic analysis revealed that some YSLs group into a grass-specific clade. The Fe status of the plant can regulate expression of brachypodium YSL genes in both shoots and roots. 3-Hydroxy-2′-deoxymugineic acid (HDMA) is the dominant type of PS secreted by brachypodium, and its secretion is diurnally regulated.Conclusions
PS secretion by brachypodium parallels that of related crop species such as barley and wheat. A single grass species-specific YSL clade is present, and expression of the BdYSL members of this clade could not be detected in shoots or roots, suggesting grass-specific functions in reproductive tissues. Finally, the Fe-responsive expression profiles of several YSLs suggest roles in Fe homeostasis. 相似文献8.
9.
10.
May Hijazi David Roujol Huan Nguyen-Kim Liliana del Rocio Cisneros Castillo Estelle Saland Elisabeth Jamet Cécile Albenne 《Annals of botany》2014,114(6):1087-1097
Background and Aims
Arabinogalactan protein 31 (AGP31) is a remarkable plant cell-wall protein displaying a multi-domain organization unique in Arabidopsis thaliana: it comprises a predicted signal peptide (SP), a short AGP domain of seven amino acids, a His-stretch, a Pro-rich domain and a PAC (PRP-AGP containing Cys) domain. AGP31 displays different O-glycosylation patterns with arabinogalactans on the AGP domain and Hyp-O-Gal/Ara-rich motifs on the Pro-rich domain. AGP31 has been identified as an abundant protein in cell walls of etiolated hypocotyls, but its function has not been investigated thus far. Literature data suggest that AGP31 may interact with cell-wall components. The purpose of the present study was to identify AGP31 partners to gain new insight into its function in cell walls.Methods
Nitrocellulose membranes were prepared by spotting different polysaccharides, which were either obtained commercially or extracted from cell walls of Arabidopsis thaliana and Brachypodium distachyon. After validation of the arrays, in vitro interaction assays were carried out by probing the membranes with purified native AGP31 or recombinant PAC-V5-6xHis. In addition, dynamic light scattering (DLS) analyses were carried out on an AGP31 purified fraction.Key Results
It was demonstrated that AGP31 interacts through its PAC domain with galactans that are branches of rhamnogalacturonan I. This is the first experimental evidence that a PAC domain, also found as an entire protein or a domain of AGP31 homologues, can bind carbohydrates. AGP31 was also found to bind methylesterified polygalacturonic acid, possibly through its His-stretch. Finally, AGP31 was able to interact with itself in vitro through its PAC domain. DLS data showed that AGP31 forms aggregates in solution, corroborating the hypothesis of an auto-assembly.Conclusions
These results allow the proposal of a model of interactions of AGP31 with different cell-wall components, in which AGP31 participates in complex supra-molecular scaffolds. Such scaffolds could contribute to the strengthening of cell walls of quickly growing organs such as etiolated hypocotyls. 相似文献11.
12.
Bo Wei Danmei Liu Juanjuan Guo Charles H. Leseberg Xiangqi Zhang Long Mao 《Journal of plant physiology》2013
MADS-box genes are core members of the ABCDE model for flower development where D-lineage genes play essential roles in ovule identity determination. We report here the cloning and functional characterization of two duplicated MADS-box genes, BdMADS2 and BdMADS4 from Brachypodium distachyon, the model plant of temperate grasses. BdMADS2 and BdMADS4 were highly similar to grass D-lineage MADS-box genes on the protein level and they fell in a distinctive clade on the phylogenetic tree, with conserved intron/exon structures to their rice and maize orthologues. Quantitative real time PCR revealed comparable expression levels were detected in all floral organs of Brachypodium for both genes, except for the carpel where the expression level of BdMADS2 was five times higher than that of BdMADS4. Over expression of these two genes in Arabidopsis caused curly rosette leaves, small sepals and petals, and early flowering. However, BdMADS4 showed stronger phenotypic effects than BdMADS2, suggesting functional divergence between the two genes. Cis-regulatory element prediction showed that the promoter region (including the first intron) of BdMADS4 possesses much less class I BPC protein binding motifs than that of BdMADS2 which may be responsible for the specific expression in carpels. Yeast two-hybrid assays showed that both BdMADS2 and BdMADS4 can interact with BdSEP3, but BdMADS2 can additionally interact with the putative APETALA1 orthologue (BdAP1), suggesting a deviation in their protein interaction patterns. Taken together, our data demonstrate a significant divergence between the two Brachypodium D-lineage MADS-box genes and provide evidences for their sub-functionalization. 相似文献
13.
