首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examine the impact of likelihood surface characteristics on phylogenetic inference. Amino acid data sets simulated from topologies with branch length features chosen to represent varying degrees of difficulty for likelihood maximization are analyzed. We present situations where the tree found to achieve the global maximum in likelihood is often not equal to the true tree. We use the program covSEARCH to demonstrate how the use of adaptively sized pools of candidate trees that are updated using confidence tests results in solution sets that are highly likely to contain the true tree. This approach requires more computation than traditional maximum likelihood methods, hence covSEARCH is best suited to small to medium-sized alignments or large alignments with some constrained nodes. The majority rule consensus tree computed from the confidence sets also proves to be different from the generating topology. Although low phylogenetic signal in the input alignment can result in large confidence sets of trees, some biological information can still be obtained based on nodes that exhibit high support within the confidence set. Two real data examples are analyzed: mammal mitochondrial proteins and a small tubulin alignment. We conclude that the technique of confidence set optimization can significantly improve the robustness of phylogenetic inference at a reasonable computational cost. Additionally, when either very short internal branches or very long terminal branches are present, confident resolution of specific bipartitions or subtrees, rather than whole-tree phylogenies, may be the most realistic goal for phylogenetic methods. [Reviewing Editor: Dr. Nicolas Galtier]  相似文献   

2.
The relative efficiencies of the maximum-likelihood (ML), neighbor- joining (NJ), and maximum-parsimony (MP) methods in obtaining the correct topology and in estimating the branch lengths for the case of four DNA sequences were studied by computer simulation, under the assumption either that there is variation in substitution rate among different nucleotide sites or that there is no variation. For the NJ method, several different distance measures (Jukes-Cantor, Kimura two- parameter, and gamma distances) were used, whereas for the ML method three different transition/transversion ratios (R) were used. For the MP method, both the standard unweighted parsimony and the dynamically weighted parsimony methods were used. The results obtained are as follows: (1) When the R value is high, dynamically weighted parsimony is more efficient than unweighted parsimony in obtaining the correct topology. (2) However, both weighted and unweighted parsimony methods are generally less efficient than the NJ and ML methods even in the case where the MP method gives a consistent tree. (3) When all the assumptions of the ML method are satisfied, this method is slightly more efficient than the NJ method. However, when the assumptions are not satisfied, the NJ method with gamma distances is slightly better in obtaining the correct topology than is the ML method. In general, the two methods show more or less the same performance. The NJ method may give a correct topology even when the distance measures used are not unbiased estimators of nucleotide substitutions. (4) Branch length estimates of a tree with the correct topology are affected more easily than topology by violation of the assumptions of the mathematical model used, for both the ML and the NJ methods. Under certain conditions, branch lengths are seriously overestimated or underestimated. The MP method often gives serious underestimates for certain branches. (5) Distance measures that generate the correct topology, with high probability, do not necessarily give good estimates of branch lengths. (6) The likelihood-ratio test and the confidence-limit test, in Felsenstein's DNAML, for examining the statistical of branch length estimates are quite sensitive to violation of the assumptions and are generally too liberal to be used for actual data. Rzhetsky and Nei's branch length test is less sensitive to violation of the assumptions than is Felsenstein's test. (7) When the extent of sequence divergence is < or = 5% and when > or = 1,000 nucleotides are used, all three methods show essentially the same efficiency in obtaining the correct topology and in estimating branch lengths.(ABSTRACT TRUNCATED AT 400 WORDS)   相似文献   

