首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jayaraman S  Gantz DL  Gursky O 《Biochemistry》2008,47(12):3875-3882
High-density lipoproteins (HDLs) prevent atherosclerosis by removing cholesterol from macrophages and by providing antioxidants for low-density lipoproteins. Oxidation of HDLs affects their functions via the complex mechanisms that involve multiple protein and lipid modifications. To differentiate between the roles of oxidative modifications in HDL proteins and lipids, we analyzed the effects of selective protein oxidation by hypochlorite (HOCl) on the structure, stability, and remodeling of discoidal HDLs reconstituted from human apolipoproteins (A-I, A-II, or C-I) and phosphatidylcholines. Gel electrophoresis and electron microscopy revealed that, at ambient temperatures, protein oxidation in discoidal complexes promotes their remodeling into larger and smaller particles. Thermal denaturation monitored by far-UV circular dichroism and light scattering in melting and kinetic experiments shows that protein oxidation destabilizes discoidal lipoproteins and accelerates protein unfolding, dissociation, and lipoprotein fusion. This is likely due to the reduced affinity of the protein for lipid resulting from oxidation of Met and aromatic residues in the lipid-binding faces of amphipathic alpha-helices and to apolipoprotein cross-linking into dimers and trimers on the particle surface. We conclude that protein oxidation destabilizes HDL disk assembly and accelerates its remodeling and fusion. This result, which is not limited to model discoidal but also extends to plasma spherical HDL, helps explain the complex effects of oxidation on plasma lipoproteins.  相似文献   

2.
Human plasma HDLs are classified on the basis of apolipoprotein composition into those that contain apolipoprotein A-I (apoA-I) without apoA-II [(A-I)HDL] and those containing apoA-I and apoA-II [(A-I/A-II)HDL]. ApoA-I enters the plasma as a component of discoidal particles, which are remodeled into spherical (A-I)HDL by LCAT. ApoA-II is secreted into the plasma either in the lipid-free form or as a component of discoidal high density lipoproteins containing apoA-II without apoA-I [(A-II)HDL]. As discoidal (A-II)HDL are poor substrates for LCAT, they are not converted into spherical (A-II)HDL. This study investigates the fate of apoA-II when it enters the plasma. Lipid-free apoA-II and apoA-II-containing discoidal reconstituted HDL [(A-II)rHDL] were injected intravenously into New Zealand White rabbits, a species that is deficient in apoA-II. In both cases, the apoA-II was rapidly and quantitatively incorporated into spherical (A-I)HDL to form spherical (A-I/A-II)HDL. These particles were comparable in size and composition to the (A-I/A-II)HDL in human plasma. Injection of lipid-free apoA-II and discoidal (A-II)rHDL was also accompanied by triglyceride enrichment of the endogenous (A-I)HDL and VLDL as well as the newly formed (A-I/A-II)HDL. We conclude that, irrespective of the form in which apoA-II enters the plasma, it is rapidly incorporated into spherical HDLs that also contain apoA-I to form (A-I/A-II)HDL.  相似文献   

3.
Guha M  Gao X  Jayaraman S  Gursky O 《Biochemistry》2008,47(44):11393-11397
High-density lipoproteins (HDLs) are protein-lipid assemblies that remove excess cell cholesterol and prevent atherosclerosis. HDLs are stabilized by kinetic barriers that decelerate protein dissociation and lipoprotein fusion. We propose that similar barriers modulate metabolic remodeling of plasma HDLs; hence, changes in particle composition that destabilize HDLs and accelerate their denaturation may accelerate their metabolic remodeling. To test this notion, we correlate existing reports on HDL-mediated cell cholesterol efflux and esterification, which are obligatory early steps in cholesterol removal, with our kinetic studies of HDL stability. The results support our hypothesis and show that factors accelerating cholesterol efflux and esterification in model discoidal lipoproteins (including reduced protein size, reduced fatty acyl chain length, and/or increased level of cis unsaturation) destabilize lipoproteins and accelerate their fusion and apolipoprotein dissociation. Oxidation studies of plasma spherical HDLs show a similar trend: mild oxidation by Cu(2+) or OCl(-) accelerates cell cholesterol efflux, protein dissociation, and HDL fusion, while extensive oxidation inhibits these reactions. Consequently, moderate destabilization may be beneficial for HDL functions by facilitating insertion of cholesterol and lipophilic enzymes, promoting dissociation of lipid-poor apolipoproteins, which are primary acceptors of cell cholesterol, and thereby accelerating HDL metabolism. Therefore, HDL stability must be delicately balanced to maintain the structural integrity of the lipoprotein assembly and ensure structural specificity necessary for interactions of HDL with its metabolic partners, while facilitating rapid HDL remodeling and turnover at key junctures of cholesterol transport. The inverse correlation between HDL stability and remodeling illustrates the functional importance of structural disorder in macromolecular assemblies stabilized by kinetic barriers.  相似文献   

