首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents a kinetic analysis of the response to wounding in rice plants. In particular, jasmonic acid, salicylic acid, and lipoxygenase activity were measured in leaves of wounded rice plants during the early tillering phase. The results show that endogenous jasmonic acid transiently increases to a maximum 30 min after wounding (jasmonic acid burst) and lipoxygenase activity increases after the jasmonic acid burst, but not after the second smaller peak of endogenous jasmonic acid 23 h after wounding. In contrast, endogenous salicylic acid decreases during the jasmonic acid burst, such that the kinetic profiles of jasmonic acid and salicylic acid are inversely correlated during the early response to wounding. It is proposed here that the increase in endogenous jasmonic acid and the decrease in endogenous salicylic acid may contribute for establishing the efficient negative cross-talk between jasmonic acid and salicylic acid signaling pathways during the early response to wounding in rice.  相似文献   

2.
Plants can use indirect defence mechanisms to protect themselves against herbivorous insects. An example of such an indirect defence mechanism is the emission of volatiles by plants induced by herbivore feeding. These volatiles can attract the natural enemies of these herbivores, for example, parasitoid wasps. Here, it is shown that the octadecanoid and the salicylic acid pathways are involved in the induced attraction of the parasitoid wasp Cotesia rubecula by Arabidopsis thaliana infested with the herbivore Pieris rapae. Besides exogenous application of jasmonic acid or salicylic acid, use is also made of transgenic Arabidopsis that do not show induced jasmonic acid levels after wounding (S-12) and transgenic Arabidopsis that do not accumulate salicylic acid (NahG). Treatment of Arabidopsis with jasmonic acid resulted in an increased attraction of parasitoid wasps compared with untreated plants, whereas treatment with salicylic acid did not. Transgenic plants impaired in the octadecanoid or the salicylic acid pathway were less attractive than wild-type plants.  相似文献   

3.
Ozone is the main photochemical oxidant that causes leaf damage in many plant species, and can thereby significantly decrease the productivity of crops and forests. When ozone is incorporated into plants, it produces reactive oxygen species (ROS), such as superoxide radicals and hydrogen peroxide. These ROS induce the synthesis of several plant hormones, such as ethylene, salicylic acid, and jasmonic acid. These phytohormones are required for plant growth, development, and defense responses, and regulate the extent of leaf injury in ozone-fumigated plants. Recently, responses to ozone have been studied using genetically modified plants and mutants with altered hormone levels or signaling pathways. These researches have clarified the roles of phytohormones and the complexity of their signaling pathways. The present paper reviews the biosynthesis of the phytohormones ethylene, salicylic acid, and jasmonic acid, their roles in plant responses to ozone, and multiple interactions between these phytohormones in ozone-exposed plants.Key words: cross-talk, ethylene, jasmonic acid, ozone, phytohormones, programmed cell death, salicylic acid, signaling pathways  相似文献   

4.
Traw MB  Bergelson J 《Plant physiology》2003,133(3):1367-1375
Leaf trichomes protect plants from attack by insect herbivores and are often induced following damage. Hormonal regulation of this plant induction response has not been previously studied. In a series of experiments, we addressed the effects of artificial damage, jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Artificial damage and jasmonic acid caused significant increases in trichome production of leaves. The jar1-1 mutant exhibited normal trichome induction following treatment with jasmonic acid, suggesting that adenylation of jasmonic acid is not necessary. Salicylic acid had a negative effect on trichome production and consistently reduced the effect of jasmonic acid, suggesting negative cross-talk between the jasmonate and salicylate-dependent defense pathways. Interestingly, the effect of salicylic acid persisted in the nim1-1 mutant, suggesting that the Npr1/Nim1 gene is not downstream of salicylic acid in the negative regulation of trichome production. Last, we found that gibberellin and jasmonic acid had a synergistic effect on the induction of trichomes, suggesting important interactions between these two compounds.  相似文献   

