首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ca(2+) depletion of the endoplasmic reticulum (ER) activates the ubiquitous store-operated Ca(2+) entry (SOCE) pathway that sustains long-term Ca(2+) signals critical for cellular functions. ER Ca(2+) depletion initiates the oligomerization of stromal interaction molecules (STIM) that control SOCE activation, but whether ER Ca(2+) refilling controls STIM de-oligomerization and SOCE termination is not known. Here, we correlate the changes in free luminal ER Ca(2+) concentrations ([Ca(2+)](ER)) and in STIM1 oligomerization, using fluorescence resonance energy transfer (FRET) between CFP-STIM1 and YFP-STIM1. We observed that STIM1 de-oligomerized at much lower [Ca(2+)](ER) levels during store refilling than it oligomerized during store depletion. We then refilled ER stores without adding exogenous Ca(2+) using a membrane-permeable Ca(2+) chelator to provide a large reservoir of buffered Ca(2+). This procedure rapidly restored pre-stimulatory [Ca(2+)](ER) levels but did not trigger STIM1 de-oligomerization, the FRET signals remaining elevated as long as the external [Ca(2+)] remained low. STIM1 dissociation evoked by Ca(2+) readmission was prevented by SOC channel inhibition and was associated with cytosolic Ca(2+) elevations restricted to STIM1 puncta, indicating that Ca(2+) acts on a cytosolic target close to STIM1 clusters. These data indicate that the refilling of ER Ca(2+) stores is not sufficient to induce STIM1 de-oligomerization and that localized Ca(2+) elevations in the vicinity of assembled SOCE complexes are required for the termination of SOCE.  相似文献   

2.
Ca(2+) signals are universal among cells in regulating a spectrum of cellular responses. Phospholipase C-coupled receptors activate two components of Ca(2+) signals--rapid Ca(2+) release from ER stores, followed by slower Ca(2+) entry from outside the cell. The coupling process between ER and PM to mediate this "store-operated" Ca(2+) entry process remained until recently a molecular mystery. The recent discovery of the necessity for STIM1 and Orai proteins in this process has provided crucial information on the coupling mechanism between stores and PM Ca(2+) entry. STIM1 is a single spanning membrane protein with an unpaired Ca(2+) binding EF-hand and appears to function as the sensor of ER luminal Ca(2+), and, through redistribution in the ER, transduces information directly to the PM. Orai1 is a tetra-spanning PM protein and functions as the highly Ca(2+)-selective channel in the PM that is gated through interactions with the store-activated ER Ca(2+) sensor. Recent evidence shows the two proteins together are necessary and sufficient for the function of store-operated Ca(2+) entry. However, many questions arise about how and where the interactions of the STIM1 and Orai1 proteins occur within cells. Here we discuss recent information and ideas about the coupling between these proteins that leads to store-operated channel activation.  相似文献   

3.
Store-operated channels (SOCs) mediate Ca(2+) entry signals in response to endoplasmic reticulum (ER) Ca(2+) depletion in most cells. STIM1 senses decreased ER luminal Ca(2+) through its EF-hand Ca(2+)-binding motif and aggregates in near-plasma membrane (PM) ER junctions to activate PM Orai1, the functional SOC. STIM1 is also present in the PM, although its role there is unknown. STIM1-mediated coupling was examined using the stable EF20 HEK293 cell line expressing the STIM1-D76A/E87A EF-hand mutant (STIM1(EF)) deficient in Ca(2+) binding. EF20 cells were viable despite constitutive Ca(2+) entry, allowing study of SOC activation without depleting ER Ca(2+). STIM1(EF) was exclusively in stable near-PM junctions, 3.5-fold larger than formed with STIM1(WT). STIM(EF)-expressing cells had normal ER Ca(2+) levels but substantially reduced ER Ca(2+) leak. Expression of antiapoptotic Bcl-2 proteins (BCl-2, MCL-1, BCL-XL) were increased 2-fold in EF20 cells, probably reflecting survival of EF20 cells but not accounting for decreased ER Ca(2+) leak. Surface biotinylation and streptavidin pull-down of cells expressing STIM1(WT) or STIM1(EF) revealed strong PM interactions of both proteins. Although surface expression of STIM1(WT) was clearly detectable, STIM1(EF) was undetectable at the cell surface. Thus, the Ca(2+) binding-defective STIM1(EF) mutant exists exclusively in aggregates within near-PM junctions but, unlike STIM1(WT), is not trafficked to the PM. Although not inserted in the PM, external application of a monoclonal anti-N-terminal STIM1 antibody blocked constitutive STIM(EF)-mediated Ca(2+) entry, but only in cells expressing endogenous STIM1(WT) and not in DT40 STIM1 knock-out cells devoid of STIM(WT). This suggests that PM-STIM1 may play a regulatory role in SOC activation.  相似文献   