Resch A Afonyushkin T Lombo TB McDowall KJ Bläsi U Kaberdin VR 《RNA (New York, N.Y.)》2008,14(3):454-459
The intricate regulation of the Escherichia coli rpoS gene, which encodes the stationary phase sigma-factor sigmaS, includes translational activation by the noncoding RNA DsrA. We observed that the stability of rpoS mRNA, and concomitantly the concentration of sigmaS, were significantly higher in an RNase III-deficient mutant. As no decay intermediates corresponding to the in vitro mapped RNase III cleavage site in the rpoS leader could be detected in vivo, the initial RNase III cleavage appears to be decisive for the observed rapid inactivation of rpoS mRNA. In contrast, we show that base-pairing of DsrA with the rpoS leader creates an alternative RNase III cleavage site within the rpoS/DsrA duplex. This study provides new insights into regulation by small regulatory RNAs in that the molecular function of DsrA not only facilitates ribosome loading on rpoS mRNA, but additionally involves an alternative processing of the target. 相似文献
14.
Wilhelm JE Mansfield J Hom-Booher N Wang S Turck CW Hazelrigg T Vale RD 《The Journal of cell biology》2000,148(3):427-440
Localization of bicoid (bcd) mRNA to the anterior and oskar (osk) mRNA to the posterior of the Drosophila oocyte is critical for embryonic patterning. Previous genetic studies implicated exuperantia (exu) in bcd mRNA localization, but its role in this process is not understood. We have biochemically isolated Exu and show that it is part of a large RNase-sensitive complex that contains at least seven other proteins. One of these proteins was identified as the cold shock domain RNA-binding protein Ypsilon Schachtel (Yps), which we show binds directly to Exu and colocalizes with Exu in both the oocyte and nurse cells of the Drosophila egg chamber. Surprisingly, the Exu-Yps complex contains osk mRNA. This biochemical result led us to reexamine the role of Exu in the localization of osk mRNA. We discovered that exu-null mutants are defective in osk mRNA localization in both nurse cells and the oocyte. Furthermore, both Exu/Yps particles and osk mRNA follow a similar temporal pattern of localization in which they transiently accumulate at the oocyte anterior and subsequently localize to the posterior pole. We propose that Exu is a core component of a large protein complex involved in localizing mRNAs both within nurse cells and the developing oocyte. 相似文献
15.
RNA decapping is an important contributor to gene expression and is a critical determinant of mRNA decay. The recent demonstration that mammalian cells harbor at least two distinct decapping enzymes that preferentially modulate a subset of mRNAs raises the intriguing possibility of whether additional decapping enzymes exist. Because both known decapping proteins, Dcp2 and Nudt16, are members of the Nudix hydrolase family, we set out to determine whether other members of this family of proteins also contain intrinsic RNA decapping activity. Here we demonstrate that six additional mouse Nudix proteins—Nudt2, Nudt3, Nudt12, Nudt15, Nudt17, and Nudt19—have varying degrees of decapping activity in vitro on both monomethylated and unmethylated capped RNAs. The decapping products from Nudt17 and Nudt19 were analogous to Dcp2 and predominantly generated m7GDP, while cleavage by Nudt2, Nudt3, Nudt12, and Nudt15 was more pleiotropic and generated both m7GMP and m7GDP. Interestingly, all six Nudix proteins as well as both Dcp2 and Nudt16 could hydrolyze the cap of an unmethylated capped RNA, indicating that decapping enzymes may be less constrained for the presence of the methyl moiety. Investigation of Saccharomyces cerevisiae Nudix proteins revealed that the yeast homolog of Nudt3, Ddp1p, also possesses decapping activity in vitro. Moreover, the bacterial Nudix pyrophosphohydrolase RppH displayed RNA decapping activity and released m7GDP product comparable to Dcp2, indicating that decapping is an evolutionarily conserved activity that preceded mammalian cap formation. These findings demonstrate that multiple Nudix family hydrolases may function in mRNA decapping and mRNA stability. 相似文献
17.