4.
Human atherosclerotic intima contains mast cells that secrete the neutral protease chymase into the intimal fluid, which also contains HDL-modifying proteins, such as cholesteryl ester transfer protein (CETP), in addition to abundant amounts of nascent discoidal HDL particles. Here, we studied chymase-dependent degradation of a) CETP isolated from human plasma and b) CETP-HDL complexes as well as the functional consequences of such degradations. Incubation with chymase caused a rapid cleavage of CETP, yielding a specific proteolytic pattern with a concomitant reduction in its cholesteryl ester transfer activity. These chymase-dependent effects were attenuated after CETP was complexed with HDL. This attenuation was more effective when CETP was complexed with HDL(3) and HDL(2) than with discoidal reconstituted high density lipoprotein (rHDL). Conversely, rHDL, but not spherical HDLs, was protected in such CETP complexes against functional inactivation by chymase. Thus, in contrast to the complexes of CETP with spherical HDLs, the ability of the CETP-rHDL complexes to promote cholesterol efflux from macrophage foam cells remained unchanged, despite treatment with chymase. In summary, complexation of CETP and HDL modifies their resistance to proteolytic inactivation: spherical HDLs protect CETP, and CETP protects discoidal HDL. These results suggest that in inflamed atherosclerotic intima, CETP, via its complexation with HDL, has a novel protective role in early steps of reverse cholesterol transport.  相似文献   

5.
We studied the substrate properties of the phospholipid-cholesterol-apolipoprotein complexes generated with apo A-I, apo A-I-CNBr fragments, apo A-II and apo A-IV for cholesterol esterification by the enzyme lecithin-cholesterol acyltransferase (LCAT). The kinetic parameters determined with the different complexes as substrates, showed that the complexes containing apo A-I and apo A-IV were about 40-times more efficient than those generated with the apo A-I fragments. In this system, the substrates containing apo A-II had the lowest efficiency. In spite of the differences in the kinetic parameters observed with the various apolipoprotein-lipid complexes, the cholesterol inserted in the complexes was esterified for more than 90% after 24 h in all systems studied. Based upon the results of the kinetic experiments, we followed the transformation of the discoidal complexes into spherical particles, due to the formation of a cholesteryl esters core, in the presence of low-density lipoproteins as an external source of cholesterol. We observed the formation of spherical particles by electron microscopy, after incubation of the discoidal complexes with LCAT for 24 h. The average percentage of cholesteryl esters in the converted particles was around 60% of the total cholesterol, varying between 40% for the apo A-I-CNBr-1-DPPC-cholesterol complex and up to 86% for the apo A-I-DPPC-cholesterol complex. The secondary structure of protein in the complexes was not significantly modified. However, the phospholipid phase transition disappeared, together with the parallel orientation of the phospholipid acyl chains with the helical segments of the apolipoproteins, as the phospholipids are organized in a monolayer at the surface of the spheres.  相似文献   