4.
The two membrane proteins, STIM1 and Orai1, have each been shown to be essential for the activation of store-operated channels (SOC). Yet, how these proteins functionally interact is not known. Here, we reveal that STIM1 and Orai1 expressed together reconstitute functional SOCs. Expressed alone, Orai1 strongly reduces store-operated Ca(2+) entry (SOCE) in human embryonic kidney 293 cells and the Ca(2+) release-activated Ca(2+) current (I(CRAC)) in rat basophilic leukemia cells. However, expressed along with the store-sensing STIM1 protein, Orai1 causes a massive increase in SOCE, enhancing the rate of Ca(2+)entry by up to 103-fold. This entry is entirely store-dependent since the same coexpression causes no measurable store-independent Ca(2+) entry. The entry is completely blocked by the SOC blocker, 2-aminoethoxydiphenylborate. Orai1 and STIM1 coexpression also caused a large gain in CRAC channel function in rat basophilic leukemia cells. The close STIM1 homologue, STIM2, inhibited SOCE when expressed alone but coexpressed with Orai1 caused substantial constitutive (store-independent) Ca(2+) entry. STIM proteins are known to mediate Ca(2+) store-sensing and endoplasmic reticulum-plasma membrane coupling with no intrinsic channel properties. Our results revealing a powerful gain in SOC function dependent on the presence of both Orai1 and STIM1 strongly suggest that Orai1 contributes the PM channel component responsible for Ca(2+) entry. The suppression of SOC function by Orai1 overexpression likely reflects a required stoichiometry between STIM1 and Orai1.  相似文献   

5.
Kim JY  Muallem S 《The EMBO journal》2011,30(9):1673-1675
A crucial component of the receptor-evoked Ca(2+) signal is Ca(2+) influx mediated by the store-operated Ca(2+) channels (SOCs). The molecular makeup of one SOC is the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 and the pore-forming Orai1. Ca(2+) release from the ER leads to co-clustering of STIM1 and Orai1 to activate Orai1. The short STIM1 SOAR/CAD domain (STIM1 Orai1-activating region/CRAC-activating domain), which has two coiledcoil (C–C) domains, interacts with the Orai1 C terminus C–C domain to activate the channel. How the function of SOAR is regulated is not known. Korzeniowski et al (2010) and Muik et al (2011; this issue) now identified an autoinhibitory domain in STIM1 that occludes SOAR. Release of SOAR involves a conformational transition that is aided by the Orai1 C–C domain.  相似文献   

6.
The coupling mechanism between endoplasmic reticulum (ER) Ca(2+) stores and plasma membrane (PM) store-operated channels (SOCs) remains elusive [1-3]. STIM1 was shown to play a crucial role in this coupling process [4-7]; however, the role of the closely related STIM2 protein remains undetermined. We reveal that STIM2 is a powerful SOC inhibitor when expressed in HEK293, PC12, A7r5, and Jurkat T cells. This contrasts with gain of SOC function in STIM1-expressing cells. While STIM1 is expressed in both the ER and plasma membrane, STIM2 is expressed only intracellularly. Store depletion induces redistribution of STIM1 into distinct "puncta." STIM2 translocates into puncta upon store depletion only when coexpressed with STIM1. Double labeling shows coincidence of STIM1 and STIM2 within puncta, and immunoprecipitation reveals direct interactions between STIM1 and STIM2. Independent of store depletion, STIM2 colocalizes with and blocks the function of a STIM1 EF-hand mutant that preexists in puncta and is constitutively coupled to activate SOCs. Thus, whereas STIM1 is a required mediator of SOC activation, STIM2 is a powerful inhibitor of this process, interfering with STIM1-mediated SOC activation at a point downstream of puncta formation. The opposing functions of STIM1 and STIM2 suggest they may play a coordinated role in controlling SOC-mediated Ca(2+) entry signals.  相似文献   

