首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: We synthesized a potent and selective antagonist radioligand for the neurokinin (NK)-1 receptor and characterized its binding to guinea pig striatal membranes. ( R ) - N - [2 - [Acetyl[3H3][(2 - methoxyphenyl) - methyl]amino] - 1 - (1 H - indol - 3 - ylmethyl)ethyl][1,4' - bipiperidine]-1'-acetamide ([3H]LY303870) binds to a single class of sites with an equilibrium K D of 0.22 n M and a B max of 723 fmol/mg of protein. Unlabeled LY303870 potently inhibited the binding with an IC50 of 0.56 n M , whereas the less active ( S )-enantiomer (LY306155) was substantially less potent. The nonpeptide NK-1 antagonists (±)-CP96,345 and (±)-RP 67580 had IC50 values of 0.74 and 49 n M , respectively. Substance P (SP) was also a potent inhibitor with with an IC50 of 3.1 n M . The inhibition by SP could be separated into two components: a high-affinity component with a K i of 0.53 n M and a lower-affinity component with a K i of 155 n M . Addition of 100 µ M guanylyl 5'-imidodiphosphate [Gpp(NH)p] in the incubation increased the relative amount of the low-affinity agonist state of the receptor. Consistent with the antagonist properties of LY303870, the dissociation rate of [3H]LY303870 was not changed by the presence of 100 µ M Gpp(NH)p. The distribution of [3H]LY303870 binding sites in the guinea pig brain closely matched the distribution of NK-1 receptors labeled by [3H]SP. Therefore, [3H]LY303870 is a potent and selective antagonist radioligand for NK-1 receptors in guinea pig brain. In addition, regulation of NK-1 agonist affinity by guanine nucleotides is similar to that seen for monoaminergic receptors.  相似文献   

2.
Abstract: The rat substance P (SP) receptor (SPR) was expressed in insect Sf9 cells by infection with recombinant baculovirus. The receptor bound SP with high affinity ( K D = 360 p M ) and had a rank order of affinity of SP > neurokinin A > neurokinin B. Ligand activation of the receptor resulted in an increase in both inositol lipid hydrolysis and intracellular Ca2+ concentration ([Ca2+]i). However, high-level expression of the receptor, in the absence of ligand, was correlated with increased basal turnover of inositol lipids and an elevated rate of Ca2+ influx. These results demonstrate that the Sf9 cells provide a suitable environment for the high-level expression of a functionally active SPR. Two carboxy-terminal epitope-tagged receptors (SPR-KT3 = SPR-TPPPEPET, COOH; SPR-Glu = SPR-EEEEYMPME, COOH) were also expressed. The affinity of the KT3-tagged receptor for ligand was similar to that of the wild-type receptor ( K D = 405 p M ), and that of the Glu-tagged receptor was slightly lower ( K D = 1,082 p M ). The high-affinity SP binding site of all three receptors was sensitive to guanosine 5'- O -(3-thiotriphosphate) pretreatment. The maximal signal-transducing ability of the epitope-tagged receptors was comparable to that of the wild-type receptor ([Ca2+]i rise as a percentage of wild-type: SPR-KT3, 80–100%; SPR-Glu, 88–100%). These data show that heterologous expression in the baculovirus system results in high expression of functional wild-type and tagged receptors.  相似文献   