3.
The relative efficiencies of different protein-coding genes of the mitochondrial genome and different tree-building methods in recovering a known vertebrate phylogeny (two whale species, cow, rat, mouse, opossum, chicken, frog, and three bony fish species) was evaluated. The tree-building methods examined were the neighbor joining (NJ), minimum evolution (ME), maximum parsimony (MP), and maximum likelihood (ML), and both nucleotide sequences and deduced amino acid sequences were analyzed. Generally speaking, amino acid sequences were better than nucleotide sequences in obtaining the true tree (topology) or trees close to the true tree. However, when only first and second codon positions data were used, nucleotide sequences produced reasonably good trees. Among the 13 genes examined, Nd5 produced the true tree in all tree-building methods or algorithms for both amino acid and nucleotide sequence data. Genes Cytb and Nd4 also produced the correct tree in most tree-building algorithms when amino acid sequence data were used. By contrast, Co2, Nd1, and Nd41 showed a poor performance. In general, large genes produced better results, and when the entire set of genes was used, all tree-building methods generated the true tree. In each tree-building method, several distance measures or algorithms were used, but all these distance measures or algorithms produced essentially the same results. The ME method, in which many different topologies are examined, was no better than the NJ method, which generates a single final tree. Similarly, an ML method, in which many topologies are examined, was no better than the ML star decomposition algorithm that generates a single final tree. In ML the best substitution model chosen by using the Akaike information criterion produced no better results than simpler substitution models. These results question the utility of the currently used optimization principles in phylogenetic construction. Relatively simple methods such as the NJ and ML star decomposition algorithms seem to produce as good results as those obtained by more sophisticated methods. The efficiencies of the NJ, ME, MP, and ML methods in obtaining the correct tree were nearly the same when amino acid sequence data were used. The most important factor in constructing reliable phylogenetic trees seems to be the number of amino acids or nucleotides used.   相似文献   

4.
The nucleotide substitution matrix inferred from avian data sets using cytochrome b differs considerably from the models commonly used in phylogenetic analyses. To analyze the possible effects of this particular pattern of change in phylogeny estimation we performed a computer simulation in which we started with a real sequence and used the inferred model of change to produce a tree of 10 species. Maximum parsimony (MP), maximum likelihood (ML), and various distance methods were then used to recover the topology and the branch lengths. We used two kinds of data with varying levels of variation. In addition, we tested with the removal of third positions and different weighting schemes. At low levels of variation, MP was outstanding in recovering the topology (90% correct), while unweighted pair-group method, arithmetic average (UPGMA), regardless of distances used, was poor (40%). At the higher level, most methods had a chance of around 40%-58% of finding the true tree. However, in most cases, the trees found were only slightly wrong, with only one or a few branches misplaced. On the other hand, the use of a "wrong" model had serious effects on the estimation of branch lengths (distances). Although precision was high, accuracy was poor with most methods, giving branch lengths that were biased downward. When seeded with the true distance matrix, Fitch and NJ always found the true tree, while UPGMA frequently failed to do so. The effect of removing third positions was dramatic at low levels of variation, because only one MP program was able to find a true tree at all, albeit rarely, while none of the others ever did so. At higher levels, the situation was better, but still much worse than with the whole data set.  相似文献   

5.
Determining the phylogenetic relationships among the major lines of angiosperms is a long-standing problem, yet the uncertainty as to the phylogenetic affinity of these lines persists. While a number of studies have suggested that the ANITA (Amborella-Nymphaeales-Illiciales-Trimeniales-Aristolochiales) grade is basal within angiosperms, studies of complete chloroplast genome sequences also suggested an alternative tree, wherein the line leading to the grasses branches first among the angiosperms. To improve taxon sampling in the existing chloroplast genome data, we sequenced the chloroplast genome of the monocot Acorus calamus. We generated a concatenated alignment (89,436 positions for 15 taxa), encompassing almost all sequences usable for phylogeny reconstruction within spermatophytes. The data still contain support for both the ANITA-basal and grasses-basal hypotheses. Using simulations we can show that were the ANITA-basal hypothesis true, parsimony (and distance-based methods with many models) would be expected to fail to recover it. The self-evident explanation for this failure appears to be a long-branch attraction (LBA) between the clade of grasses and the out-group. However, this LBA cannot explain the discrepancies observed between tree topology recovered using the maximum likelihood (ML) method and the topologies recovered using the parsimony and distance-based methods when grasses are deleted. Furthermore, the fact that neither maximum parsimony nor distance methods consistently recover the ML tree, when according to the simulations they would be expected to, when the out-group (Pinus) is deleted, suggests that either the generating tree is not correct or the best symmetric model is misspecified (or both). We demonstrate that the tree recovered under ML is extremely sensitive to model specification and that the best symmetric model is misspecified. Hence, we remain agnostic regarding phylogenetic relationships among basal angiosperm lineages.  相似文献   