7.
Wu MM  Luik RM  Lewis RS 《Cell calcium》2007,42(2):163-172
The means by which Ca(2+) store depletion evokes the opening of store-operated Ca(2+) channels (SOCs) in the plasma membrane of excitable and non-excitable cells has been a longstanding mystery. Indirect evidence has supported local interactions between the ER and SOCs as well as long-range interactions mediated through a diffusible activator. The recent molecular identification of the ER Ca(2+) sensor (STIM1) and a subunit of the CRAC channel (Orai1), a prototypic SOC, has now made it possible to visualize directly the sequence of events that links store depletion to CRAC channel opening. Following store depletion, STIM1 moves from locations throughout the ER to accumulate in ER subregions positioned within 10-25nm of the plasma membrane. Simultaneously, Orai1 gathers at discrete sites in the plasma membrane directly opposite STIM1, resulting in local CRAC channel activation. These new studies define the elementary units of store-operated Ca(2+) entry, and reveal an unprecedented mechanism for channel activation in which the stimulus brings a channel and its activator/sensor together for interaction across apposed membrane compartments. We discuss the implications of this choreographic mechanism with regard to Ca(2+) dynamics, specificity of Ca(2+) signaling, and the existence of a specialized ER subset dedicated to the control of the CRAC channel.  相似文献   

8.
Stromal interaction molecule (STIM) proteins are putative ER Ca2+ sensors that recruit and activate store-operated Ca2+ (SOC) channels at the plasma membrane, a process triggered by the Ca2+ depletion of the endoplasmic reticulum (ER). To test whether STIM1 is required for ER refilling, we used RNA interference and measured Ca2+ signals in the cytosol, the ER, and the mitochondria of HeLa cells. Knockdown of STIM1 (mRNA levels, 73%) reduced SOC entry by 73% when sarco/endoplasmic Ca2+ ATPases (SERCA) were inhibited by thapsigargin but did not prevent Ca2+ stores refilling when cells were stimulated by physiological agonists. Stores could be fully refilled by increasing the external Ca2+ concentration above physiological values, but no cytosolic Ca2+ signals were detected during store refilling even at very high Ca2+ concentrations. [Ca2+](ER) measurements revealed that the basal activity of SERCA was not affected in STIM1 knockdown cells and that [Ca2+](ER) levels were restored within 2 min in physiological saline following store depletion. Mitochondrial inhibitors reduced ER refilling in wild-type but not in STIM1 knockdown cells, indicating that ER refilling does not require functional mitochondria at low STIM1 levels. Our data show that ER refilling is largely preserved at reduced STIM1 levels, despite a drastic reduction of store-operated Ca2+ entry, because Ca2+ ions are directly transferred from SOC channels to SERCA. These findings are consistent with the formation of microdomains containing not only SOC channels on the plasma membrane and STIM proteins on the ER but also SERCA pumps and mitochondria to refill the ER without perturbing the cytosol.  相似文献   

9.
The activation of store-operated Ca(2+) entry by Ca(2+) store depletion has long been hypothesized to occur via local interactions of the endoplasmic reticulum (ER) and plasma membrane, but the structure involved has never been identified. Store depletion causes the ER Ca(2+) sensor stromal interacting molecule 1 (STIM1) to form puncta by accumulating in junctional ER located 10-25 nm from the plasma membrane (see Wu et al. on p. 803 of this issue). We have combined total internal reflection fluorescence (TIRF) microscopy and patch-clamp recording to localize STIM1 and sites of Ca(2+) influx through open Ca(2+) release-activated Ca(2+) (CRAC) channels in Jurkat T cells after store depletion. CRAC channels open only in the immediate vicinity of STIM1 puncta, restricting Ca(2+) entry to discrete sites comprising a small fraction of the cell surface. Orai1, an essential component of the CRAC channel, colocalizes with STIM1 after store depletion, providing a physical basis for the local activation of Ca(2+) influx. These studies reveal for the first time that STIM1 and Orai1 move in a coordinated fashion to form closely apposed clusters in the ER and plasma membranes, thereby creating the elementary unit of store-operated Ca(2+) entry.  相似文献   