3.
Abstract: The human NK1 tachykinin receptor in the astrocytoma cell line U 373 MG was characterized using selective agonists and antagonists described for this receptor in the rat. Specific [3H]substance P binding sites were present on cell homogenates, whereas [3H]neurokinin A or [3H]-senktide binding sites were absent. The binding was saturable and reversible. The binding of [3H]substance P was inhibited by very low concentrations of [L-Pro9]substance P and [Sar9,Met(O2)11]substance P; septide was ∼ 1,000-fold less potent. The most potent peptide antagonist was trans -4-hydroxy-1-(1 H -indol-3-ylcarbonyl)-L-prolyl- N -methyl- N -(phenylmethyl)-L-tyrosineamide. The rank order of potency for the nonpeptide antagonists was ( S , S )-CP 96,345 > (±)-CP 96,345 > (±)-2-chlorobenzylquinuclidinone > ( R , R )-CP 96,345 > RP 67580 > RP 68651. In [3H]-inositol-labeled cells, substance P stimulated phosphatidylinositol turnover. A good correlation was found when the abilities of NK1 receptor agonists for stimulating inositol phosphate production and for inhibiting [3H]substance P binding were compared. Similarly, the binding and functional assays were well correlated for the antagonists. As a result of its high sensitivity and selectivity, the U 373 MG cell line thus appears an excellent tool for investigating the pharmacology of the human NK1 receptor.  相似文献   

4.
Abstract: Effects of ascorbic acid (AA) on 125I-SCH 23982 binding to D1 dopaminergic receptors in membrane preparations from rat striatum were investigated. AA in the range of 0.03 µ M –0.33 m M inhibited 75% of specific binding of 125I-SCH 23982 in a dose-dependent manner. At higher concentrations, this inhibition of binding activity by AA was less potent, and 3.3 m M AA inhibited only 30% of specific binding. Reduced glutathione did not alter the inhibition of binding by 0.33 m M AA, but reduced the inhibition by 3.3 m M AA to 8% of specific binding. The loss of specific binding by AA was rescued by 1 m M EDTA, an inhibitor of lipid peroxidation. In the absence of AA, competition experiments with the agonist, dopamine, revealed the presence of high-affinity ( K h = 224.9 ± 48.9 n M ) and low-affinity ( K l = 21,100 ± 2,400 n M ) binding sites. Although the maximum binding of 125I-SCH 23982 decreased to 40% without affecting the K D value in the presence of 1.67 m M AA, the value of the high-affinity site for dopamine was increased ( K h = 23.3 ± 9.4 n M ) and that of the low-affinity site was decreased ( K l = 136,800 ± 40,900 n M ). These results suggest that AA may affect D1 dopamine receptor function by lipid peroxidation, competition with dopamine for low-affinity sites, and reduced oxidation of dopamine.  相似文献   

5.
Abstract: Matrix metalloproteinase-9 (MMP-9) is secreted from cells and, once activated, is thought to degrade collagen in the extracellular matrix. Because collagen is not readily localized where neurons have been shown to produce MMP-9 in the human brain, the ability of this enzyme to degrade bioactive peptides was investigated with representative tachykinin peptides [substance P (SP), neurokinin A, neurokinin B, and kassinin]. Latent MMP-9 (94 kDa) was purified from the human cell line HL-60 and converted to an intermediary active form (84 kDa) with p -aminophenylmercuric acetate. This active form of MMP-9 degraded SP with a k cat/ K m of 170 m M −1 min−1, which is 30-fold greater than the previously reported value for a representative collagen-derived peptide. The major digestion products were identified as SP1–6 and SP7–11, which were derived from cleavage of the Gln6-Phe7 bond. Minor products were also generated from cleavage of the Gly9-Leu10 bond. The other representative tachykinin peptides were cleaved at rates >10-fold slower than that of SP. The 84-kDa peptidase was also active as a gelatinase. Longer treatment of MMP-9 with p -aminophenylmercuric acetate caused the conversion of the 84-kDa enzyme to the established 68-kDa active form; however, the rate of SP degradation did not increase. Because MMP-9 is produced by neurons of the CNS, these results suggest a possible regulatory role for the enzyme in intercellular communication by altering the availability of bioactive peptides.  相似文献   