5.
Jasmonates and salicylic acid are considered to be signal molecules that induce a variety of plant genes involved in wound or defence response, as well as affecting nos promoter activity. In this paper we examined whether these chemicals could also affect nod genes from isogenic rhizobia strains. Isogenic strains contain the Rhizobium leguminosarum nodA promoter fused to the lacZ gene of Escherichia coli and differ only in the source of the regulatory nodD gene. Naringenin, jasmonic acid and methyl jasmonate induced expression of nod genes in strain RBL1284 and salicylic acid showed no activity alone or when used in combination with other compounds; addition of naringenin + jasmonic acid produced a synergistic effect. Results obtained with strain RBL5284 were similar to those for RBL1284 albeit the combination of naringenin with the other compounds markedly inhibited nod gene expression. Whereas RBL5283 responded to naringenin with a strong induction, jasmonic acid, methyl jasmonate or salicylic acid showed no significant responses. The inhibitory effect of salicylic acid on nod gene expression indicates that the induction mechanism of jasmonic acid, methyl jasmonate, N-propyldihydrojasmonate and naringenin is probably different from that of salicylic acid.  相似文献   

6.
Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independent of salicylic acid. Evidence is emerging that jasmonic acid and ethylene play key roles in these salicylic acid-independent pathways. Cross-talk between the salicylic acid-dependent and the salicylic acid-independent pathways provides great regulatory potential for activating multiple resistance mechanisms in varying combinations.  相似文献   

7.
Jasmonic acid and salicylic acid represent important signaling compounds in plant defensive responses against other organisms. Here, we present a new method for the easy, sensitive, and reproducible quantification of both compounds by vapor-phase extraction and gas chromatography-positive ion chemical ionization-mass spectrometry. The method is based on a one-step extraction, phase partitioning, methylation with HCl/methanol, and collection of methylated and, thus, volatilized compounds on Super Q filters, thereby omitting further purification steps. Eluted samples are analyzed and quantified by GC/MS with chemical ionization. Standard curves were linear over a range of 5-1000 ng for jasmonic acid and salicylic acid. The correlation coefficients were greater than 0.999 and the recovery rates estimated between 70 and 90% for salicylic acid and 90 and 100% for jasmonic acid. The limit of detection was about 500 fg by using single ion detection mode. Both, cis- and trans-isomers for jasmonic acid can be detected. A comparison with established methods indicates the new method to be highly efficient, allowing reliable quantification of both compounds from small amounts of plant material (5-400mg fresh weight).  相似文献   

8.
9.
Plant cell metabolism reactions upon biotic stress conditions are initiated via cellular signaling systems. At the same time, signaling pathways of phytohormonal mediators of biotic stress induction, salicylic acid and jasmonic acid, and their intracellular activities are implemented in cooperation with lipid-derived regulatory elements. In this work we have found that salicylic acid treatment evoke activation of phospholipase D responsible for the production of second messenger phosphatidic acid. Mediators of the defense reactions also affected the balance of active oxygen species and in particular induced accumulation of endogenous hydrogen peroxide and changes in the activities of antioxidant enzymes (catalase, peroxidases, and superoxide dismutase). Our results point out to the interactions between lipid signaling enzymes and cellular antioxidant systems required for realization of primary adaptation responses to biotic stress mediators in plants.  相似文献   

10.
11.
12.
韧皮部取食昆虫诱导的植物防御反应   总被引:3,自引:0,他引:3  
刺吸式昆虫与寄主植物之间具有特殊的生物互作关系。本文对刺吸式昆虫取食韧皮部诱导的植物防御反应类型、 防御物质变化、 信号途径以及植物反应转录组学研究等方面进行综述。韧皮部取食昆虫取食诱导的植物防御反应机制主要包括: (1)改变自身的营养状况; (2)产生有毒的次生化合物; (3)产生防御蛋白。防御反应与植物水杨酸、 茉莉酸、 乙烯等信号分子密切相关。研究表明, 刺吸式昆虫取食诱导的植物防御反应主要引发以水杨酸为主的信号途径, 但相关分子互作机制还有待明确。日益丰富的基因组资源和不断发展的分子生物学技术为揭示植物防御反应中信号分子的作用机制、 找出植物内生抗性的特异因子以及阐明诱导防御机制奠定了基础。了解刺吸式昆虫取食诱导的植物防御反应, 为深入理解植物-昆虫间协同进化关系提供了依据, 为害虫治理和抗虫植物的培育提供了新的思路。  相似文献   