6.
Phylogenetic relationships of mushrooms and their relatives within the order Agaricales were addressed by using nuclear large subunit ribosomal DNA sequences. Approximately 900 bases of the 5' end of the nucleus-encoded large subunit RNA gene were sequenced for 154 selected taxa representing most families within the Agaricales. Several phylogenetic methods were used, including weighted and equally weighted parsimony (MP), maximum likelihood (ML), and distance methods (NJ). The starting tree for branch swapping in the ML analyses was the tree with the highest ML score among previously produced MP and NJ trees. A high degree of consensus was observed between phylogenetic estimates obtained through MP and ML. NJ trees differed according to the distance model that was used; however, all NJ trees still supported most of the same terminal groupings as the MP and ML trees did. NJ trees were always significantly suboptimal when evaluated against the best MP and ML trees, by both parsimony and likelihood tests. Our analyses suggest that weighted MP and ML provide the best estimates of Agaricales phylogeny. Similar support was observed between bootstrapping and jackknifing methods for evaluation of tree robustness. Phylogenetic analyses revealed many groups of agaricoid fungi that are supported by moderate to high bootstrap or jackknife values or are consistent with morphology-based classification schemes. Analyses also support separate placement of the boletes and russules, which are basal to the main core group of gilled mushrooms (the Agaricineae of Singer). Examples of monophyletic groups include the families Amanitaceae, Coprinaceae (excluding Coprinus comatus and subfamily Panaeolideae), Agaricaceae (excluding the Cystodermateae), and Strophariaceae pro parte (Stropharia, Pholiota, and Hypholoma); the mycorrhizal species of Tricholoma (including Leucopaxillus, also mycorrhizal); Mycena and Resinomycena; Termitomyces, Podabrella, and Lyophyllum; and Pleurotus with Hohenbuehelia. Several groups revealed by these data to be nonmonophyletic include the families Tricholomataceae, Cortinariaceae, and Hygrophoraceae and the genera Clitocybe, Omphalina, and Marasmius. This study provides a framework for future systematics studies in the Agaricales and suggestions for analyzing large molecular data sets.  相似文献   

7.
In order to have confidence in model-based phylogenetic analysis, the model of nucleotide substitution adopted must be selected in a statistically rigorous manner. Several model-selection methods are applicable to maximum likelihood (ML) analysis, including the hierarchical likelihood-ratio test (hLRT), Akaike information criterion (AIC), Bayesian information criterion (BIC), and decision theory (DT), but their performance relative to empirical data has not been investigated thoroughly. In this study, we use 250 phylogenetic data sets obtained from TreeBASE to examine the effects that choice in model selection has on ML estimation of phylogeny, with an emphasis on optimal topology, bootstrap support, and hypothesis testing. We show that the use of different methods leads to the selection of two or more models for approximately 80% of the data sets and that the AIC typically selects more complex models than alternative approaches. Although ML estimation with different best-fit models results in incongruent tree topologies approximately 50% of the time, these differences are primarily attributable to alternative resolutions of poorly supported nodes. Furthermore, topologies and bootstrap values estimated with ML using alternative statistically supported models are more similar to each other than to topologies and bootstrap values estimated with ML under the Kimura two-parameter (K2P) model or maximum parsimony (MP). In addition, Swofford-Olsen-Waddell-Hillis (SOWH) tests indicate that ML trees estimated with alternative best-fit models are usually not significantly different from each other when evaluated with the same model. However, ML trees estimated with statistically supported models are often significantly suboptimal to ML trees made with the K2P model when both are evaluated with K2P, indicating that not all models perform in an equivalent manner. Nevertheless, the use of alternative statistically supported models generally does not affect tests of monophyletic relationships under either the Shimodaira-Hasegawa (S-H) or SOWH methods. Our results suggest that although choice in model selection has a strong impact on optimal tree topology, it rarely affects evolutionary inferences drawn from the data because differences are mainly confined to poorly supported nodes. Moreover, since ML with alternative best-fit models tends to produce more similar estimates of phylogeny than ML under the K2P model or MP, the use of any statistically based model-selection method is vastly preferable to forgoing the model-selection process altogether.  相似文献   

