首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific energy requirement for compacting corn stover   总被引:2,自引:0,他引:2  
Corn stover is a major crop residue for biomass conversion to produce chemicals and fuels. One of the problems associated with the supply of corn stover to conversion plants is the delivery of feedstock at a low cost. Corn stover has low bulk density and it is difficult to handle. In this study, chopped corn stover samples were compacted in a piston cylinder under three pressure levels (5, 10, 15 MPa) and at three moisture content levels (5%, 10%, 15% (wb)) to produce briquettes. The total energy requirement to compress and extrude briquette ranged from 12 to 30 MJ/t. The briquette density ranged from 650 to 950 kg/m3 increasing with pressure. Moisture content had also a significant effect on briquette density, durability and stability. Low moisture stover (5-10%) resulted in denser, more stable and more durable briquettes than high moisture stover (15%).  相似文献   

2.
Rice straw as solid residues are biomass residue materials that are not optimally used by farmers in Punjab and potentially become environmental pollutant. A large amount of rice straw (17 million tons) is generated and left as much in combine harvested rice fields in Punjab, India. It is very difficult to manage such huge amount of rice straw thus, farmers resort to burning it which leads to greenhouse gas emissions like CO2 due to open field burning and loss of rich organic matter present in the soil. Further due to imposition of restrictions by the state government, the practice of burning rice straw has now become an offense. So farmers are looking for alternatives which are economically viable. Rice straw can be effectively used as bio energy as it has about the same heating value (15 kJ kg?1) as that of wood, half that of good quality coal and one third of oil. The operational conditions required to produce high-quality chopped rice straw briquettes have not been determined and this study determined the optimal moisture content, particle size, and binder ratio required to produce rice straw briquettes. The optimized conditions resulted in formation of high-density (1030.38–1159.22 kg m?3) briquettes with durability ranging from 71.9 to 92.3% with minimum power requirement for briquetting (36.60 kW), maximum calorific value of 15.61 MJ kg?1, and minimum ash content (16.34%).Total cost of making chopped rice straw briquettes was 0.041 USD per kg and 0.00281 USD per mega joule of energy. Cost of briquetting from chopped rice straw with 10 and 20% cotton stalks was 0.050 and 0.051 USD per kg, respectively, and 0.0033 USD per mega joule of energy. Also, the briquettes prepared from chopped rice straw with and without cotton stalk as a binder were economically viable.  相似文献   

3.
Briquetting of plant biomass with low bulk density is an advantage for handling, transport, and storage of the material, and heating of the biomass prior to the briquetting facilitates the densification process and improves the physical properties of the briquettes. This study investigates the effects of preheating prior to briquetting of wheat straw (WS) on subsequent hydrothermal pretreatment and enzymatic conversion to fermentable sugars. WS (11% moisture content) was densified to briquettes under different conditions; without preheating or with preheating at 75 or 125°C for either 5 or 10 min. Subsequent hydrothermal pretreatment was done for both un-briquetted WS and for briquettes. Enzymatic saccharification was afterwards performed for all samples. The results showed that as expected, nonpretreated WS briquettes gave very low sugar yields (22–29% of the cellulose content), even though preheating at 125°C prior to briquetting (without pretreatment) improved sugar yields somewhat. When combined with pretreatment, briquetting with preheating showed neutral or negative effects on sugar yield. This result suggests that moderate preheating (75°C for 5 min) before briquetting improved bulk density and compressive resistance of briquettes without impeding subsequent enzymatic conversion. However, excessive preheating (75 or 125°C for 10 min) before briquetting may result in irreversible structural modifications that hinder the interaction between biomass and water during pretreatment, thereby decreasing the accessibility of cellulose to enzymatic saccharification.  相似文献   

4.
Densification of switchgrass into consistent and high-density solid feedstock will reduce the cost of transport, handling, and storage to produce fuels and chemicals. Development a novel, low-cost densification technology is critical for reducing the delivered cost of feedstock while improving the bulk flow properties of densified products. In this paper, a novel wet granulation technology was proposed to investigate the effect of lime pretreatment on the production of switchgrass granules. Granulation is a process of agglomerating fine powders by wetting powder surfaces with liquid binders and mild application of shear/vibrating forces. Switchgrass was size reduced into fine powders using a knife mill and pretreated with three lime loading rates (0.05, 0.1, 0.2 g/g of biomass) at 121 °C for 30 min and at room temperature (25 °C) for 72 h. The structural modification of pretreated samples was analyzed by scanning electron microscopy and autofluorescence microscopy. Pretreated samples were granulated using a pan granulator with pre-formulated starch binder. Granules made from 20 % (0.2 g/g of biomass) lime loading rate had significantly higher single granule density and angle of repose with lower binder requirement than that of untreated granules. Lime treatment did not significantly increase the bulk density and hardness of granules. Lime-treated granules had significantly higher ash content and lower gross calorific value than that of untreated granules. In overall, lime treatment was not attractive to produce granules for thermochemical conversion platform, but lime-treated granules could be used to produce liquid biofuels and platform chemicals in biochemical conversion platform.  相似文献   