10.
Intracellular Ca(2+) is essential for diverse cellular functions. Ca(2+) entry into many cell types including immune cells is triggered by depleting endoplasmic reticulum (ER) Ca(2+), a process termed store-operated Ca(2+) entry (SOCE). STIM1 is an ER Ca(2+) sensor. Upon Ca(2+) store depletion, STIM1 clusters at ER-plasma membrane junctions where it interacts with and gates Ca(2+)-permeable Orai1 ion channels. Here we show that STIM1 is also activated by temperature. Heating cells caused clustering of STIM1 at temperatures above 35 °C without depleting Ca(2+) stores and led to Orai1-mediated Ca(2+) influx as a heat off-response (response after cooling). Notably, the functional coupling of STIM1 and Orai1 is prevented at high temperatures, potentially explaining the heat off-response. Additionally, physiologically relevant temperature shifts modulate STIM1-dependent gene expression in Jurkat T cells. Therefore, temperature is an important regulator of STIM1 function.  相似文献   

11.
Orai1 and hTRPC1 have been presented as essential components of store-operated channels mediating highly Ca(2+) selective I(CRAC) and relatively Ca(2+) selective I(SOC), respectively. STIM1 has been proposed to communicate the Ca(2+) content of the intracellular Ca(2+) stores to the plasma membrane store-operated Ca(2+) channels. Here we present evidence for the dynamic interaction between endogenously expressed Orai1 and both STIM1 and hTRPC1 regulated by depletion of the intracellular Ca(2+) stores, using the pharmacological tools thapsigargin plus ionomycin, or by the physiological agonist thrombin, independently of extracellular Ca(2+). In addition we report that Orai1 mediates the communication between STIM1 and hTRPC1, which is essential for the mode of activation of hTRPC1-forming Ca(2+) permeable channels. Electrotransjection of cells with anti-Orai1 antibody, directed toward the C-terminal region that mediates the interaction with STIM1, and stabilization of an actin cortical barrier with jasplakinolide prevented the interaction between STIM1 and hTRPC1. Under these conditions hTRPC1 was no longer involved in store-operated calcium entry but in diacylglycerol-activated non-capacitative Ca(2+) entry. These findings support the functional role of the STIM1-Orai1-hTRPC1 complex in the activation of store-operated Ca(2+) entry.  相似文献   

12.
Stromal interacting molecule 1 (STIM1), reported to be an endoplasmic reticulum (ER) Ca(2+) sensor controlling store-operated Ca(2+) entry, redistributes from a diffuse ER localization into puncta at the cell periphery after store depletion. STIM1 redistribution is proposed to be necessary for Ca(2+) release-activated Ca(2+) (CRAC) channel activation, but it is unclear whether redistribution is rapid enough to play a causal role. Furthermore, the location of STIM1 puncta is uncertain, with recent reports supporting retention in the ER as well as insertion into the plasma membrane (PM). Using total internal reflection fluorescence (TIRF) microscopy and patch-clamp recording from single Jurkat cells, we show that STIM1 puncta form several seconds before CRAC channels open, supporting a causal role in channel activation. Fluorescence quenching and electron microscopy analysis reveal that puncta correspond to STIM1 accumulation in discrete subregions of junctional ER located 10-25 nm from the PM, without detectable insertion of STIM1 into the PM. Roughly one third of these ER-PM contacts form in response to store depletion. These studies identify an ER structure underlying store-operated Ca(2+) entry, whose extreme proximity to the PM may enable STIM1 to interact with CRAC channels or associated proteins.  相似文献   