13.
一氧化氮与激发子诱导的植物抗病防卫反应   总被引:6,自引:0,他引:6  
胡向阳  蔡伟明 《生命科学》2005,17(2):176-182
来源于真菌或植物细胞壁的激发子可以诱导植物的抗性反应。一系列的信号分子,如一氧化氮、活性氧、茉莉酸、水杨酸、乙烯等都参与了激发子诱导的植物抗性反应。它们在介导激发子刺激诱发胞内抗性反应的过程中起着重要的作用。本文介绍了激发子的种类,并简述了激发了受体以及植物细胞对激发子刺激的感受与传递;重点介绍了一氧化氮在激发子诱导植物抗性反应过程中的作用,以及它与其他信号分子之间相互关系的研究进展。  相似文献   

14.
The role of abscisic acid in plant-pathogen interactions   总被引:15,自引:0,他引:15  
The effect of the abiotic stress hormone abscisic acid on plant disease resistance is a neglected field of research. With few exceptions, abscisic acid has been considered a negative regulator of disease resistance. This negative effect appears to be due to the interference of abscisic acid with biotic stress signaling that is regulated by salicylic acid, jasmonic acid and ethylene, and to an additional effect of ABA on shared components of stress signaling. However, recent research shows that abscisic acid can also be implicated in increasing the resistance of plants towards pathogens via its positive effect on callose deposition.  相似文献   

15.
16.
Sutter R  Müller C 《The New phytologist》2011,191(4):1069-1082
Induction studies focusing on target metabolites may not reveal metabolic changes occurring in plants after various challenges. By contrast, metabolic fingerprinting can be a powerful tool to find patterns that are either treatment-specific or general and was therefore used to depict plant responses after various challenges. Plants of Plantago lanceolata were challenged by mechanical damage, specialist herbivores (aphids or sawfly larvae), generalist herbivores (Lepidopteran caterpillars) or phytohormones (jasmonic or salicylic acid). After 3 d of treatment, local and systemic leaves were analyzed for characteristic target metabolites (iridoid glucosides and verbascoside) by gas chromatography coupled with mass spectrometry (GC-MS) and for metabolic fingerprints by liquid chromatography coupled with time of flight mass spectrometry (LC-TOF-MS). Whereas only marginal changes in target metabolite concentrations were found, metabolic fingerprints were substantially affected especially by generalist and phytohormone treatments. By contrast, mechanical damage and specialist herbivory caused fewer changes. Responses to generalists partly overlapped with the changes caused by jasmonic acid, but many additional peaks were up-regulated. Furthermore, many peaks were co-induced by jasmonic and salicylic acid. The surprisingly high co-induction of peaks by both phytohormones suggests that the signaling pathways regulate a set of common targets. Furthermore, only metabolic fingerprinting could reveal that herbivores induce additional species-specific pathways beyond these phytohormone responses.  相似文献   

17.
Leaf senescence is a highly regulated physiological process that contributes to nutrient remobilization during stress, thus allowing the rest of the plant to benefit from the nutrients accumulated during the life span of the leaf. Here we studied drought-induced leaf senescence in a perennial plant, common sage (Salvia officinalis L.) grown under Mediterranean field conditions, with an emphasis on the possible involvement of the phytohormones, salicylic acid and jasmonic acid in the process. The initial stages of leaf senescence (0–27 days of water deficit) were characterized by salicylic acid accumulation (by 80%) and decrease of jasmonic acid levels (by 40%), which occurred in parallel with a severe loss of photosynthetic pigments (up to 65%) and increases in the de-epoxidation state (DPS) of the xanthophyll cycle (by 55%), while the maximum efficiency of photosystem II (Fv/Fm ratio) was maintained above 0.80, thus indicating the absence of damage to the photosynthetic apparatus. The latest stages of leaf senescence (until 42 days of water deficit) were instead characterized by maintenance of the levels of jasmonic acid and salicylic acid, while β-carotene and the Fv/Fm ratio decreased significantly, which was followed by cell death. Exogenous applications of methyl salicylic acid in leaves of water-stressed plants led to reductions in chlorophyll levels, thus confirming the promoting effects of salicylic acid on leaf senescence. It is therefore concluded that salicylic acid may be involved, together with other phytohormones, in the regulation of drought-induced leaf senescence in perennials.  相似文献   

