首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have already reported that reactive oxygen species (ROS) promote rat ascites hepatoma cell invasion beneath mesentery-derived mesothelial cell monolayer. To investigate the mechanism for this, we examined the involvement of motility factors, particularly hepatocyte growth factor (HGF). Rat ascites hepatoma cell line of AH109A expressed HGF and c-Met mRNAs. Treatment with ROS augmented amounts of HGF mRNA in AH109A and HGF concentration in the medium. ROS also induced HGF gene expression in mesothelial cells. Exogenously added HGF enhanced invasive activity of AH109A cells, but exerted no effect on proliferation. AH109A cells pretreated with ROS showed an increased invasive activity, which was cancelled by simultaneous pretreatment with anti-HGF antibody. These results suggest that the invasive activity of AH109A is mediated by the autocrine and paracrine pathways of HGF, and ROS potentiate invasive activity by inducing gene expression of HGF in AH109A and mesothelial cells.  相似文献   

2.
3.
Transforming growth factor-beta1 (TGFbeta1) is a multifunctional cytokine that is over expressed during liver hepatocytes injury and regeneration. SV40-transformed CWSV-1 rat hepatocytes that are p53-defective undergo apoptosis in response to choline deficiency (CD) or TGFbeta1, which mediates CD-apoptosis. Reactive oxygen species (ROS) are essential mediators of apoptosis. We have shown that apoptosis induced by TGFbeta1 is accompanied by ROS generation and the ROS-trapping agent N-acetylcysteine (NAC) inhibits TGFbeta1-induced apoptosis. While persistent induction of ROS contributes to this form of apoptosis, the source of ROS generated downstream of TGFbeta1 is not clear. The mitochondria and the endoplasmic reticulum both harbor potent electron transfer chains that might be the source of ROS essential for completion of TGFbeta1-apoptosis. Here we show that CWSV-1 cells treated with cyclosporine A, which prevents opening of mitochondrial membrane pores required for ROS generation, inhibits TGFbeta1-induced apoptosis. A similar effect was obtained by treating these cells with rotenone, an inhibitor of complex 1 of the mitochondrial electron transfer chain. However, we demonstrate that TGFbeta1 induces cytochrome P450 1A1 and that metyrapone, a potent inhibitor of cytochrome P450 1A1, inhibits TGFbeta1-induced apoptosis. Therefore, our studies indicate that concurrent with promoting generation of ROS from mitochondria, TGFbeta1 also promotes generation of ROS from the cytochrome P450 electron transfer chain. Since inhibition of either of these two sources of ROS interferes with apoptosis, it is reasonable to conclude that the combined involvement of both pathways is essential for completion of TGFbeta1-induced apoptosis.  相似文献   

4.
Transforming growth factor beta(2) (TGF-beta(2)), a growth regulator of human lens epithelial cells (HLECs), also regulates the death of these cells. Dose-response analysis showed that the TGF-beta(2) concentration needed to induce HLECs death (100 pg/ml) was 10 times that needed to inhibit growth in these cells (10 pg/ml). TGF-beta(2)-induced apoptosis in HLECs was preceded by an induction of reactive oxygen species (ROS) and a decrease in glutathione in the intracellular content, indicating that this factor induces oxidative stress in HLECs. Studies performed to analyze the levels of c-fos mRNA, a gene whose expression is modulated by the redox state, demonstrated that only high, apoptotic concentrations of TGF-beta(2) (100 pg/ml) produced an increase in the mRNA levels of this gene, the level of induction being similar to that found when cells were incubated in the presence of hydrogen peroxide. Finally, the cell death induced by TGF-beta(2) in HLECs was partially blocked by radical scavengers, which decreased the percentage of apoptotic cells, whereas these agents did not modify the growth-inhibitory effect elicited by TGF-beta(2) in these cells. The results presented in this paper provide evidence for the involvement of an oxidative process in the apoptosis elicited by TGF-beta(2) in HLECs.  相似文献   