13.
Streptolysin O (SLO) is a cholesterol-dependent cytolysin (CDC) from Streptococcus pyogenes. SLO induces diverse types of Ca(2+) signalling in host cells which play a key role in membrane repair and cell fate determination. The mechanisms behind SLO-induced Ca(2+) signalling remain poorly understood. Here, we show that in NCI-H441 cells, wild-type SLO as well as non-pore-forming mutant induces long-lasting intracellular Ca(2+) oscillations via IP(3) -mediated depletion of intracellular stores and activation of store-operated Ca(2+) (SOC) entry. SLO-induced activation of SOC entry was confirmed by Ca(2+) add-back experiments, pharmacologically and by overexpression as well as silencing of STIM1 and Orai1 expression. SLO also activated SOC entry in primary cultivated alveolar type II (ATII) cells but Ca(2+) oscillations were comparatively short-lived in nature. Comparison of STIM1 and Orai1 revealed a differential expression pattern in H441 and ATII cells. Overexpression of STIM1 and Orai1 proteins in ATII cells changed the short-lived oscillatory response into a long-lived one. Thus, we conclude that SLO-mediated Ca(2+) signalling involves Ca(2+) release from intracellular stores and STIM1/Orai1-dependent SOC entry. The phenotype of Ca(2+) signalling depends on STIM1 and Orai1 expression levels. Our findings suggest a new role for SOC entry-associated proteins in S. pyogenes-induced lung infection and pneumonia.  相似文献   

14.
Our understanding of the nature and regulation of receptor-activated Ca(2+) entry in nonexcitable cells has recently undergone a radical change that began with the identification of the stromal interacting molecule proteins (e.g., STIM1) as playing a critical role in the regulation of the capacitative, or store-operated, Ca(2+) entry. As such, current models emphasize the role of STIM1 located in the endoplasmic reticulum membrane, where it senses the status of the intracellular Ca(2+) stores via a luminal N-terminal Ca(2+)-binding EF-hand domain. Dissociation of Ca(2+) from this domain induces the clustering of STIM1 to regions of the ER that lie close to the plasma membrane, where it regulates the activity of the store-operated Ca(2+) channels (e.g., CRAC channels). Thus, the specific dependence on store-depletion, and the role of the Ca(2+)-binding EF-hand domain in this process, are critical to all current models of the action of STIM1 on Ca(2+) entry. However, until recently, the effects of STIM1 on other modes of receptor-activated Ca(2+) entry have not been examined. Surprisingly, we found that STIM1 exerts similar, although not identical, actions on the arachidonic acid-regulated Ca(2+)-selective (ARC) channels-a widely expressed mode of agonist-activated Ca(2+) entry whose activation is completely independent of Ca(2+) store depletion. Regulation of the ARC channels by STIM1 is not only independent of store depletion, but also of the Ca(2+)-binding function of the EF-hand, and translocation of STIM1 to the plasma membrane. Instead, it is the pool of STIM1 that constitutively resides in the plasma membrane that is critical for the regulation of the ARC channels. Thus, ARC channel activity is selectively inhibited by exposure of intact cells to an antibody targeting the extracellular N-terminal domain of STIM1. Similarly, introducing mutations in STIM1 that prevent the N-linked glycosylation-dependent constitutive expression of the protein in the plasma membrane specifically inhibits the activity of the ARC channels without affecting the CRAC channels. These studies demonstrate that STIM1 is a far more universal regulator of Ca(2+) entry pathways than previously assumed, and has multiple, and entirely distinct, modes of action. Precisely how this same protein can act in such separate and specific ways on these different pathways of agonist-activated Ca(2+)entry remains an intriguing, yet currently unresolved, question.  相似文献   

15.
STIM1 (stromal interacting molecule 1), an endoplasmic reticulum (ER) protein that controls store-operated Ca(2+) entry (SOCE), redistributes into punctae at the cell periphery after store depletion. This redistribution is suggested to have a causal role in activation of SOCE. However, whether peripheral STIM1 punctae that are involved in regulation of SOCE are determined by depletion of peripheral or more internal ER has not yet been demonstrated. Here we show that Ca(2+) depletion in subplasma membrane ER is sufficient for peripheral redistribution of STIM1 and activation of SOCE. 1 microM thapsigargin (Tg) induced substantial depletion of intracellular Ca(2+) stores and rapidly activated SOCE. In comparison, 1 nM Tg induced slower, about 60-70% less Ca(2+) depletion but similar SOCE. SOCE was confirmed by measuring I(SOC) in addition to Ca(2+), Mn(2+), and Ba(2+) entry. Importantly, 1 nM Tg caused redistribution of STIM1 only in the ER-plasma membrane junction, whereas 1 microM Tg caused a relatively global relocalization of STIM1 in the cell. During the time taken for STIM1 relocalization and SOCE activation, 1 nM Bodipy-fluorescein Tg primarily labeled the subplasma membrane region, whereas 1 microM Tg labeled the entire cell. The localization of Tg in the subplasma membrane region was associated with depletion of ER in this region and activation of SOCE. Together, these data suggest that peripheral STIM1 relocalization that is causal in regulation of SOCE is determined by the status of [Ca(2+)] in the ER in close proximity to the plasma membrane. Thus, the mechanism involved in regulation of SOCE is contained within the ER-plasma membrane junctional region.  相似文献   