6.
A key step in plasma HDL maturation from discoidal to spherical particles is the esterification of cholesterol to cholesteryl ester, which is catalyzed by LCAT. HDL-like lipoproteins in cerebrospinal fluid (CSF) are also spherical, whereas nascent lipoprotein particles secreted from astrocytes are discoidal, suggesting that LCAT may play a similar role in the CNS. In plasma, apoA-I is the main LCAT activator, while in the CNS, it is believed to be apoE. apoE is directly involved in the pathological progression of Alzheimer’s disease, including facilitating β-amyloid (Aβ) clearance from the brain, a function that requires its lipidation by ABCA1. However, whether apoE particle maturation by LCAT is also required for Aβ clearance is unknown. Here we characterized the impact of LCAT deficiency on CNS lipoprotein metabolism and amyloid pathology. Deletion of LCAT from APP/PS1 mice resulted in a pronounced decrease of apoA-I in plasma that was paralleled by decreased apoA-I levels in CSF and brain tissue, whereas apoE levels were unaffected. Furthermore, LCAT deficiency did not increase Aβ or amyloid in APP/PS1 LCAT−/− mice. Finally, LCAT expression and plasma activity were unaffected by age or the onset of Alzheimer’s-like pathology in APP/PS1 mice. Taken together, these results suggest that apoE-containing discoidal HDLs do not require LCAT-dependent maturation to mediate efficient Aβ clearance.  相似文献   

7.
Previous studies in our laboratory have shown that very-low-density lipoproteins (VLDL) synthesized by the intestine of the diet-induced hypercholesterolemic rat are enriched in cholesteryl esters and unesterified cholesterol compared with intestinal VLDL from control rats. In these studies, we isolated and characterized nascent intestinal Golgi intermediate-density lipoproteins (IDL, d 1.006-1.040 g/ml) and studied isotope incorporation into apoliproteins of Golgi VLDL from control and hypercholesterolemic rats. IDL were triacylglycerol-rich lipoproteins but contained more cholesteryl ester and protein than the corresponding Golgi VLDL fractions. IDL from hypercholesterolemic rats were enriched in cholesteryl esters to a greater extent than IDL from control rats. The apolipoprotein patterns of IDL fractions were the same as those of intestinal Golgi VLDL, consisting of apolipoproteins (apo) B-48, A-I and A-IV. Time-course isotope incorporation curves for apo A-I and A-IV in Golgi VLDL were similar, but they differed from curves for apo B-48. None of these curves was markedly altered in the hypercholesterolemic rat. We conclude that the major effect of increased dietary cholesterol on intestinal lipoprotein biosynthesis is to increase the percentage of cholesteryl esters in Golgi lipoproteins. Dietary cholesterol does not alter the apolipoprotein composition of Golgi lipoproteins, nor does it have a significant effect on the pattern of isotope incorporation into apolipoproteins of Golgi VLDL. The effect of cholesteryl ester enrichment on the subsequent metabolism of these particles in the circulation and the effect of these particles on hepatic lipoprotein production remain to be determined.  相似文献   

8.
High density lipoproteins (HDL) from 14 patients with obstructive jaundice were examined by gradient gel electrophoresis to determine the effect of obstruction on particle size distribution. HDL from 7 of these patients were fractionated by gel permeation chromatography and further characterized by electron microscopy, SDS gel electrophoresis, apolipoprotein A-I and apolipoprotein A-II immunoturbidimetry, and analysis of chemical composition. In addition, lecithin:cholesterol acyltransferase (LCAT) activity was measured and correlated with plasma apolipoprotein A-I concentration and particle size distribution. HDL were abnormal in all patients regardless of severity, cause, or duration of obstruction. The major HDL subfraction in normal subjects, HDL3a (radius 4.1-4.3 nm) was either absent or considerably diminished, and HDL2b (radius 5.3 nm) was also frequently absent. Very small particles comparable in size to normal HDL3c (radius 3.8 nm) were prominent. In patients with a bilirubin concentration greater than 250 mumol/l, normal HDL had totally disappeared and were replaced by large discoidal particles of radius 8.5 nm and small spherical particles of radius 3.6-3.7 nm. Both populations of particles were markedly depleted of cholesteryl ester and enriched in free cholesterol and phospholipid. The discoidal particles were rich in apolipoproteins E, A-I, A-II, and C, while the small spherical particles contained predominantly apolipoprotein A-I. LCAT activity was diminished in all subjects to 8-54% of normal, and was strongly positively correlated (r = 0.91 P less than 0.05) with plasma apolipoprotein A-I levels.  相似文献   