5.
Pre-eclampsia and intrauterine growth restriction are associated with increased apoptosis of placental villous trophoblast. This may result from placental hypoperfusion, leading to the generation of reactive oxygen species (ROS). Apoptosis can be induced in villous trophoblast following exposure to oxidative stress. Epidermal growth factor (EGF) reduces trophoblast apoptosis resulting from exposure to hypoxia. We hypothesised that exposure to hydrogen peroxide, a potent generator of ROS, would induce apoptosis in term placental villous explants and that this could be reduced by treatment with EGF. Placental explants were taken from normal term pregnancies and exposed to increasing doses of hydrogen peroxide (0–1,000 μM) or to a combination of increasing doses of hydrogen peroxide and EGF (0–100 ng/ml) for either 6 or 48 h. Apoptosis was assessed by TUNEL, proliferation by Ki-67 immunostaining, necrosis by lactate dehydrogenase activity and trophoblast differentiation by human chorionic gonadotrophin (hCG) secretion in conditioned culture media. Immunoperoxidase staining was performed to identify phosphorylated-AKT (p-AKT) and phosphorylated-PI3 kinase (p-PI3k). Exposure to 1,000 μM hydrogen peroxide for 48 h induced apoptosis in placental explants. The increase in TUNEL positive nuclei predominantly localised to syncytiotrophoblast. The amount of apoptosis was reduced to control levels by treatment with 10 and 100 ng/ml EGF. Proliferation of cytotrophoblasts within villous explants was significantly reduced following exposure to 1,000 μM hydrogen peroxide, this was restored to control levels by simultaneous treatment with 10 or 100 ng/ml EGF. Neither exposure to hydrogen peroxide or EGF altered the amount of necrosis. There was increased immunostaining for pPI3K following treatment with EGF. This study shows that apoptosis may be induced in villous trophoblast following exposure to ROS, and demonstrates the anti-apoptotic effect of EGF in trophoblast, the maintenance of which is essential for normal pregnancy.  相似文献   

6.
A growing amount of evidence suggests that reactive oxygen species (ROS), such as hydrogen peroxide and superoxide anion, regulate intracellular signalling and have a role in cell proliferation. In the present study, we show that platelets increase the mitogenic rate in human fibroblasts and that this effect was inhibited by the intracellular antioxidant N-acetyl-L-cysteine (NAC) and the NADPH-oxidase inhibitor diphenyleneiodonium chloride (DPI). The mitogenic effects of platelets were mimicked by the platelet factors platelet-derived growth factor BB-isoform (PDGF-BB), transforming growth factor beta1 (TGF-beta1) and sphingosine-1-phosphate (S1P). The sphingosine kinase inhibitor DL-threo-dihydrosphingosine (DL-dihydro) abrogated the platelet-induced growth, while antibodies directed against PDGF or TGF-beta had modest effects. Exposure of fibroblasts to platelets, PDGF-BB, TGF-beta1 or S1P caused an extensive intracellular ROS production, measured as changes in dichlorofluorescein fluorescence. This ROS production was totally inhibited by NAC, pyrrolidinethiocarbamate (PDTC), DPI and apocynin. In conclusion, the results presented are indicative of a crucial role of ROS in the platelet-mediated regulation of fibroblast proliferation.  相似文献   

7.
Fibroblast-like synovial cells play a crucial role in the pathophysiology of rheumatoid arthritis (RA), as these cells are involved in inflammation and joint destruction. Apigenin, a dietary plant-flavonoid, is known to have many functions in animal cells including anti-proliferative and anticancer activities, but its role in human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) has not been reported. In this study, we investigated the roles of apigenin in RA-FLSs. The survival rate decreased, and apoptotic cell death was induced by apigenin treatment in RA-FLSs. Apigenin treatment resulted in activation of the mitogen-activated protein kinase (MAPK) ERK1/2, and pretreatment with an ERK inhibitor PD98059 dramatically reduced apigenin-induced apoptosis. We found that apigenin-mediated production of a large amount of intracellular reactive oxygen species (ROS) caused activation of ERK1/2 and apoptosis; treatment with the antioxidant Tiron strongly inhibited the apigenin-induced generation of ROS, phosphorylation of ERK1/2, and apoptotic cell death. Apigenin-induced apoptotic cell death was mediated through activation of the effectors caspase-3 and caspase-7, and was blocked by pretreatment with Z-VAD-FMK (a pan-caspase inhibitor). These results showed that apigenin-induced ROS and oxidative stress-activated ERK1/2 caused apoptotic cell death in apigenin-treated RA-FLSs.  相似文献   