8.
In phylogenetic inference by maximum-parsimony (MP), minimum-evolution (ME), and maximum-likelihood (ML) methods, it is customary to conduct extensive heuristic searches of MP, ME, and ML trees, examining a large number of different topologies. However, these extensive searches tend to give incorrect tree topologies. Here we show by extensive computer simulation that when the number of nucleotide sequences (m) is large and the number of nucleotides used (n) is relatively small, the simple MP or ML tree search algorithms such as the stepwise addition (SA) plus nearest neighbor interchange (NNI) search and the SA plus subtree pruning regrafting (SPR) search are as efficient as the extensive search algorithms such as the SA plus tree bisection-reconnection (TBR) search in inferring the true tree. In the case of ME methods, the simple neighbor-joining (NJ) algorithm is as efficient as or more efficient than the extensive NJ+TBR search. We show that when ME methods are used, the simple p distance generally gives better results in phylogenetic inference than more complicated distance measures such as the Hasegawa-Kishino-Yano (HKY) distance, even when nucleotide substitution follows the HKY model. When ML methods are used, the simple Jukes-Cantor (JC) model of phylogenetic inference generally shows a better performance than the HKY model even if the likelihood value for the HKY model is much higher than that for the JC model. This indicates that at least in the present case, selecting of a substitution model by using the likelihood ratio test or the AIC index is not appropriate. When n is small relative to m and the extent of sequence divergence is high, the NJ method with p distance often shows a better performance than ML methods with the JC model. However, when the level of sequence divergence is low, this is not the case.  相似文献   

9.
Phylogenetic analyses frequently rely on models of sequence evolution that detail nucleotide substitution rates, nucleotide frequencies, and site-to-site rate heterogeneity. These models can influence hypothesis testing and can affect the accuracy of phylogenetic inferences. Maximum likelihood methods of simultaneously constructing phylogenetic tree topologies and estimating model parameters are computationally intensive, and are not feasible for sample sizes of 25 or greater using personal computers. Techniques that initially construct a tree topology and then use this non-maximized topology to estimate ML substitution rates, however, can quickly arrive at a model of sequence evolution. The accuracy of this two-step estimation technique was tested using simulated data sets with known model parameters. The results showed that for a star-like topology, as is often seen in human immunodeficiency virus type 1 (HIV-1) subtype B sequences, a random starting topology could produce nucleotide substitution rates that were not statistically different than the true rates. Samples were isolated from 100 HIV-1 subtype B infected individuals from the United States and a 620 nt region of the env gene was sequenced for each sample. The sequence data were used to obtain a substitution model of sequence evolution specific for HIV-1 subtype B env by estimating nucleotide substitution rates and the site-to-site heterogeneity in 100 individuals from the United States. The method of estimating the model should provide users of large data sets with a way to quickly compute a model of sequence evolution, while the nucleotide substitution model we identified should prove useful in the phylogenetic analysis of HIV-1 subtype B env sequences. Received: 4 October 2000 / Accepted: 1 March 2001  相似文献   