9.
Rabbits fed a cholesterol-free semi-synthetic wheat-starch-casein diet had a high plasma cholesterol concentration; most of the cholesterol was associated with low-density lipoproteins (LDL). Chemical analyses of plasma lipoproteins revealed that very-low-density lipoproteins (VLDL), intermediate lipoproteins and LDL from casein-fed rabbits contained more cholesteryl ester than that of lipoproteins isolated from chow-fed animals. The fatty acid composition of cholesteryl esters of plasma lipoproteins showed that there were higher contents of oleic acid than linoleic acids in lipoproteins from casein-fed rabbits. Lipoproteins isolated from liver perfusates of casein-fed rabbits had higher cholesteryl oleate content than lipoproteins from chow-fed rabbit liver perfusates. There was a marked increase in secretion of apolipoproteins from perfused livers of casein-fed rabbits. We conclude that the high levels of plasma cholesterol in casein-fed rabbits are of hepatic origin and that one of the hypercholesterolemic actions of dietary casein in rabbits is the induction of hepatic synthesis and secretion of cholesteryl-ester-rich lipoproteins.  相似文献   

10.
Metabolism of high density lipoproteins by the perfused rabbit liver   总被引:2,自引:0,他引:2  
The role of the liver in the catabolism of high density lipoproteins (HDL) was examined in isolated perfused rabbit livers. Using 125I-labeled rabbit HDL the disappearance of labeled apolipoproteins from the perfusate was biphasic with 7% of the label removed after 20 min and a further 6% between 20 and 90 min. In contrast, with HDL labeled with [3H]cholesteryl esters 35% of label had been removed after 90 min. The effect of liver perfusion on HDL size and composition was further studied by recirculating rabbit HDL for 120 min. In control experiments HDL was incubated at 37 degrees C for 120 min with nonperfused media and with media that had been liver perfused. The added HDL was predominantly particles of 4.8-4.9-mm radius, and incubation with nonperfused and preperfused media produced no significant change in size. However, liver perfusion resulted in particles predominantly 4.2-4.3-mm radius. Hepatic perfusion also significantly reduced HDL cholesteryl ester composition as a percentage of lipoproteins mass from 13.3 +/- 2.2% in control incubations to 10.7 +/- 3.1% (p less than 0.001), and cholesteryl ester:protein mass ratio was reduced from 0.31 +/- 0.06 in control to 0.24 +/- 0.10 (p less than 0.001) after 120 min of liver perfusion. Thus interaction of rabbit HDL with rabbit liver results in smaller HDL particles significantly depleted of core cholesteryl esters.  相似文献   

11.
Incubation of low (LDL), intermediate (IDL), or very low density lipoproteins (VLDL) with palmitic acid and either high density lipoproteins (HDL), delipidated HDL, or purified apolipoprotein (apo) A-I resulted in the formation of lipoprotein particles with discoidal structure and mean particle diameters ranging from 146 to 254 A by electron microscopy. Discs produced from IDL or LDL averaged 26% protein, 42% phospholipid, 5% cholesteryl esters, 24% free cholesterol, and 3% triglycerides; preparations derived from VLDL contained up to 21% triglycerides. ApoA-I was the predominant protein present, with smaller amounts of apoA-II. Crosslinking studies of discs derived from LDL or IDL indicated the presence of four apoA-I molecules per particle, while those derived from large VLDL varied more in size and contained as many as six apoA-I molecules per particle. Incubation of discs derived from IDL or LDL with purified lecithin:cholesterol acyltransferase (LCAT), albumin, and a source of free cholesterol produced core-containing particles with size and composition similar to HDL2b. VLDL-derived discs behaved similarly, although the HDL products were somewhat larger and more variable in size. When discs were incubated with plasma d greater than 1.21 g/ml fraction rather than LCAT, core-containing particles in the size range of normal HDL2a and HDL3a were also produced. A variety of other purified free fatty acids were shown to promote disc formation. In addition, some mono and polyunsaturated fatty acids facilitated the formation of smaller, spherical particles in the size range of HDL3c. Both discoidal and small spherical apoA-I-containing lipoproteins were generated when native VLDL was incubated with lipoprotein lipase in the presence of delipidated HDL. We conclude that lipolysis product-mediated dissociation of lipid-apoA-I complexes from VLDL, IDL, or LDL may be a mechanism for formation of HDL subclasses during lipolysis, and that the availability of different lipids may influence the type of HDL-precursors formed by this mechanism.  相似文献   

