首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A mutation in the Saccharomyces cerevisiae SEN1 gene causes accumulation of end-matured, intron-containing pre-tRNAs. Cells containing the thermosensitive sen1-1 mutation exhibit reduced tRNA splicing endonuclease activity. However, Sen1p is not the catalytic subunit of this enzyme. We have used Sen1p-specific antibodies for cell fractionation studies and immunofluorescent microscopy and determined that Sentp is a low abundance protein of about 239 kDa. It localizes to the nucleus with a granular distribution. We verified that a region in SEN1 containing a putative nuclear localization signal sequence (NLS) is necessary for nuclear targeting. Furthermore, we found that inactivation of Sen1p by temperature shift of a strain carrying sen1-1 leads to mislocalization of two nucleolar proteins, Nopt and Ssb1 Possible mechanisms are discussed for several related nuclear functions of Sen1p, including tRNA splicing and the maintenance of a normal crescent-shaped nucleolus.  相似文献   

5.
6.
Although nascent noncoding RNAs can undergo maturation to functional RNAs or degradation by quality control pathways, the events that influence the choice of pathway are not understood. We report that the targeting of pre-tRNAs and certain other noncoding RNAs for decay by the TRAMP pathway is strongly influenced by competition between the La protein and the Rex1 exonuclease for access to their 3' ends. The La protein binds the 3' ends of many nascent noncoding RNAs, protecting them from exonucleases. We demonstrate that unspliced, end-matured, partially aminoacylated pre-tRNAs accumulate in yeast lacking the TRAMP subunit Trf4p, indicating that these pre-tRNAs normally undergo decay. By comparing RNA extracted from wild-type and mutant yeast strains, we show that Rex1p is the major exonuclease involved in pre-tRNA trailer trimming and may also function in nuclear CCA turnover. As the accumulation of end-matured pre-tRNAs in trf4Delta cells requires Rex1p, these pre-tRNAs are formed by exonucleolytic trimming. Accumulation of truncated forms of 5S rRNA and SRP RNA in trf4Delta cells also requires Rex1p. Overexpression of the La protein Lhp1p reduces both exonucleolytic pre-tRNA trimming in wild-type cells and the accumulation of defective RNAs in trf4Delta cells. Our experiments reveal that one consequence of Rex1p-dependent 3' trimming is the generation of aberrant RNAs that are targeted for decay by TRAMP.  相似文献   

7.
8.
9.
10.
11.
12.
To identify genes involved in pre-tRNA processing, we searched for yeast DNA sequences that specifically enhanced the expression of the SUP4(G37) gene. The SUP4(G37) gene possesses a point mutation at position 37 of suppressor tRNA(Tyr). This lesion results in a reduced rate of pre-tRNA splicing and a decreased level of nonsense suppression. A SUP4(G37) strain was transformed with a yeast genomic library, and the transformants were screened for increased suppressor activity. One transformant contained a plasmid that encoded an unessential gene, STP1, that in multiple copies enhanced the suppression of SUP4(G37) and caused increased production of mature SUP4(G37) product. Disruption of the genomic copy of STP1 resulted in a reduced efficiency of SUP4-mediated suppression and the accumulation of pre-tRNAs. Not all intron-containing pre-tRNAs were affected by the stp1-disruption. At least five of the nine families of pre-tRNAs were affected. Two other species, pre-tRNA(Ile) and pre-tRNA(3Leu), were not. We propose that STP1 encodes a tRNA species-specific product that functions as a helper for pre-tRNA splicing. The STP1 product may interact with pre-tRNAs to generate a structure that is efficiently recognized by splicing machinery.  相似文献   

13.
tRNA核酸内切酶的研究进展   总被引:1,自引:0,他引:1  
杨景  于莹莹  黄鹰 《生命科学》2008,20(2):190-195
tRNA在蛋白质合成过程中起着极其重要的作用。在所有的生物体内,tRNA首先以前体形式转录,然后必需经过一系列的加工后才能成为有功能的tRNA分子。tRNaseZ、RNaseP和tRNA剪接内切酶是参与tRNA前体加工的三种主要的核酸内切酶,分别参与tRNA前体3′末端、tRNA前体5′末端和内含子剪接的加工。这三种酶具有不同的结构特征,并且利用完全不同的催化机制水解磷酸二酯键。tRNaseZ和RNaseP都是金属酶,活性中心分别需要Zn^2+和Mg^2+的参与;而tRNA剪接内切酶活性中心不需要金属离子,是一个由不同催化亚基上的关键氨基酸残基构成的组合式活性中心。  相似文献   

14.
RtcB enzymes are novel RNA ligases that join 2',3'-cyclic phosphate and 5'-OH ends. The phylogenetic distribution of RtcB points to its candidacy as a tRNA splicing/repair enzyme. Here we show that Escherichia coli RtcB is competent and sufficient for tRNA splicing in vivo by virtue of its ability to complement growth of yeast cells that lack the endogenous "healing/sealing-type" tRNA ligase Trl1. RtcB also protects yeast trl1Δ cells against a fungal ribotoxin that incises the anticodon loop of cellular tRNAs. Moreover, RtcB can replace Trl1 as the catalyst of HAC1 mRNA splicing during the unfolded protein response. Thus, RtcB is a bona fide RNA repair enzyme with broad physiological actions. Biochemical analysis of RtcB highlights the uniqueness of its active site and catalytic mechanism. Our findings draw attention to tRNA ligase as a promising drug target.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号