5.
Corn stover and switchgrass are two important feedstocks considered for producing renewable fuels and energy in the US. Densification of these biomass feedstocks into briquettes/pellets would help reduce the problems and costs of bulk transportation, handling, and storage of biomass feedstocks. In this study, the role of the natural binders in corn stover and switchgrass to make durable particle–particle bonding in briquettes/pellets was investigated by micro-structural analyses. Scanning Electron Microscopy (SEM) images of briquettes made by using a uniaxial piston-cylinder densification apparatus in the laboratory, briquettes made by using a pilot-scale roll-press briquetting machine, and pellets made by using a pilot-scale conventional ring-die pelleting machine were analysed. The SEM images showed that the bonding between particles was created mainly through solid bridges. The solid bridges between particles were made by natural binders in the biomass expressed during the densification process. UV auto-fluorescence images of briquettes and pellets further confirmed that the solid bridges were made mainly by natural binders such as lignin and protein. It was found that activating (softening) the natural binders using moisture and temperature in the range of glass transition is important to make durable particle–particle bonding.  相似文献   

6.
In this study, pre-compaction was evaluated as a method to enhance stable reed canary grass pellet production. An experimental design of the factors raw material moisture content, steam addition, raw material bulk density, and die temperature was used to find production conditions for high quality pellets by multiple linear regression modelling of responses. Response variables being modelled were variability of pelletizer current (as a measurement of uneven production), pellet bulk density, and pellet durability. By pre-compacting the raw material from a bulk density of 150 kg/m3 to 270kg/m3, continuous production could be obtained at minimum raw material moisture content of 13.8%. Bulk density and durability were both highly correlated to raw material moisture content, but showed different optima. Multiple response optimization was used to target process settings for production of high quality reed canary grass pellets with bulk density >650kg/m3 and durability >97.5%.  相似文献   

7.
In the short term, the production of bioethanol as a liquid transport fuel is almost entirely dependent on starch and sugars from existing food crops. The sustainability of this industry would be enhanced by increases in the yield of starch/sugar per hectare without further inputs into the crops concerned. Efforts to achieve increased yields of starch over the last three decades, in particular via manipulation of the enzyme ADPglucose pyrophosphorylase, have met with limited success. Other approaches have included manipulation of carbon partitioning within storage organs in favour of starch synthesis, and attempts to manipulate source–sink relationships. Some of the most promising results so far have come from manipulations that increase the availability of ATP for starch synthesis. Future options for achieving increased starch contents could include manipulation of starch degradation in organs in which starch turnover is occurring, and introduction of starch synthesis into the cytosol. Sucrose accumulation is much less well understood than starch synthesis, but recent results from research on sugar cane suggest that total sugar content can be greatly increased by conversion of sucrose into a non-metabolizable isomer. A better understanding of carbohydrate storage and turnover in relation to carbon assimilation and plant growth is required, both for improvement of starch and sugar crops and for attempts to increase biomass production in second-generation biofuel crops.  相似文献   

8.
Interest and focus on development of renewable biofuels has been increasing over the past decade leading to the introduction of a wide cadre of renewable feedstocks. As a result, numerous perennial warm-season grasses have been introduced and management practices evaluated to determine their suitability as biofuel feedstocks. “Merkeron” napier grass (Pennisetum purpureum) plots were established in 2010 and harvested during crop years 2011 through 2015 adjacent to an on-going peanut (Arachis hypogaea L.), corn (Zea mays L.), and cotton (Gossypium hirsutum L.) cropping systems study conducted at the USDA/ARS Multi-crop Irrigation Research Farm in Shellman, GA (84 36 W, 30 44 N) on a Greenville fine sandy loam (fine, kaolinitic, thermic Rhodic Kandiudults). Napier grass was produced in both non-irrigated and two irrigated levels with different levels of nitrogen and potassium fertilizers. Peanut, corn, and cotton were produced in non-irrigated and full irrigation regimes. Breakeven prices for napier grass ranged from $65 to $84 Mg?1 at variable and total costs. The breakeven napier grass price was estimated such that the net returns were equal between napier grass and peanut, cotton, corn cropping systems. At variable production cost, comparative breakeven napier grass prices for non-irrigated, 50% irrigated, and full irrigated regimes were $77, $117, and $112 Mg?1, respectively. Napier grass did not compete economically against traditional irrigated cropping systems. Depending on traditional crop prices and bioenergy feed stock prices, napier grass could offer economic opportunities in non-irrigated production environments, riparian buffer zone edges, or non-cropped marginal production areas.  相似文献   