12.
Using a cholate-dialysis recombination procedure, complexes of apolipoprotein A-I and synthetic phosphatidylcholine (1-palmitoyl-2-oleoylphosphatidylcholine (POPC) or dioleoylphosphatidylcholine (DOPC] were prepared in mixtures at a relatively high molar ratio of 150:1 phosphatidylcholine/apolipoprotein A-I. Particle size distribution analysis by gradient gel electrophoresis of the recombinant mixtures indicated the presence of a series of discrete complexes that included species migrating at RF values observed for discoidal particles in nascent high-density lipoproteins (HDL) in plasma of lecithin-cholesterol acyltransferase-deficient subjects. One of these complex species, designated complex class 6, formed with either phosphatidylcholine, was isolated by gel filtration and characterized at follows: discoidal shape (mean diameter 20.8 nm (POPC) and 19.0 nm (DOPC]; molar ratio, phosphatidylcholine/apolipoprotein A-I, 155:1 (POPC) and 130:1 (DOPC); and both containing 4 molecules of apolipoprotein A-I per particle. Incubation of class 6 complexes with lecithin-cholesterol acyltransferase (EC 2.3.1.43) and a source of unesterified cholesterol (low-density lipoprotein (LDL] was shown by electron microscopy to result in a progressive transformation of the discoidal particles (0 h) to deformable (2.5 h) and to spherical particles (24 h). The spherical particles (diameter 13.6 nm (POPC) and 12.5 nm (DOPC) exhibit sizes at the upper boundary of the interval defining the human plasma (HDL2b)gge (12.9-9.8 nm). The spherical particles contain a cholesteryl ester core that reaches a limiting molar ratio of approx. 50-55:1 cholesteryl ester/apolipoprotein A-I. The deformable particles assume a rectangular shape under negative staining and, relative to the 24-h spherical product, are enriched in phosphatidylcholine. Chemical crosslinking (by dimethyl suberimidate) of the isolated transformation products shows the 24-h spherical particle to contain predominantly 4 apolipoprotein A-I molecules; products produced after intermediate periods of time appear to contain species with 3 and 4 apolipoproteins per particle. Our in vitro studies indicate a potential pathway in the origins of large, apolipoprotein A-I-containing plasma HDL particles. The deformable species observed during transformation were similar in size and shape to particles observed in interstitial fluid.  相似文献   

13.
As judged from measurements of the diameters of particles fixed with osmium tetroxide and shadowed with platinum, gel chromatography on 2% agarose has been shown to be an effective quantitative method for separating triglyceride-rich lipoproteins according to particle size. Particles in the size range of chylomicrons, uncontaminated by lipoproteins smaller than about 700 A or by other serum proteins, emerged in the void volume of the column, and very low density lipoproteins with diameters between 400 and 700 A were separated into fractions with average standard deviation of 71 A from the mean. Systematic comparison of the relationship between diameter and chemical composition of fractions obtained from subjects with various hyperlipoproteinemic disorders demonstrated a precise correlation consistent with a spherical model for these lipoproteins in which phospholipids, free cholesterol, and protein occupy a surface monolayer with an invariant thickness of 21.5 A surrounding a liquid core of triglycerides and cholesteryl esters. The chemical composition of very low density lipoproteins of given particle size in most recognized types of hyperlipemia was similar to that of normolipemic subjects, but particles in the size range of chylomicrons sometimes had higher contents of cholesteryl esters and free cholesterol. Results obtained in subjects with dysbetalipoproteinemia were consistent with the presence of three populations of particles. Two of these, with mean diameters of about 850 and 350 A, had unusually high cholesteryl ester content and reduced triglyceride content and may represent "remnants" of the metabolism of structurally normal chylomicrons and very low density lipoproteins, respectively. The third, a heterogeneous group with intermediate range of particle size and pre-beta mobility, may represent a population of very low density lipoproteins with relatively normal composition.  相似文献   