6.
Abstract: This study examined γ-aminobutyric acidA (GABAA) receptor function in cultured rat cerebellar granule cells by using microphysiometry following chronic flunitrazepam exposure, and correlated the findings with the α1 and β2/3 subunit protein expression and [3H]muscimol binding after the same treatment paradigm. Flunitrazepam treatment reduced ( p < 0.05) the maximal GABA-stimulated increase in extracellular acidification rate ( E max) (16.5 ± 1.2% and 11.3 ± 1.0%, 2-day control and treated cells, respectively; 17.4 ± 1.0% and 9.9 ± 0.7%, 7-day control and treated cells, respectively; best-fit E max± SEM, n = 7), without affecting the GABA concentration required to elicit 50% of maximal response (EC50) (1.2 ± 1.7 and 2.3 ± 1.8 µ M , 2-day control and treated cells, respectively; 1.7 ± 1.5 and 1.5 ± 1.5 µ M , 7-day control and treated cells, respectively; best-fit EC50± SEM, n = 7). Flunitrazepam exposure also abolished the flunitrazepam potentiation of the GABA response, caused a transient reduction of the GABAA receptor α1 and β2/3 subunit proteins over the initial 2 days, but did not alter [3H]muscimol binding compared with vehicle-treated cells. The results suggest that changes in GABAA receptor subunit protein expression, rather than loss of [3H]muscimol binding sites, underlie the chronic flunitrazepam-mediated desensitisation of GABAA receptor function.  相似文献   

7.
Abstract: The regulation of striatal cholinergic function by tachykinins was examined in urethane-anesthetized rats by using microdialysis. Substance P (0.01–1 µ M ), [Sar9,Met(O2)11]substance P (1–10 µ M ), septide (0.1–3 µ M ), neurokinin (NK) A (0.1–10 µ M ), and senktide (0.1–10 µ M ) produced concentration-dependent increases in striatal acetylcholine (ACh) release. Septide was the most potent agonist for inducing release of ACh, whereas the stimulating effect of senktide was less pronounced and more progressive in onset. The response to septide was prevented by intraperitoneal administration of the nonpeptide NK1 antagonist SR 140333 (1–3 mg/kg) but not by the nonpeptide NK2 receptor antagonist SR 48968, indicating that the effect was mediated specifically by NK1 receptors. ACh release caused by NKA was reduced by SR 48968 (1–3 mg/kg) and slightly affected by SR 140333, indicating a principal role for NK2 receptors in the peptide response. The similar efficacy of SR 140333 and SR 48968 in blocking substance P-induced ACh release suggested that the effect of this peptide involves the stimulation of both NK1 and NK2 receptors. Finally, our results indicate that the increase in striatal ACh release induced by the D1 agonist (+)-SKF-38393 (3 µ M ) may be mediated indirectly through local release of NKA or substance P acting at NK2 receptors.  相似文献   

8.
Abstract: To expand on the nature of regional cerebral vulnerability to ischemia, the release of dopamine (DA) and dopaminergic (D1 and D2) receptors were investigated in Mongolian gerbils subjected to bilateral carotid artery occlusion (15 min) alone or with reflow (1–2 h). Extracellular cortical and striatal content of DA and its metabolites was measured by microdialysis using HPLC with electrochemical detection. The kinetic properties of D1 and/or D2 receptor binding sites were determined in cortical and striatal membranes with the use of radiolabeled ligands (125I-SCH23982 and [3H]YM-09151-2, respectively). The ischemic release of DA from the striatum was greater (400-fold over preischemic level) than that from the cortex (12-fold over preischemic content). The affinity for the D1-receptor ligand was lower ( K D= 1.248 ± 0.047 n M ) after ischemia than that for sham controls ( K D= 0.928 ± 0.032 n M, p < 0.001). The number of binding sites for D2 receptors decreased in striatum ( B max= 428 ± 18.4 fmol/mg of protein) after ischemia compared with sham controls ( B max= 510 ± 25.2 fmol/mg of protein, p < 0.05). D1 or D2 binding sites were not changed either in the ischemic cortex or postischemic striatum and cortex. The findings strongly suggest that the ischemic release of DA from striatum is associated with early transient changes in D1- and D2-mediated DA neurotransmission.  相似文献   