8.
Recent studies have documented that TGF-beta1 takes part in dental pulp tissue repair. Moreover, dental pulp cells have the potential to differentiate into odontoblast-like cells and produce reparative dentine in this process. However, the molecular mechanisms and potential interactions between TGF-beta1 and dental pulp cells are not clear due to the complexity of the pulp/dentine microenvironment. In this study, we investigated the induction of TGF-beta1 on the dental pulp cells in cell culture, tissue culture and three-dimensional culture patterns. These results demonstrated that TGF-beta1 significantly increased the proliferation of cells and activity of ALPase. Dental pulp cells cultured in the presence of TGF-beta1 formed mineralization nodules. In the organ culture, dental pulp cells treated with TGF-beta1 differentiated into odontoblast-like cells and formed a pulp-dentinal complex; and TGF-beta1 significantly induced synthesis of dentine relative proteins DSPP, DMP-1. The dental pulp cells share some characteristics of the odontoblast, such as a parallel arrangement with columnar form and a unilateral cell process. Together, these data indicate that TGF-beta1 can make dental pulp cells differentiated into odontoblast-like cells and form the pulp-dentinal complex. Moreover, these results suggest that TGF-beta1 is an important regulatory factor in odontoblast differentiation during tooth development and pulp repair.  相似文献   

9.
We previously found that DJ-1 protein of pI 5.8 (DJ-1/5.8) increased on 2D gels as DJ-1 of pI 6.2 (DJ-1/6.2) decreased, upon exposure of human cells to sublethal levels of oxidative stress, such as H2O2 and paraquat. Here, we show that the DJ-1/5.8 increases concomitantly with endogenous production of reactive oxygen species (ROS) under endotoxin-induced inflammatory conditions. Lipopolysaccharide (LPS) significantly increased the expression of DJ-1/5.8 in murine peritoneal macrophages (MΦ) and a murine macrophage cell line (J774). Diphenylene iodonium, a flavoenzyme inhibitor, blocked the effect of LPS on DJ-1/5.8 expression. Aminoguanidine (AG), a selective inhibitor of type II nitric oxide synthase, had no effect on the DJ-1/5.8 expression, but suppressed accumulation of nitrite in the culture medium after LPS treatment. We also examined the expression of DJ-1/5.8 in lung, since acute lung injury is seen in endotoxin shock. When female mice (6-weeks old) were intraperitoneally given LPS (10 mg/kg), myeloperoxidase (MPO) activity in lung, a marker of neutrophil infiltration, was transiently raised by 3.5 fold. The expression of DJ-1/5.8 in lung was enhanced and then reverted to the control level, in parallel with the MPO activity. These results, taken together, suggest that the DJ-1/5.8 might increase in response to endogenously produced ROS, probably due to activation of NADPH oxidase, and imply that DJ-1 may be useful as an endogenous indicator of oxidative stress status in vivo.  相似文献   