14.
Apolipoprotein E (apoE) enters the plasma as a component of discoidal HDL and is subsequently incorporated into spherical HDL, most of which contain apoE as the sole apolipoprotein. This study investigates the regulation, origins, and structure of spherical, apoE-containing HDLs and their remodeling by cholesteryl ester transfer protein (CETP). When the ability of discoidal reconstituted high density lipoprotein (rHDL) containing apoE2 [(E2)rHDL], apoE3 [(E3)rHDL], or apoE4 [(E4)rHDL] as the sole apolipoprotein to act as substrates for LCAT were compared with that of discoidal rHDL containing apoA-I [(A-I)rHDL], the rate of cholesterol esterification was (A-I)rHDL > (E2)rHDL approximately (E3)rHDL > (E4)rHDL. LCAT also had a higher affinity for discoidal (A-I)rHDL than for the apoE-containing rHDL. When the discoidal rHDLs were incubated with LCAT and LDL, the resulting spherical (E2)rHDL, (E3)rHDL, and (E4)rHDL were larger than, and structurally distinct from, spherical (A-I)rHDL. Incubation of the apoE-containing spherical rHDL with CETP and Intralipid(R) generated large fusion products without the dissociation of apoE, whereas the spherical (A-I)rHDLs were remodeled into small particles with the formation of lipid-poor apoA-I. In conclusion, i) apoE activates LCAT less efficiently than apoA-I; ii) apoE-containing spherical rHDLs are structurally distinct from spherical (A-I)rHDL; and iii) the CETP-mediated remodeling of apoE-containing spherical rHDL differs from that of spherical (A-I)rHDL.  相似文献   

15.
The composition of lipoproteins and the association of proteins with various particles are of much interest in the context of cardiovascular disease. Here, we describe a technique for the multidimensional analysis of lipoproteins and their associated apolipoproteins. Plasma is separated by size exclusion chromatography (SEC), and fractions are analyzed by reverse-phase arrays. SEC fractions are spotted on nitrocellulose slides and incubated with different antibodies against individual apolipoproteins or antibodies against various apolipoproteins. In this way, tens of analytes can be measured simultaneously in 100 μl of plasma from a single SEC separation. This methodology is particularly suited to simultaneous analysis of multiple proteins that may change their distribution to lipoproteins or alter their conformation, depending on factors that influence circulating lipoprotein size or composition. We observed changes in the distribution of exchangeable apolipoproteins following addition of recombinant apolipoproteins or interaction with exogenous compounds. While the cholesteryl ester transfer protein (CETP)-dependent formation of pre-β-HDL was inhibited by the CETP inhibitors torcetrapib and anacetrapib, it was not reduced by the CETP modulator dalcetrapib. This finding was elucidated using this technique.  相似文献   