10.
Phylogenetic analysis using parsimony and likelihood methods   总被引:1,自引:0,他引:1  
The assumptions underlying the maximum-parsimony (MP) method of phylogenetic tree reconstruction were intuitively examined by studying the way the method works. Computer simulations were performed to corroborate the intuitive examination. Parsimony appears to involve very stringent assumptions concerning the process of sequence evolution, such as constancy of substitution rates between nucleotides, constancy of rates across nucleotide sites, and equal branch lengths in the tree. For practical data analysis, the requirement of equal branch lengths means similar substitution rates among lineages (the existence of an approximate molecular clock), relatively long interior branches, and also few species in the data. However, a small amount of evolution is neither a necessary nor a sufficient requirement of the method. The difficulties involved in the application of current statistical estimation theory to tree reconstruction were discussed, and it was suggested that the approach proposed by Felsenstein (1981,J. Mol. Evol. 17: 368–376) for topology estimation, as well as its many variations and extensions, differs fundamentally from the maximum likelihood estimation of a conventional statistical parameter. Evidence was presented showing that the Felsenstein approach does not share the asymptotic efficiency of the maximum likelihood estimator of a statistical parameter. Computer simulations were performed to study the probability that MP recovers the true tree under a hierarchy of models of nucleotide substitution; its performance relative to the likelihood method was especially noted. The results appeared to support the intuitive examination of the assumptions underlying MP. When a simple model of nucleotide substitution was assumed to generate data, the probability that MP recovers the true topology could be as high as, or even higher than, that for the likelihood method. When the assumed model became more complex and realistic, e.g., when substitution rates were allowed to differ between nucleotides or across sites, the probability that MP recovers the true topology, and especially its performance relative to that of the likelihood method, generally deteriorates. As the complexity of the process of nucleotide substitution in real sequences is well recognized, the likelihood method appears preferable to parsimony. However, the development of a statistical methodology for the efficient estimation of the tree topology remains a difficult open problem.  相似文献   

11.
呼肠孤病毒科的系统发育分析   总被引:1,自引:0,他引:1  
运用邻接法(neibor-joining,NJ)、最大似然法(maximum likehood,ML)对国际病毒分类委员会(Intemational Committee on Taxonomy of Viruses,ICTV)第八次报告中所有已报道的呼肠孤病毒科外层衣壳蛋白序列进行了系统发育分析.结果表明:两种方法构建的系统树拓扑结构基本一致,尽管部分分支略有差异,但都能够反映出科内各属的系统发育关系,分析结果支持了该科的分类地位.同时还比较两种建树方法的异同点,并对建树产生的差异原因作了探讨.  相似文献   

12.
Branch length estimates play a central role in maximum-likelihood (ML) and minimum-evolution (ME) methods of phylogenetic inference. For various reasons, branch length estimates are not statistically independent under ML or ME. We studied the response of correlations among branch length estimates to the degree of among-branch length heterogeneity (BLH) in the model (true) tree. The frequency and magnitude of (especially negative) correlations among branch length estimates were both shown to increase as BLH increases under simulation and analytically. For ML, we used the correct model (Jukes–Cantor). For ME, we employed ordinary least-squares (OLS) branch lengths estimated under both simple p-distances and Jukes–Cantor distances, analyzed with and without an among-site rate heterogeneity parameter. The efficiency of ME and ML was also shown to decrease in response to increased BLH. We note that the shape of the true tree will in part determine BLH and represents a critical factor in the probability of recovering the correct topology. An important finding suggests that researchers cannot expect that different branches that were in fact the same length will have the same probability of being accurately reconstructed when BLH exists in the overall tree. We conclude that methods designed to minimize the interdependencies of branch length estimates (BLEs) may (1) reduce both the variance and the covariance associated with the estimates and (2) increase the efficiency of model-based optimality criteria. We speculate on possible ways to reduce the nonindependence of BLEs under OLS and ML. Received: 9 March 1999 / Accepted: 4 May 1999  相似文献   

13.
Quartet-mapping, a generalization of the likelihood-mapping procedure.   总被引:5,自引:0,他引:5  
Likelihood-mapping (LM) was suggested as a method of displaying the phylogenetic content of an alignment. However, statistical properties of the method have not been studied. Here we analyze the special case of a four-species tree generated under a range of evolution models and compare the results with those of a natural extension of the likelihood-mapping approach, geometry-mapping (GM), which is based on the method of statistical geometry in sequence space. The methods are compared in their abilities to indicate the correct topology. The performance of both methods in detecting the star topology is especially explored. Our results show that LM tends to reject a star tree more often than GM. When assumptions about the evolutionary model of the maximum-likelihood reconstruction are not matched by the true process of evolution, then LM shows a tendency to favor one tree, whereas GM correctly detects the star tree except for very short outer branch lengths with a statistical significance of >0.95 for all models. LM, on the other hand, reconstructs the correct bifurcating tree with a probability of >0.95 for most branch length combinations even under models with varying substitution rates. The parameter domain for which GM recovers the true tree is much smaller. When the exterior branch lengths are larger than a (analytically derived) threshold value depending on the tree shape (rather than the evolutionary model), GM reconstructs a star tree rather than the true tree. We suggest a combined approach of LM and GM for the evaluation of starlike trees. This approach offers the possibility of testing for significant positive interior branch lengths without extensive statistical and computational efforts.  相似文献   