9.
Abstract: Three chimeric receptors were constructed by exchanging exons between human neurokinin NK1 and NK3 receptor genes. The N-terminal sequences of these chimeric receptors are encoded by exon 1, exon 1–2, or exon 1–3 of the NK1 receptor gene, whereas the remaining C-terminal sequences of these chimeric receptors are encoded by corresponding exons of the human NK3 receptor gene. Substance P bound with high affinities to all three chimeric receptors, suggesting that in addition to the common structures composed of conserved amino acid residues among neurokinin receptors, structural elements encoded by the first exon of the human NK1 receptor gene may also play an important role for substance P binding. On the contrary, potent NK1 antagonists L703,606 and SR140,333 did not show any detectable binding to these chimeric receptors. In accordance, sequences encoded by exon 4, and possibly exon 5, are likely to contain important structural motifs that may directly or indirectly influence the binding of these antagonists. Further comparison of the binding affinities of highly selective NK1 agonists, [Sar9,Met(O2)11]substance P, substance P methyl ester, and septide, revealed that each agonist may interact differently with the human NK1 receptor. These results show that the exon-exchanging technique can be a useful tool for studying structure-function relationships of receptors in which exon-intron junctions are fully conserved among receptor subtypes.  相似文献   

10.
It has recently been shown that the adrenal gland of the frog Rana ridibunda is densely innervated by a network of fibers containing two novel tachykinins, i.e. ranakinin (the counterpart of substance P) and [Leu3, Ile7]neurokinin A. Both ranakinin and [Leu3, Ile7]neurokinin A stimulate corticosteroid secretion from frog adrenal glands in vitro. In the present study, we have investigated the pharmacological profile of the receptors involved in the stimulatory action of ranakinin on perifused frog adrenal slices. The selective NK-1 receptor antagonists [ -Pro4, -Trp7,9]substance P 4–11 and CP-96,345, did not affect the stimulatory action of ranakinin. The selective NK-1 agonist substance P 6–11 had no effect on corticosteroid secretion. The non-peptidic NK-1 receptor antagonist RP 67580 significantly reduced the stimulatory effect of ranakinin on corticosterone and aldosterone secretion by 57 and 55%, respectively. In addition, the dual NK-1/NK-2 receptor antagonist FK-224 significantly inhibited the effect of ranakinin on corticosterone (−80%) and aldosterone secretion (−95%). Finally, the amphiphilic analogue of substance P, [ -Pro2, -Phe7, -Trp9]substance P, had no effect on corticosteroid secretion. These data suggest that in the frog adrenal gland the stimulatory action of ranakinin on steroid secretion is mediated by a novel type of receptor which differs substantially from the mammalian NK-1 receptor subtype.  相似文献   

11.
12.
Abstract: Binding of [3H]LY278584, which has been previously shown to label 5-hydroxytryptamine3 (5-HT3) receptors in rat cortex, was studied in human brain. Saturation experiments revealed a homogeneous population of saturable binding sites in amygdala ( K D= 3.08 ± 0.67 n M, B max= 11.86 ± 1.87 fmol/mg of protein) as well as in hippocampus, caudate, and putamen. Specific binding was also high in nucleus accumbens and entorhinal cortex. Specific binding was negligible in neocortical areas. Kinetic studies conducted in human hippocampus revealed a K on of 0.025 ± 0.009 n M −1 min−1 and a K off of 0.010 ± 0.002 min−1. The kinetics of [3H]LY278584 binding were similar in the caudate. Pharmacological characterization of [3H]LY278584 specific binding in caudate and amygdala indicated the compound was binding to 5-HT3 receptors. We conclude that 5-HT3 receptors labeled by [3H]LY278584 are present in both limbic and striatal areas in human brain, suggesting that 5-HT3 receptor antagonists may be able to influence the dopamine system in humans, similarly to their effects in rodent studies.  相似文献   