16.
Lecithin-cholesterol acyltransferase (EC 2.3.1.43) was purified 15 000-fold from human plasma. The active material was homogeneous in different gel electrophoretic systems but separated into three major bands with apparent pI values of 4.28, 4.33 and 4.37 in isoelectrofocusing. The apparent Mr of the enzyme is 67 000 +/- 2000. An antiserum prepared against the purified enzyme specifically inhibited the activity of lecithin-cholesterol acyltransferase in whole serum. Serum from a patient with familial deficiency of lecithin-cholesterol acyltransferase was substituted in vitro with the highly purified enzyme. The serum from this patient did not contain immunochemically detectable enzyme protein. Substitution of enzyme resulted in the following major changes. 1. Cholesteryl ester content in serum increased by 36-89 mg/100 ml depending on the experimental conditions. The enzyme-mediated formation of cholesteryl ester led to an increase of cholesteryl ester content in high-density and very-low-density lipoproteins and in low-density lipoproteins containing apoprotein-B. No increase occurred in fractions containing very large flattened structures and the abnormal lipoprotein-X and in lipoprotein-E. Incubation of isolated fractions with lecithin-cholesterol acyltransferase led to significant cholesterol esterification only in high-density lipoproteins. 2. The characteristic disc-shaped rouleaux-forming high-density lipoproteins of enzyme-deficient serum disappeared. Instead a single homogeneous population of high-density lipoproteins formed. The particles generated were spherical and had the electrophoretic properties, density (1.080 g/ml), diameter (12.5 nm) and apoprotein composition of normal high-density lipoproteins-2. 3. The concentration of spherical particles containing apolipoprotein E (density 1.040-1.080 g/ml) and the lamellar lipoprotein-X-like structures in the low-density lipoprotein fraction were not affected by the enzyme substitution. 4. A single homogeneous population of spherical lipoprotein-B particles of 26.5-nm diameter occurred at density 1.029 g/ml. The data suggest that the discoidal high-density lipoproteins are the major site of cholesteryl ester formation that apolipoprotein-E is not involved in an undirectional transport of newly formed cholesteryl ester from high-density lipoproteins to other lipoproteins and that lipoprotein-X and lipoprotein-E are not preferential substrates for the acyltransferase.  相似文献   

17.
The primary objectives of this study were to determine whether analogs to native discoidal apolipoprotein (apo)E-containing high-density lipoproteins (HDL) could be prepared in vitro, and if so, whether their conversion by lecithin-cholesterol acyltransferase (LCAT; EC 2.3.1.43) produced particles with properties comparable to those of core-containing, spherical, apoE-containing HDL in human plasma. Complexes composed of apoE and POPC, without and with incorporated unesterified cholesterol, were prepared by the cholate-dialysis technique. Gradient gel electrophoresis showed that these preparations contain discrete species both within (14-40 nm) and outside (10.8-14 nm) the size range of discoidal apoE-containing HDL reported in LCAT deficiency. The isolated complexes were discoidal particles whose size directly correlated with their POPC:apoE molar ratio: increasing this ratio resulted in an increase in larger complexes and a reduction in smaller ones. At all POPC:apoE molar ratios, size profiles included a major peak corresponding to a discoidal complex 14.4 nm long. Preparations with POPC:apoE molar ratios greater than 150:1 contained two distinct groups of complexes, also in the size range of discoidal apoE-containing HDL from patients with LCAT deficiency. Incorporation of unesterified cholesterol into preparations (molar ratio of 0.5:1, unesterified cholesterol:POPC) resulted in component profiles exhibiting a major peak corresponding to a discoidal complex 10.9 nm long. An increase of unesterified cholesterol and POPC (at the 0.5:1 molar ratio) in the initial mixture, increased the proportion of larger complexes in the profile. Incubation of isolated POPC-apoE discoidal complexes (mean sizes, 14.4 and 23.9 nm) with purified LCAT and a source of unesterified cholesterol converted the complexes to spherical, cholesteryl ester-containing products with mean diameters of 11.1 nm and 14.0 nm, corresponding to apoE-containing HDL found in normal plasma. Conversion of smaller cholesterol-containing discoidal complexes (mean size, 10.9 nm) under identical conditions resulted in spherical products 11.3, 13.3, and 14.7 nm across. The mean sizes of these conversion products compared favorably with those (mean diameter, 12.3 nm) of apoE-containing HDL of human plasma. This conversion of cholesterol-containing complexes is accompanied by a shift of some apoE to the LDL particle size interval. Our study indicates that apoE-containing complexes formed by the cholate-dialysis method include species similar to discoidal apoE-containing HDL and that incubation with LCAT converts most of them to spherical core-containing particles in the size range of plasma apoE-containing HDL. Plasma HDL particles containing apoE may arise in part from direct conversion of discoidal apoE-containing HDL by LCAT.  相似文献   