10.
Mitochondrial uptake of calcium in excitotoxicity is associated with subsequent increase in reactive oxygen species (ROS) generation and delayed cellular calcium deregulation in ischemic and neurodegenerative insults. The mechanisms linking mitochondrial calcium uptake and ROS production remain unknown but activation of the mitochondrial permeability transition (mPT) may be one such mechanism. In the present study, calcium increased ROS generation in isolated rodent brain and human liver mitochondria undergoing mPT despite an associated loss of membrane potential, NADH and respiration. Unspecific permeabilization of the inner mitochondrial membrane by alamethicin likewise increased ROS independently of calcium, and the ROS increase was further potentiated if NAD(H) was added to the system. Importantly, calcium per se did not induce a ROS increase unless mPT was triggered. Twenty-one cyclosporin A analogs were evaluated for inhibition of calcium-induced ROS and their efficacy clearly paralleled their potency of inhibiting mPT-mediated mitochondrial swelling. We conclude that while intact respiring mitochondria possess powerful antioxidant capability, mPT induces a dysregulated oxidative state with loss of GSH- and NADPH-dependent ROS detoxification. We propose that mPT is a significant cause of pathological ROS generation in excitotoxic cell death.  相似文献   

11.
Changes in the expression and function of caveolin-1 (Cav-1) have been proposed as a pathogenic mechanism underlying many cardiovascular diseases. Cav-1 binds to and regulates the activity of numerous signaling proteins via interactions with its scaffolding domain. In endothelial cells, Cav-1 has been shown to reduce reactive oxygen species (ROS) production, but whether Cav-1 regulates the activity of NADPH oxidases (Noxes), a major source of cellular ROS, has not yet been shown. Herein, we show that Cav-1 is primarily expressed in the endothelium and adventitia of pulmonary arteries (PAs) and that Cav-1 expression is reduced in isolated PAs from multiple models of pulmonary artery hypertension (PH). Reduced Cav-1 expression correlates with increased ROS production in the adventitia of hypertensive PA. In vitro experiments revealed a significant ability of Cav-1 and its scaffolding domain to inhibit Nox1–5 activity and it was also found that Cav-1 binds to Nox5 and Nox2 but not Nox4. In addition to posttranslational actions, in primary cells, Cav-1 represses the mRNA and protein expression of Nox2 and Nox4 through inhibition of the NF-κB pathway. Last, in a mouse hypoxia model, the genetic ablation of Cav-1 increased the expression of Nox2 and Nox4 and exacerbated PH. Together, these results suggest that Cav-1 is a negative regulator of Nox function via two distinct mechanisms, acutely through direct binding and chronically through alteration of expression levels. Accordingly, the loss of Cav-1 expression in cardiovascular diseases such as PH may account for the increased Nox activity and greater production of ROS.  相似文献   

12.
13.
Up regulation of the transforming growth factor-beta 1 (TGF-β1) axis has been recognized as a pathogenic event for progression of glomerulosclerosis in diabetic nephropathy. We demonstrate that glomeruli isolated from diabetic rats accumulate up to sixfold more extracellular adenosine than normal rats. Both decreased nucleoside uptake activity by the equilibrative nucleoside transporter 1 and increased AMP hydrolysis contribute to raise extracellular adenosine. Ex vivo assays indicate that activation of the low affinity adenosine A2B receptor subtype (A2BAR) mediates TGF-β1 release from glomeruli of diabetic rats, a pathogenic event that could support progression of glomerulopathy when the bioavailability of adenosine is increased.  相似文献   

14.
Electrical signals have been implied in many biological mechanisms, including wound healing, which has been associated with transient electrical currents not present in intact skin. One method to generate electrical signals similar to those naturally occurring in wounds is by supplementation of galvanic particles dispersed in a cream or gel. We constructed a three-layered model of skin consisting of human dermal fibroblasts in hydrogel (mimic of dermis), a hydrogel barrier layer (mimic of epidermis) and galvanic microparticles in hydrogel (mimic of a cream containing galvanic particles applied to skin). Using this model, we investigated the effects of the properties and amounts of Cu/Zn galvanic particles on adult human dermal fibroblasts in terms of the speed of wound closing and gene expression. The collected data suggest that the effects on wound closing are due to the ROS-mediated enhancement of fibroblast migration, which is in turn mediated by the BMP/SMAD signaling pathway. These results imply that topical low-grade electric currents via microparticles could enhance wound healing.  相似文献   