18.
Damage inflicted by herbivore feeding necessitates multiple defense strategies in plants. The wound site must be sealed and defense responses mounted against the herbivore itself and against invading opportunistic pathogens. These defenses are controlled both in time and space by highly complex regulatory networks that themselves are modulated by interactions with other signaling pathways. In this review, we describe the signaling events that occur in individual wounded leaves, in systemic unwounded regions of the plant, and between the plant, and other organisms, and attempt to place these events in the context of a coordinated system. Key signals that are discussed include ion fluxes, active oxygen species, protein phosphorylation cascades, the plant hormones jasmonic acid, ethylene, abscisic acid and salicylic acid, peptide signals, glycans, volatile chemicals, and physical signals such as hydraulic and electrical signals. Themes that emerge after consideration of the published data are that glycans and peptide elicitors are likely primary triggers of wound-induced defense responses and that they function through the action of jasmonic acid, a central mediator of defense gene expression, whose effect is modulated by ethylene. In the field, wound signaling pathways are significantly impacted on by other stress response pathways, including pathogen responses that often operate through potentially antagonistic signals such as salicylic acid. However, gross generalisations are not possible because some wound and pathogen responses operate through common jasmonate- and ethylene-dependent pathways. Understanding the ways in which local and systemic wound signaling pathways are coordinated individually and in the context of the plants wider environment is a key challenge in the application of this science to crop-protection strategies.  相似文献   

19.
We compared tomato defense responses to Phytophthora infestans in highly compatible and partially compatible interactions. The highly compatible phenotype was achieved with a tomato-specialized isolate of P. infestans, whereas the partially compatible phenotype was achieved with a nonspecialized isolate. As expected, there was induction of the hypersensitive response (HR) earlier during the partially compatible interaction. However, contrary to our expectation, pathogenesis-related (PR) gene expression was not stimulated sooner in the partially compatible interaction. While the level of PR gene expression was quite similar in the two interactions, the LeDES gene (which encodes an enzyme necessary for the production of divinyl ethers) was expressed at a much higher level in the partially compatible interaction at 48 h after inoculation. Host reaction to the different pathogen genotypes was not altered (compared with wild type) in mutant tomatoes that were ethylene-insensitive (Never-ripe) or those with reduced ability to accumulate jasmonic acid (def-1). Similarly, host reaction was not altered in NahG transgenic tomatoes unable to accumulate salicylic acid. These combined data indicate that partial resistance in tomato to P. infestans is independent of ethylene, jasmonic acid, and salicylic acid signaling pathways.  相似文献   

20.
吕要斌  刘树生 《昆虫学报》2004,47(2):206-212
茉莉酸是植物体内重要的伤信号分子,向植物施用外源茉莉酸后, 可诱导植物产生各种防卫反应, 如挥发物组成发生改变等, 进而影响植食性昆虫及其天敌。该文报道用不同浓度外源茉莉酸处理白菜和甘蓝后,诱导植物反应所产生的挥发物对菜蛾绒茧蜂搜索及寄生选择行为的影响。外源茉莉酸处理白菜和甘蓝后,处理植株的挥发物对菜蛾绒茧蜂的引诱力增强;与在对照植株上相比,该蜂对经茉莉酸处理后白菜植株上的小菜蛾幼虫的寄生数显著要高。表明茉莉酸处理白菜及甘蓝后,植物诱导反应导致其挥发物的作用发生变化,进而可提高该蜂的搜索和寄生效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号