16.
Human and murine STIM1 were originally discovered as candidate growth regulators in tumours and in the bone marrow stroma, and the structurally related vertebrate family members, STIM2 and the Drosophila homologue D-Stim, were subsequently identified. STIM proteins are ubiquitously expressed type I single-pass transmembrane proteins which have a unique combination of structural motifs within their polypeptide sequences. The extracellular regions contain an N-terminal unpaired EF-hand Ca(2+) binding motif adjacent to an unconventional glycosylated SAM domain, while the cytoplasmic regions contain alpha-helical coiled-coil domains within a region having homology to ERM domains adjacent to the transmembrane region, and phosphorylated proline-rich domains near the C-terminus. STIM1, STIM2 and D-Stim diverge significantly only in their structure C-terminal to the coiled-coil/ERM domains. The STIM structural domains were predicted to function in Ca(2+) binding as well as in mediating interactions between STIM proteins and other proteins, and homotypic STIM1-STIM1 and heterotypic STIM1-STIM2 interactions were demonstrated biochemically. However, the functional significance of the cellular localisation of STIM1 and its domain structure only became evident after recent breakthrough research identified STIM1 as a key regulator of store-operated calcium (SOC) entry into cells. It is now clear that STIM1 is both a sensor of Ca(2+) depletion in the endoplasmic reticulum (ER) lumen and an activator of Orai1-containing SOC channels in the plasma membrane. On the basis of recent functional studies a model can be proposed to explain how the biochemical properties of STIM1 contribute to its precise membrane localisation and its function in regulating SOC entry.  相似文献   

17.
Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels   总被引:2,自引:0,他引:2  
Orai1 and TRPC1 have been proposed as core components of store-operated calcium release-activated calcium (CRAC) and store-operated calcium (SOC) channels, respectively. STIM1, a Ca(2+) sensor protein in the endoplasmic reticulum, interacts with and mediates store-dependent regulation of both channels. We have previously reported that dynamic association of Orai1, TRPC1, and STIM1 is involved in activation of store-operated Ca(2+) entry (SOCE) in salivary gland cells. In this study, we have assessed the molecular basis of TRPC1-SOC channels in HEK293 cells. We report that TRPC1+STIM1-dependent SOCE requires functional Orai1. Thapsigargin stimulation of cells expressing Orai1+STIM1 increased Ca(2+) entry and activated typical I(CRAC) current. STIM1 alone did not affect SOCE, whereas expression of Orai1 induced a decrease. Expression of TRPC1 induced a small increase in SOCE, which was greatly enhanced by co-expression of STIM1. Thapsigargin stimulation of cells expressing TRPC1+STIM1 activated a non-selective cation current, I(SOC), that was blocked by 1 microm Gd(3+) and 2-APB. Knockdown of Orai1 decreased endogenous SOCE as well as SOCE with TRPC1 alone. siOrai1 also significantly reduced SOCE and I(SOC) in cells expressing TRPC1+STIM1. Expression of R91WOrai1 or E106QOrai1 induced similar attenuation of TRPC1+STIM1-dependent SOCE and I(SOC), whereas expression of Orai1 with TRPC1+STIM1 resulted in SOCE that was larger than that with Orai1+STIM1 or TRPC1+STIM1 but not additive. Additionally, Orai1, E106QOrai1, and R91WOrai1 co-immunoprecipitated with similar levels of TRPC1 and STIM1 from HEK293 cells, and endogenous TRPC1, STIM1, and Orai1 were co-immunoprecipitated from salivary glands. Together, these data demonstrate a functional requirement for Orai1 in TRPC1+STIM1-dependent SOCE.  相似文献   