15.
16.
Reactive oxygen species (ROS) are implicated in aging of cartilage and in the pathogenesis of osteoarthritis. However, the biological role of chondrocytes-derived ROS has not been elucidated. An in-vitro model was developed to study the role of chondrocyte-derived ROS in cartilage matrix degradation. The primary articular chondrocytes were cultured and the aggrecan matrix was radiolabeled with 35-sulfate. The labeled aggrecan matrix was washed to remove unincorporated label and chondrocytes were returned to serum free balanced salt solution. The cell-monolayer-matrix sensitivity to oxidative damage due to either hydrogen peroxide or glucose oxidase was established by monitoring the release of labeled aggrecan into the medium. Lipopolysaccharide (LPS) treatment of chondrocytemonolayer enhanced the release of labeled aggrecan. Catalase significantly prevented the release of labeled aggrecan in LPS-chondrocyte cultures, suggesting a role for chondrocyte-derived hydrogen peroxide in aggrecan degradation. Superoxide dismutase or boiled catalase had no such inhibitory effect. The effect of several antioxidants on LPS-chondrocyte-dependent aggrecan degradation was examined. Hydroxyl radical scavengers (mannitol and thiourea) significantly decreased aggrecan degradation. A spin trapping agent N-tert-butyl-phenylnitrone (but not its inactive analog tert-butyl-phenylcarbonate) significantly decreased aggrecan degradation. Butylated hydroxytoluene also inhibited aggrecan degradation, whereas the other lipophilic antioxidant tested, propyl gallate, had a marked dose-dependent inhibitory effect. These data indicate that general antioxidants, hydroxyl radical scavengers, antioxidant vitamins, iron chelating agents, lipophilic antioxidants, and spin trapping agents can influence chondrocyte-dependent aggrecan degradation. These studies support the role of a chondrocyte-dependent oxidative mechanism in aggrecan degradation and indicate that antioxidants can prevent matrix degradation and therefore may have a preventive or therapeutic value in arthritis. The enhancement of oxidative activity in chondrocytes and its damaging effect on matrix may be an important mechanism of matrix degradation in osteoarthritis.  相似文献   

17.
Many environmental conditions subject plants to oxidative stress, in which reactive oxygen species (ROS) are overproduced. These ROS act as transduction signals in plant defense responses, but also cause effects that result in cellular damage. Since nitric oxide (NO) is a bioactive molecule able to scavenge ROS, we analyzed its effect on some cytotoxic processes produced by ROS in potato (Solanum tuberosum L. cv. Pampeana) leaves. Two NO donors: (i) sodium nitroprusside and (ii) a mixed solution of ascorbic acid and NaNO2, were able to prevent chlorophyll loss mediated by the methyl viologen herbicide diquat (a ROS generator), with effective concentrations falling between 10 and 100 μM of the donors. This protection was mimicked by thiourea and penicillamine, two antioxidant compounds. Residual products from NO generation and decomposition failed to prevent chlorophyll decline. A specific NO scavenger, the potassium salt of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), arrested NO-mediated chlorophyll protection. In addition, some events mediated by ROS during infection of potato leaves with Phytophthora infestans (race 1, 4, 7, 8, 10, 11, mating type A2) were also examined. In this sense, NO proved to markedly decrease ion leakage and the number of lesions, indicative of cell death, produced upon infection in potato leaves. The NO-mediated decrease in ion leakage was also inhibited by carboxy-PTIO. Fragmentation of DNA diminished when P. infestans-infected potato leaves were treated with 100 μM SNP. These results suggest that, acting as an antioxidant, NO can strongly counteract many ROS-mediated cytotoxic processes in plants. Moreover, the evidence of NO functionality in the plant kingdom is strengthened by this work. Received: 18 December 1998 / Accepted: 19 January 1999  相似文献   