9.
This study investigates how thermally treated (i.e., torrefied) grass, a new prospective ingredient of potting soils, is colonized by microorganisms. Torrefied grass fibers (TGF) represent a specific colonizable niche, which is potentially useful to establish a beneficial microbial community that improves plant growth. TGF and torrefied grass extracts (TGE) were inoculated with a suspension of microorganisms obtained from soil. Sequential microbial enrichment steps were then performed in both substrates. The microbial communities developing in the substrates were assessed using cultivation-based and cultivation-independent approaches. Thus, bacterial isolates were obtained, and polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) analyses for bacterial communities were performed. Partial sequencing of the 16S ribosomal RNA gene from isolates and bands from DGGE gels showed diverse communities after enrichment in TGE and TGF. Bacterial isolates affiliated with representatives of the alpha-proteobacteria (Methylobacterium radiotolerans, Rhizobium radiobacter), gamma-proteobacteria (Serratia plymuthica, Pseudomonas putida), Cytophaga-Flavobacterium-Bacteroides (CFB) group (Flavobacterium denitrificans), beta-proteobacteria (Ralstonia campinensis), actinobacteria (Cellulomonas parahominis, Leifsonia poae, L. xyli subsp. xyli, and Mycobacterium anthracenicum), and the firmicutes (Bacillus megaterium) were found. In TGE, gamma-proteobacteria were dominant (61.5% of the culturable community), and 20% belonged to the CFB group, whereas actinobacteria (67.4%) and alpha-proteobacteria (21.7%) were prevalent in TGF. A germination assay with lettuce seeds showed that the phytotoxicity of TGF and TGE decreased due to the microbial enrichment.  相似文献   

10.
During recent years, a renovated interest in the pre-treatment of biomass through torrefaction has led to several proposals on industrial-scale application of the technology. Torrefaction holds promising characteristics for obtaining a high-energy yield biomass for further processing, including densified biofuels such as pellets and briquettes, at low overall costs, low energy input, and high capacity and availability for the near future, having the capability of displacing coal in power facilities. Despite many efforts in developing the technology at an industrial scale, very few manufacturers and companies are offering torrefied machinery and lignocellulosic torrefied biomass. Furthermore, information about the actual profitability of the business, sensitivity, and costs of torrefied biomass are very scarce and are limited to very focused studies in some areas of the production, but not in the overall supply chain, and manufacturing processes. This study aimed to develop and validate a technical and economic model for the production of lignocellulosic torrefied biomass for its utilization in the solid biofuels industry, with a focus on production and delivered costs for U.S. potential manufacturers. This model also includes analysis of important variables affecting production, such as biomass delivered costs, capital expenditure (CAPEX), and technology availability. Results indicate that the production of torrefied lignocellulosic biomass can be profitable for U.S. manufacturers, subject to a high sensitivity on biomass cost, CAPEX, and technology affordability for large-scale production. Other sensitive facts include carbon credits scenarios, which may influence profitability based on analyses of net present value and internal rate of return for the manufacturing facility.  相似文献   

11.
In French West Indies, the high dependency of the electricity mix on imported fossil fuels has led local authorities to propose the conversion of some land to the production of energy cane. This conversion mainly concerns land polluted by the pesticide chlordecone, where most crops for human consumption have been banned. This molecule has a strong affinity for soil organic matter (SOM). The aims of this study were to assess the impact of crop residue management and compost application on the stocks of SOM and chlordecone in soils cultivated with energy cane and to determine the minimum SOM input required to maintain SOM stocks. A field experiment was conducted to determine the yield and biomass partitioning of energy cane, and laboratory incubations were performed to estimate humification from crop residues. Changes in SOM and chlordecone stocks over a 30-year period were investigated using models already calibrated for the land under study. Non-harvestable biomass left on the field (tops, litterfall and roots) covered >60 % of SOM mineralization. A full offset of mineralization required the return of 10 % of harvestable biomass or the application of compost at a rate of 40 Mg ha?1 every 5 years. With the total removal of harvestable biomass and without compost applications, SOM and chlordecone losses increased by 23 and 13 %, respectively, which was associated with high SOM mineralization and chlordecone leaching under tropical climate. The estimated break-even price for cane biomass indicated that compost application would be more profitable for farmers than the return of a part of the harvestable biomass.  相似文献   