18.
A protein catalyzing the exchange of cholesteryl esters among the lipoproteins was found in human plasma. A rapid method for assaying this activity was developed based on the transfer of radioactive cholesteryl esters from low density lipoprotein with MnCl2 in the presence of phosphate. Fractionation of plasma through a combination of ammonium sulfate precipitation, ultracentrifugation at p = 1.25, and chromatography on Phenyl-Sepharose, CM-cellulose, and concanavalin A-Sepharose, yielded a preparation purified 3500-fold compared to the starting plasma. The exchange protein was found to be a glycoprotein with an isoelectric point of 5 and apparent molecular weight of 80 000. On the basis of these properties and its immunological characteristics the exchange protein was judged to be distinct from any of the known apolipoproteins. This protein could also be separated from plasma phosphatidylcholine cholesterol acyl-transferase on DEAE-cellulose. The exchange protein did not appear to influence cholesterol esterification in lipoproteins by phosphatidylcholine cholesterol acyl-transferase, and the latter had no effect on the transfer of low density lipoprotein cholesteryl esters to high density lipoprotein. The exchange protein did not esterify cholesterol or hydrolyze cholesteryl esters in lipoproteins.  相似文献   

19.
Previous studies have provided detailed information on the formation of spherical high density lipoproteins (HDL) containing apolipoprotein (apo) A-I but no apoA-II (A-I HDL) by an lecithin:cholesterol acyltransferase (LCAT)-mediated process. In this study we have investigated the formation of spherical HDL containing both apoA-I and apoA-II (A-I/A-II HDL). Incubations were carried out containing discoidal A-I reconstituted HDL (rHDL), discoidal A-II rHDL, and low density lipoproteins in the absence or presence of LCAT. After the incubation, the rHDL were reisolated and subjected to immunoaffinity chromatography to determine whether A-I/A-II rHDL were formed. In the absence of LCAT, the majority of the rHDL remained as either A-I rHDL or A-II rHDL, with only a small amount of A-I/A-II rHDL present. By contrast, when LCAT was present, a substantial proportion of the reisolated rHDL were A-I/A-II rHDL. The identity of the particles was confirmed using apoA-I rocket electrophoresis. The formation of the A-I/A-II rHDL was influenced by the relative concentrations of the precursor discoidal A-I and A-II rHDL. The A-I/A-II rHDL included several populations of HDL-sized particles; the predominant population having a Stokes' diameter of 9.9 nm. The particles were spherical in shape and had an electrophoretic mobility slightly slower than that of the alpha-migrating HDL in human plasma. The apoA-I:apoA-II molar ratio of the A-I/A-II rHDL was 0.7:1. Their major lipid constituents were phospholipids, unesterified cholesterol, and cholesteryl esters. The results presented are consistent with LCAT promoting fusion of the A-I rHDL and A-II rHDL to form spherical A-I/A-II rHDL. We suggest that this process may be an important source of A-I/A-II HDL in human plasma.  相似文献   

20.
Plasma cholesteryl ester transfer protein (CETP) has a profound effect on neutral lipid transfers between HDLs and apolipoprotein B (apoB)-containing lipoproteins when it is expressed in combination with human apoA-I in HuAI/CETP transgenic (Tg) rodents. In the present study, human apoA-I-mediated lipoprotein changes in HuAI/CETPTg rats are characterized by 3- to 5-fold increments in the apoB-containing lipoprotein-to-HDL cholesterol ratio, and in the cholesteryl ester-to-triglyceride ratio in apoB-containing lipoproteins. These changes occur despite no change in plasma CETP concentration in HuAI/CETPTg rats, as compared with CETPTg rats. A number of HDL apolipoproteins, including rat apoA-I and rat apoC-I are removed from the HDL surface as a result of human apoA-I overexpression. Rat apoC-I, which is known to constitute a potent inhibitor of CETP, accounts for approximately two-thirds of CETP inhibitory activity in HDL from wild-type rats, and the remainder is carried by other HDL-bound apolipoprotein inhibitors. It is concluded that human apoA-I overexpression modifies HDL particles in a way that suppresses their ability to inhibit CETP. An apoC-I decrease in HDL of HuAI/CETPTg rats contributes chiefly to the loss of the CETP-inhibitory potential that is normally associated with wild-type HDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号