14.
The rate at which a given site in a gene sequence alignment evolves over time may vary. This phenomenon--known as heterotachy--can bias or distort phylogenetic trees inferred from models of sequence evolution that assume rates of evolution are constant. Here, we describe a phylogenetic mixture model designed to accommodate heterotachy. The method sums the likelihood of the data at each site over more than one set of branch lengths on the same tree topology. A branch-length set that is best for one site may differ from the branch-length set that is best for some other site, thereby allowing different sites to have different rates of change throughout the tree. Because rate variation may not be present in all branches, we use a reversible-jump Markov chain Monte Carlo algorithm to identify those branches in which reliable amounts of heterotachy occur. We implement the method in combination with our 'pattern-heterogeneity' mixture model, applying it to simulated data and five published datasets. We find that complex evolutionary signals of heterotachy are routinely present over and above variation in the rate or pattern of evolution across sites, that the reversible-jump method requires far fewer parameters than conventional mixture models to describe it, and serves to identify the regions of the tree in which heterotachy is most pronounced. The reversible-jump procedure also removes the need for a posteriori tests of 'significance' such as the Akaike or Bayesian information criterion tests, or Bayes factors. Heterotachy has important consequences for the correct reconstruction of phylogenies as well as for tests of hypotheses that rely on accurate branch-length information. These include molecular clocks, analyses of tempo and mode of evolution, comparative studies and ancestral state reconstruction. The model is available from the authors' website, and can be used for the analysis of both nucleotide and morphological data.  相似文献   

15.
There has been considerable interest in the problem of making maximum likelihood (ML) evolutionary trees which allow insertions and deletions. This problem is partly one of formulation: how does one define a probabilistic model for such trees which treats insertion and deletion in a biologically plausible manner? A possible answer to this question is proposed here by extending the concept of a hidden Markov model (HMM) to evolutionary trees. The model, called a tree-HMM, allows what may be loosely regarded as learnable affine-type gap penalties for alignments. These penalties are expressed in HMMs as probabilities of transitions between states. In the tree-HMM, this idea is given an evolutionary embodiment by defining trees of transitions. Just as the probability of a tree composed of ungapped sequences is computed, by Felsenstein's method, using matrices representing the probabilities of substitutions of residues along the edges of the tree, so the probabilities in a tree-HMM are computed by substitution matrices for both residues and transitions. How to define these matrices by a ML procedure using an algorithm that learns from a database of protein sequences is shown here. Given these matrices, one can define a tree-HMM likelihood for a set of sequences, assuming a particular tree topology and an alignment of the sequences to the model. If one could efficiently find the alignment which maximizes (or comes close to maximizing) this likelihood, then one could search for the optimal tree topology for the sequences. An alignment algorithm is defined here which, given a particular tree topology, is guaranteed to increase the likelihood of the model. Unfortunately, it fails to find global optima for realistic sequence sets. Thus further research is needed to turn the tree-HMM into a practical phylogenetic tool.  相似文献   

16.
Bayesian inference (BI) of phylogenetic relationships uses the same probabilistic models of evolution as its precursor maximum likelihood (ML), so BI has generally been assumed to share ML''s desirable statistical properties, such as largely unbiased inference of topology given an accurate model and increasingly reliable inferences as the amount of data increases. Here we show that BI, unlike ML, is biased in favor of topologies that group long branches together, even when the true model and prior distributions of evolutionary parameters over a group of phylogenies are known. Using experimental simulation studies and numerical and mathematical analyses, we show that this bias becomes more severe as more data are analyzed, causing BI to infer an incorrect tree as the maximum a posteriori phylogeny with asymptotically high support as sequence length approaches infinity. BI''s long branch attraction bias is relatively weak when the true model is simple but becomes pronounced when sequence sites evolve heterogeneously, even when this complexity is incorporated in the model. This bias—which is apparent under both controlled simulation conditions and in analyses of empirical sequence data—also makes BI less efficient and less robust to the use of an incorrect evolutionary model than ML. Surprisingly, BI''s bias is caused by one of the method''s stated advantages—that it incorporates uncertainty about branch lengths by integrating over a distribution of possible values instead of estimating them from the data, as ML does. Our findings suggest that trees inferred using BI should be interpreted with caution and that ML may be a more reliable framework for modern phylogenetic analysis.  相似文献   