13.
The tachykinin neurokinin 1 receptors (NK1Rs) regulation of acetylcholine release and its interaction with the enkephalin/mu opioid receptors (MORs) transmission was investigated in the limbic/prefrontal (PF) territory of the dorsal striatum. Using double immunohistochemistry, we first showed that in this territory, cholinergic interneurons contain tachykinin NK1Rs and co-express MORs in the last part of the light period (afternoon). In slices of the striatal limbic/PF territory, following suppression of the dopaminergic inhibitory control of acetylcholine release, application of the tachykinin NK1R antagonist, SSR240600, markedly reduced the NMDA-induced acetylcholine release in the morning but not in the afternoon when the enkephalin/MOR regulation is operational. In the afternoon, the NK1R antagonist response required the suppression of the enkephalin/MOR inhibitory control of acetylcholine release by βfunaltrexamine. The pharmacological profile of the tachykinin NK1R regulation tested by application of the receptor agonists [[Pro9]substance P, neurokinin A, neuropeptide K, and substance P(6–11)] and antagonists (SSR240600, GR205171, GR82334, and RP67580) indicated that the subtype of tachykinin NK1R implicated are the new NK1-sensitive receptor binding site. Therefore, in the limbic/PF territory of the dorsal striatum, endogenous tachykinin facilitates acetylcholine release via a tachykinin NK1R subtype. In the afternoon, the tachykinin/NK1R and the enkephalin/MOR transmissions interact to control cholinergic transmission.  相似文献   

14.
Abstract: Calcitonin gene-related peptide (CGRP) and its receptors are found in mammalian spinal cord. We show, for the first time, binding sites for the novel related peptide adrenomedullin in rat spinal cord microsomes. 125I-Adrenomedullin binding showed high affinity ( K D = 0.45 ± 0.06 n M ) and sites were abundant ( B max = 723 ± 71 fmol/mg of protein). CGRP, amylin, and calcitonin did not compete at these sites ( K i > 10 µ M ). High-affinity CGRP binding sites ( K D = 0.18 ± 0.01 n M ) were much less numerous ( B max = 17.7 ± 2.4 fmol/mg of protein) and showed competition by unlabeled adrenomedullin ( K i = 34.6 ± 2.4 n M ). Chemical cross-linking revealed a major band for 125I-adrenomedullin of Mr = 84,400 ± 1,200 and a minor band of Mr = 122,000 ± 8,700. 125I-CGRP cross-linking showed bands of lower molecular weight (Mr = 74,500 ± 5,000 and 61,000 ± 2,200). Enzymic deglycosylation of the adrenomedullin binding site showed a considerable carbohydrate content. Neither adrenomedullin nor CGRP was able to increase cyclic AMP in spinal cord. Adrenomedullin mRNA was present in spinal cord, at one-third of its level in lung, and adrenomedullin immunoreactivity was present, at a low concentration (40 fmol/g of tissue). Thus, the presence of abundant binding sites and adrenomedullin mRNA and immunoreactivity anticipate an as yet undefined function for this peptide in spinal cord.  相似文献   

15.
Abstract: The role of nitric oxide (NO) in the control of 5-hydroxytryptamine (5-HT)-induced release of substance P was investigated in rat spinal cord in vitro. 5-HT facilitated the 60 m M K+-evoked release of substance P-like immunoreactive materials (SPLI) from the superfused rat dorsal spinal cord slices without affecting spontaneous SPLI release. The facilitatory effect of 5-HT was significantly inhibited by ICS 205-930 or granisetron (potent and specific 5-HT3 receptor antagonists), by N G-monomethyl- l -arginine (NMMA, a NO synthase inhibitor), and by methylene blue or 1 H -[1,2,4]oxadiazolo[4,3- a ]quinoxaline-1-one (MB or ODQ, respectively; both are inhibitors of soluble guanylyl cyclase) and was mimicked by 2-methylserotonin (2-m-5-HT, a selective 5-HT3 receptor agonist), l -arginine (a precursor of NO), or 8-bromo-cyclic GMP. NMMA, MB, or ODQ inhibited the 2-m-5-HT-induced increase of cyclic GMP levels in the rat dorsal spinal cord slices. These data suggest that the facilitatory effect of 5-HT on the release of SPLI is mediated by the 5-HT3 receptor and that the intracellular signaling is mediated via NO by an increase in cyclic GMP production.  相似文献   