18.
Androgens regulate hair growth, and 5α-reductase (5αR) plays a pivotal role in the action of androgens on target organs. To clarify the molecular mechanisms responsible for controlling hair growth, the present study presents evidence that the human follicular dermal papilla cells (DPCs) from either beard (bDPCs) or scalp hair (sDPCs) possess endogenous 5αR activity. Real-time RT-PCR revealed that the highest level of 5αR1 mRNA was found in bDPCs, followed by sDPCs, and a low but detectable level of 5αR1 mRNA was observed in fibroblasts. Minimally detectable levels of 5αR2 mRNA were found in all three cell types. A weak band at 26 kDa corresponding to the human 5αR1 protein was detected by Western blot in both DPCs, but not in fibroblasts. Immuonofluorescence analysis confirmed that 5αR1 was localized to the cytoplasm rather than in the nuclei in both DPCs Furthermore, a 5αR assay using [14C]testosterone labeling in intact cells revealed that testosterone was transformed primarily into androstenedione, and in small amounts, into DHT. Our results demonstrate that the 5αR activities of either bDPCs or sDPCs are stronger than that of dermal fibroblasts, despite the fact that the major steroidogenic activity is attributed to 17β-HSD rather than 5αR among the three cell types. The 5αR1 inhibitor MK386 exhibited a more potent inhibitory effect on 5αR activity than finasteride (5αR2 inhibitor) in bDPCs.  相似文献   

19.
We have recently shown that hyperosmotic stress activates p65/RelB NFkappaB in cultured cardiomyocytes with dichotomic actions on caspase activation and cell death. It remains unexplored how NFkappaB is regulated in cultured rat cardiomyocytes exposed to hyperosmotic stress. We study here: (a) if hyperosmotic stress triggers reactive oxygen species (ROS) generation and in turn whether they regulate NFkappaB and (b) if insulin-like growth factor-1 (IGF-1) modulates ROS production and NFkappaB activation in hyperosmotically-stressed cardiomyocytes. The results showed that hyperosmotic stress generated ROS in cultured cardiac myocytes, in particular the hydroxyl and superoxide species, which were inhibited by N-acetylcysteine (NAC). Hyperosmotic stress-induced NFkappaB activation as determined by IkappaBalpha degradation and NFkappaB DNA binding. NFkappaB activation and procaspase-3 and -9 fragmentation were prevented by NAC and IGF-1. However, this growth factor did not decrease ROS generation induced by hyperosmotic stress, suggesting that its actions over NFkappaB and caspase activation may be due to modulation of events downstream of ROS generation. We conclude that hyperosmotic stress induces ROS, which in turn activates NFkappaB and caspases. IGF-1 prevents NFkappaB activation by a ROS-independent mechanism.  相似文献   

20.
We have recently shown that the activation of the rat μ-opioid receptor (MOPr, also termed MOR1) by the μ-agonist [ d -Ala2, Me Phe4, Glyol5]enkephalin (DAMGO) leads to an increase in phospholipase D2 (PLD2) activity and an induction of receptor endocytosis, whereas the agonist morphine which does not induce opioid receptor endocytosis fails to activate PLD2. We report here that MOPr-mediated activation of PLD2 stimulates production of reactive oxygen molecules via NADH/NADPH oxidase. Oxidative stress was measured with the fluorescent probe dichlorodihydrofluorescein diacetate and the role of PLD2 was assessed by the PLD inhibitor d -erythro-sphingosine (sphinganine) and by PLD2-small interfering RNA transfection. To determine whether NADH/NADPH oxidase contributes to opioid-induced production of reactive oxygen species, μ-agonist-stimulated cells were pre-treated with the flavoprotein inhibitor, diphenylene iodonium, or the specific NADPH oxidase inhibitor, apocynin. Our results demonstrate that receptor-internalizing agonists (like DAMGO, β-endorphin, methadone, piritramide, fentanyl, sufentanil, and etonitazene) strongly induce NADH/NADPH-mediated ROS synthesis via PLD-dependent signaling pathways, whereas agonists that do not induce MOPr endocytosis and PLD2 activation (like morphine, buprenorphine, hydromorphone, and oxycodone) failed to activate ROS synthesis in transfected human embryonic kidney 293 cells. These findings indicate that the agonist-selective PLD2 activation plays a key role in the regulation of NADH/NADPH-mediated ROS formation by opioids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号