We previously reported that one of the brassinosteroidinsensitive mutants, bri1-9, showed increased cold tolerance compared with both wild type and BRI1-overexpressing transgenic plants, despite its severe growth retardation. This increased tolerance in bri1-9 resulted from the constitutively high expression of stress-inducible genes under normal conditions. In this report, we focused on the genes encoding class III plant peroxidases (AtPrxs) because we found that, compared with wild type, bri1-9 plants contain higher levels of reactive oxygen species (ROS) that are not involved with the activation of NADPH oxidase and show an increased level of expression of a subset of genes encoding class III plant peroxidases. Treatment with a peroxidase inhibitor, salicylhydroxamic acid (SHAM), led to the reduction of cold resistance in bri1-9. Among 73 genes that encode AtPrxs in Arabidopsis, we selected four (AtPrx1, AtPrx22, AtPrx39, and AtPrx69) for further functional analyses in response to cold temperatures. T-DNA insertional knockout mutants showed increased sensitivity to cold stress as measured by leaf damage and ion leakage. In contrast, the overexpression of AtPrx22, AtPrx39, and AtPrx69 increased cold tolerance in the BRI1-GFP plants. Taken together, these results indicate that the appropriate expression of a particular subset of AtPrx genes and the resulting higher levels of ROS production are required for the cold tolerance. 相似文献
18.
Timothy L. Fitzgerald Jonathan J. Powell Katharina Schneebeli M. Mandy Hsia Donald M. Gardiner Jennifer N. Bragg C. Lynne McIntyre John M. Manners Mick Ayliffe Michelle Watt John P. Vogel Robert J. Henry Kemal Kazan 《Annals of botany》2015,115(5):717-731
Background Cereal diseases cause tens of billions of dollars of losses annually and have devastating humanitarian consequences in the developing world. Increased understanding of the molecular basis of cereal host–pathogen interactions should facilitate development of novel resistance strategies. However, achieving this in most cereals can be challenging due to large and complex genomes, long generation times and large plant size, as well as quarantine and intellectual property issues that may constrain the development and use of community resources. Brachypodium distachyon (brachypodium) with its small, diploid and sequenced genome, short generation time, high transformability and rapidly expanding community resources is emerging as a tractable cereal model.Scope Recent research reviewed here has demonstrated that brachypodium is either susceptible or partially susceptible to many of the major cereal pathogens. Thus, the study of brachypodium–pathogen interactions appears to hold great potential to improve understanding of cereal disease resistance, and to guide approaches to enhance this resistance. This paper reviews brachypodium experimental pathosystems for the study of fungal, bacterial and viral cereal pathogens; the current status of the use of brachypodium for functional analysis of cereal disease resistance; and comparative genomic approaches undertaken using brachypodium to assist characterization of cereal resistance genes. Additionally, it explores future prospects for brachypodium as a model to study cereal–pathogen interactions.Conclusions The study of brachypodium–pathogen interactions appears to be a productive strategy for understanding mechanisms of disease resistance in cereal species. Knowledge obtained from this model interaction has strong potential to be exploited for crop improvement. 相似文献
19.
20.
短柄草(Brachypodium distachyon)株型矮小,易于种植栽培,生长周期短,自花授粉,容易繁殖。另外,短柄草基因组比较小,易于转化,与小麦具有比较近的亲缘关系,是理想的草类特别是禾本科模式植物。近年来,短柄草的研究工作在细胞遗传学、基因组学、比较基因组学、植物-病原菌相互作用、功能基因组学等研究领域取得了许多进展,包括完成了Bd-21全基因组的测序工作、构建了T-DNA插入突变体库、用遗传学的方法首次研究短柄草基因的生物学功能等。本文综述了近年来特别是2009年以来短柄草的研究进展,并对未来的研究工作做了展望。 相似文献