16.
Abstract: The human neuroblastoma cell line SK-N-BE expresses δ-opioid receptors negatively coupled to adenylyl cyclase. Prolonged treatment (2 h) of the cells with 100 n M etorphine leads to an almost complete desensitization (8.2 ± 5.9 vs. 45.8 ± 8.7% for the control). Other receptors negatively coupled to adenylyl cyclase, namely, D2-dopaminergic, α2-adrenergic, and m2/m4-muscarinic, were identified by screening of these cells, and it was shown that prolonged treatment (2 h) with 1 µ M 2-bromo-α-ergocryptine or 1 µ M arterenol resulted in a marked desensitization of D2-dopaminergic and α2-adrenergic receptors, respectively. Cross-desensitization experiments revealed that pretreatment with etorphine desensitized with the same efficiency the δ-opioid receptor and the D2-dopaminergic receptor, and pretreatment with 2-bromo-α-ergocryptine also desensitized both receptors. In contrast, pretreatment with etorphine desensitized only partly the α2-adrenergic receptor response, whereas pretreatment with 1 µ M arterenol partly desensitized the δ-opioid receptor response. It is concluded that the δ-opioid receptor-mediated inhibitory response of adenylyl cyclase undergoes heterologous desensitization, and it is suggested that δ-opioid and D2-dopaminergic receptors are coupled to adenylyl cyclase via a Gi2 protein, whereas α2-adrenergic receptor could be coupled to the enzyme via two G proteins, Gi2 and another member of the Gi/Go family.  相似文献   

17.
Abstract: The Na+ sensitivity of whole brain membrane Na+,K+-ATPase isoenzymes was studied using the differential inhibitory effect of ouabain (α1, low affinity for ouabain; α2, high affinity; and α3, very high affinity). At 100 m M Na+, we found that the proportion of isoforms with low, high, and very high ouabain affinity was 21, 38, and 41%, respectively. Using two ouabain concentrations (10−5 and 10−7 M ), we were able to discriminate Na+ sensitivity of Na+, K+-ATPase isoenzymes using nonlinear regression. The ouabain low-affinity isoform, α1, exhibited high Na+ sensitivity [ K a of 3.88 ± 0.25 m M Na+ and a Hill coefficient ( n ) of 1.98 ± 0.13]; the ouabain high-affinity isoform, α2, had two Na+ sensitivities, a high ( K a of 4.98 ± 0.2 m M Na+ and n of 1.34 ± 0.10) and a low ( K a of 28 ± 0.5 m M Na+ and an n of 1.92 ± 0.18) Na+ sensitivity activated above a thresh old (22 ± 0.3 m M Na+); and the ouabain very-high-affinity isoform, α3, was resolved by two processes and appears to have two Na+ sensitivities (apparent K a values of 3.5 and 20 m M Na+). We show that Na+ dependence in the absence of ouabain is the result of at least of five Na+ reactivities. This molecular functional characteristic of isoenzymes in membranes could explain the diversity of physiological roles attributed to isoenzymes.  相似文献   