18.
The activation of Ca(2+) entry through store-operated channels by agonists that deplete Ca(2+) from the endoplasmic reticulum (ER) is an ubiquitous signaling mechanism, the molecular basis of which has remained elusive for the past 20 years. In T lymphocytes, store-operated Ca(2+)-release-activated Ca(2+) (CRAC) channels constitute the sole pathway for Ca(2+) entry following antigen-receptor engagement, and their function is essential for driving the program of gene expression that underlies T-cell activation by antigen. The first molecular components of this pathway have recently been identified: stromal interaction molecule 1 (STIM1), the ER Ca(2+) sensor, and Orai1, a pore-forming subunit of the CRAC channel. Recent work shows that CRAC channels are activated in a complex fashion that involves the co-clustering of STIM1 in junctional ER directly opposite Orai1 in the plasma membrane. These studies reveal an abundance of sites where Ca(2+) signaling might be controlled to modulate the activity of T cells during the immune response.  相似文献   

19.
Hyperplasia of airway smooth muscle cells (ASMCs) is a characteristic change of chronic asthma patients. However, the underlying mechanisms that trigger this process are not yet completely understood. Store-operated Ca(2+) (SOC) entry (SOCE) occurs in response to the intracellular sarcoplasma reticulum (SR)/endoplasmic reticulum (ER) Ca(2+) store depletion. SOCE plays an important role in regulating Ca(2+) signaling and cellular responses of ASMCs. Stromal interaction molecule (STIM)1 has been proposed as an ER/SR Ca(2+) sensor and translocates to the ER underneath the plasma membrane upon depletion of the ER Ca(2+) store, where it interacts with Orai1, the molecular component of SOC channels, and brings about SOCE. STIM1 and Orai1 have been proved to mediate SOCE of ASMCs. In this study, we investigated whether STIM1/Orai1-mediated SOCE is involved in rat ASMC proliferation. We found that SOCE was upregulated during ASMC proliferation accompanied by a mild increase of STIM1 and a significant increase of Orai1 mRNA expression, whereas the proliferation of ASMCs was partially inhibited by the SOC channel blockers SKF-96365, NiCl(2), and BTP-2. Suppressing the mRNA expression of STIM1 or Orai1 with specific short hairpin RNA resulted in the attenuation of SOCE and ASMC proliferation. Moreover, after knockdown of STIM1 or Orai1, the SOC channel blocker SKF-96365 had no inhibitory effect on the proliferation of ASMCs anymore. These results suggested that STIM1/Orai1-mediated SOCE is involved in ASMC proliferation.  相似文献   

20.
STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER   总被引:7,自引:0,他引:7  
Stromal interaction molecule 1 (STIM1) is a transmembrane protein that is essential for store-operated Ca(2+) entry, a process of extracellular Ca(2+) influx in response to the depletion of Ca(2+) stores in the endoplasmic reticulum (ER) (reviewed in [1-4]). STIM1 localizes predominantly to the ER; upon Ca(2+) release from the ER, STIM1 translocates to the ER-plasma membrane junctions and activates Ca(2+) channels (reviewed in [1-4]). Here, we show that STIM1 directly binds to the microtubule-plus-end-tracking protein EB1 and forms EB1-dependent comet-like accumulations at the sites where polymerizing microtubule ends come in contact with the ER network. Therefore, the previously observed tubulovesicular motility of GFP-STIM1 [5] is not a motor-based movement but a traveling wave of diffusion-dependent STIM1 concentration in the ER membrane. STIM1 overexpression strongly stimulates ER extension occurring through the microtubule "tip attachment complex" (TAC) mechanism [6, 7], a process whereby an ER tubule attaches to and elongates together with the EB1-positive end of a growing microtubule. Depletion of STIM1 and EB1 decreases TAC-dependent ER protrusion, indicating that microtubule growth-dependent concentration of STIM1 in the ER membrane plays a role in ER remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号