17.
重建系统演化树的一种新方法--试错法   总被引:1,自引:0,他引:1  
谭远德 《动物学报》2000,46(4):448-456
重建系统演化树是进化研究的一个极为重要的方面。系统树的构建依赖于一定的方法和数据。在分子系统演化研究中,所使用的数据大多是DNA序列、氨基酸序列和分子标记。而就构树方法来说,NJ法、ML法和MP法是三种最为普遍使用的方法。本文给出了一种新的建树方法,即试错法。该方法不但具有与NJ法一样好的建树效果,而且不存在难以解释的负枝长问题。  相似文献   

18.
The reconstruction and synthesis of ancestral RNAs is a feasible goal for paleogenetics. This will require new bioinformatics methods, including a robust statistical framework for reconstructing histories of substitutions, indels and structural changes. We describe a “transducer composition” algorithm for extending pairwise probabilistic models of RNA structural evolution to models of multiple sequences related by a phylogenetic tree. This algorithm draws on formal models of computational linguistics as well as the 1985 protosequence algorithm of David Sankoff. The output of the composition algorithm is a multiple-sequence stochastic context-free grammar. We describe dynamic programming algorithms, which are robust to null cycles and empty bifurcations, for parsing this grammar. Example applications include structural alignment of non-coding RNAs, propagation of structural information from an experimentally-characterized sequence to its homologs, and inference of the ancestral structure of a set of diverged RNAs. We implemented the above algorithms for a simple model of pairwise RNA structural evolution; in particular, the algorithms for maximum likelihood (ML) alignment of three known RNA structures and a known phylogeny and inference of the common ancestral structure. We compared this ML algorithm to a variety of related, but simpler, techniques, including ML alignment algorithms for simpler models that omitted various aspects of the full model and also a posterior-decoding alignment algorithm for one of the simpler models. In our tests, incorporation of basepair structure was the most important factor for accurate alignment inference; appropriate use of posterior-decoding was next; and fine details of the model were least important. Posterior-decoding heuristics can be substantially faster than exact phylogenetic inference, so this motivates the use of sum-over-pairs heuristics where possible (and approximate sum-over-pairs). For more exact probabilistic inference, we discuss the use of transducer composition for ML (or MCMC) inference on phylogenies, including possible ways to make the core operations tractable.  相似文献   

19.
Summary The maximum likelihood (ML) method for constructing phylogenetic trees (both rooted and unrooted trees) from DNA sequence data was studied. Although there is some theoretical problem in the comparison of ML values conditional for each topology, it is possible to make a heuristic argument to justify the method. Based on this argument, a new algorithm for estimating the ML tree is presented. It is shown that under the assumption of a constant rate of evolution, the ML method and UPGMA always give the same rooted tree for the case of three operational taxonomic units (OTUs). This also seems to hold approximately for the case with four OTUs. When we consider unrooted trees with the assumption of a varying rate of nucleotide substitution, the efficiency of the ML method in obtaining the correct tree is similar to those of the maximum parsimony method and distance methods. The ML method was applied to Brown et al.'s data, and the tree topology obtained was the same as that found by the maximum parsimony method, but it was different from those obtained by distance methods.  相似文献   

20.
Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of those sequences that maximize likelihood under the Jukes-Cantor model is uninformative in the worst possible sense. For all inputs, all trees optimize the likelihood score. Second, we show that a greedy heuristic that uses GTR+Gamma ML to optimize the alignment and the tree can produce very poor alignments and trees. Therefore, the excellent performance of SATé-II and SATé-I is not because ML is used as an optimization criterion for choosing the best tree/alignment pair but rather due to the particular divide-and-conquer realignment techniques employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号