18.
Abstract: The carboxy-terminal cytoplasmic regions of the rat neurokinin 1 (substance P) and neurokinin 2 (neurokinin A) receptors have been exchanged to determine if this region of the neurokinin 1 receptor is involved in its desensitization. When expressed at similar levels in stably transfected Chinese hamster ovary (CHO) cell lines, receptors containing the carboxy-terminal region of the neurokinin 1 receptor desensitized significantly more (as measured by reduction of the inositol 1,4,5-trisphosphate response) when preexposed for 1 min to 1 µ M neurokinin, indicating a role for the carboxy-terminal region of the neurokinin 1 receptor in its desensitization. Measurement of receptor internalization using radiolabeled neurokinins (0.3 n M ) indicated that ∼75–80% of the receptors were internalized in each cell line after 10 min at 37°C, with no observable correlation between neurokinin receptor desensitization and internalization. Measurement of loss of receptor surface sites for cell lines CHO NK1 and CHO NK1NK2 following exposure to 1 µ M substance P also indicated no obvious relationship between the percent desensitization and percent of receptors internalized. Also, two inhibitors of neurokinin 1 receptor internalization, phenylarsine oxide and hyperosmolar sucrose, did not inhibit neurokinin 1 receptor desensitization. The protein kinase inhibitors Ro 31-8220, staurosporine, and Zn2+ had no effect on neurokinin 1 receptor desensitization, indicating that the kinases affected by these agents are not rate-limiting in neurokinin 1 receptor desensitization in this system.  相似文献   

19.
Abstract: In the rat parotid gland, the neuropeptide substance P (SP), as well as SP(4–11), and septide elicited inositol phosphate production (EC50 values 0.44, 2, and 20 n M , respectively). No additivity of the maximal response to the three agonists was observed. SP, SP(4–11), and septide also stimulated protein secretion; for SP, two EC50 were determined (0.5 and 160 n M ), whereas a single one could be determined for SP(4–11) and septide (EC50 values 15 and 20 n M , respectively). The selective tachykinin NK1 receptor antagonist RP67580 acted as a competitive inhibitor of both SP- and SP(4–11)-induced inositol phosphate production. Its effect on septide-induced inositol phosphate production was noncompetitive. RP67580 is apparently as potent at antagonizing septide, SP, or SP(4–11) (in all cases K B = 3 n M ). These results show that in parotid gland, only NK1 receptors are activated by SP, SP(4–11), and septide. We also showed that the protein secretion stimulated by SP was inhibited competitively by RP67580, whereas the effect of RP67580 was noncompetitive on protein secretion when SP(4–11) or septide was used. Our data indicate that in rat parotid gland, the existence of a specific "septide-sensitive" receptor can be ruled out and that only the NK1 receptor is present and mediates cellular responses. Taken together, these results show that in this tissue the NK1 receptor would present at least two different binding sites that could be coupled to different transduction pathways and that would regulate protein secretion.  相似文献   

20.
Abstract: Using a combination of library screening and nested PCR based on a partial human serotonin 5-HT4 receptor sequence, we have cloned the complete coding region for a human 5-HT4 receptor. The sequence shows extensive similarity to the published porcine 5-HT4A and rat 5-HT4L receptor cDNA; however, in comparison with the latter, we find an open reading frame corresponding to only 388 amino acids instead of 406 amino acids. This difference is due to a frame shift caused by an additional cytosine found in the human sequence after position 1,154. Moreover, we also found the same additional cytosine in the rat 5-HT4 sequence. We confirmed the occurrence of the sequence by examining this part of the sequence in genomic DNA of 10 human volunteers and in rat genomic DNA. Based on a part of the genomic 5-HT4 receptor sequence that was identified in the cloning process, there seem to be at least two possible splice sites in the coding region of the gene. The human 5-HT4 receptor, transiently expressed in COS-7 cells, showed radioligand binding properties similar to 5-HT4 receptors in guinea pig striatal tissue. [3H]GR 113808 revealed K D values of 0.15 ± 0.01 n M for the human receptor and 0.3 ± 0.1 n M in the guinea pig tissue. Binding constants were determined for four investigated 5-HT4 antagonists and three agonists, and appropriate binding inhibition constants were found in each case. Stimulation of transfected COS-7 cells with 5-HT4-specific agonists caused an increase in cyclic AMP levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号