12.
Activated carbon briquettes from biomass materials   总被引:4,自引:0,他引:4  
Disposal of biomass wastes, produced in different agricultural activities, is frequently an environmental problem. A solution for such situation is the recycling of these residues for the production of activated carbon, an adsorbent which has several applications, for instance in the elimination of contaminants. For some uses, high mechanical strength and good adsorption characteristics are required. To achieve this, carbonaceous materials are conformed as pellets or briquettes, in a process that involves mixing and pressing of char with adhesive materials prior to activation. In this work, the influence of the operation conditions on the mechanical and surface properties of briquettes was studied. Eucalyptus wood and rice husk from Uruguay were used as lignocellulosic raw materials, and concentrated grape must from Cuyo Region-Argentina, as a binder. Different wood:rice and solid:binder ratios were used to prepare briquettes in order to study their influence on mechanical and surface properties of the final products.  相似文献   

13.
Unprecedented opportunities for biofuel development are occurring as a result of rising fossil fuel prices, the need to reduce greenhouse gases, and growing energy security concerns. An estimated 250 million hectares (ha) of farmland could be utilized globally to develop a bioenergy industry if efficient and economical perennial biomass crops and bioenergy conversion systems are employed. In temperate zones, C4 or warm-season grass research and development efforts have found switchgrass (Panicum virgatum) and Miscanthus capable of producing biomass yields of 10 to 20 oven dried tonnes (ODT)/ha/yr, while in tropical areas Erianthus and napier grass (Pennisetum purpureum) are producing 25 to 35 ODT/ha/yr. The potential to annually produce 100 barrels of oil energy equivalent/ha with a 25:1 energy output to input ratio appears achievable with high-yielding, N-fixing warm-season grasses grown on marginal lands in the tropics. Commercialization of densified herbaceous plant species has been slow because of the relatively high alkali and chlorine contents of the feedstocks, which leads to clinker formation and the fouling of boilers. This challenge can be overcome by improving biomass quality through advances in plant breeding and cultural management to reduce the chlorine, alkali, and silica content and through the use of new combustion technologies.

Warm-season grasses can be readily densified provided suitable grinding and densification equipment and pressure are utilized. The major advantages of producing densified warm-season grasses for BIOHEAT include: it is the most efficient strategy to use marginal farmlands in most temperate and tropical climates to collect solar radiation; it has an excellent energy balance; the feedstocks can be used conveniently in a variety of energy applications; and it is relatively environmentally friendly. Densified warm-season grass biofuels are poised to become a major global fuel source because they can meet some heating requirements at less cost than all other alternatives available today.  相似文献   


14.
《Biomass》1990,21(4):239-255
Seven lignocellulosic materials: corn stover, napier grass, wood grass, newspaper, white fir and wheat straw from two different crops; two pure cellulosics: Solka Floc BW200 and Whatman No. 5 filter paper; and glucose, propionic and acetic acids were subjected to long-term batch methane fermentation. Ninety per cent of the original COD was recovered as methane gas from the two pure cellulosics and glucose. For the lignocellulosics, depending on the material, variations from over 80% conversion efficiency to methane for corn stover to less than 10% for white fir were observed. Generally, herbaceous materials were degraded faster and more extensively than woody biomass. A first-order rate model described well the methane fermentation process for the lignocellulosics tested, but was a poor model for the soluble substrates. It was not possible to predict either the biodegradability or the rate of methane fermentation with a reasonable degree of accuracy based solely on the lignin content of the lignocellulosic materials.  相似文献   

15.
We evaluated genetic variations in the non-structural carbohydrate (NSC) and the cell-wall components of stem in rice, sorghum, and sugar cane to assess the potential suitability of these gramineous crops for bioethanol production. For NSC, the maximum soluble sugar concentration was highest in sugar cane, followed by sorghum with sucrose. The major NSC in rice was starch, but there were wide variations in the starch to soluble sugar ratios among the cultivars. The total concentration of cell-wall components was negatively correlated with the NSC concentration, indicating competition for carbon sources. Among the cell-wall components, lignin was relatively stable within each group. The major sugar species composing hemicellulose was xylose in all crop groups, but there were differences in composition, with a higher fraction of arabinose and glucose in rice as compared to the other crops. In rice, there was less lignin than in sorghum or sugar cane; this might be advantageous for the efficient saccharification of cellulose.  相似文献   

16.
We evaluated genetic variations in the non-structural carbohydrate (NSC) and the cell-wall components of stem in rice, sorghum, and sugar cane to assess the potential suitability of these gramineous crops for bioethanol production. For NSC, the maximum soluble sugar concentration was highest in sugar cane, followed by sorghum with sucrose. The major NSC in rice was starch, but there were wide variations in the starch to soluble sugar ratios among the cultivars. The total concentration of cell-wall components was negatively correlated with the NSC concentration, indicating competition for carbon sources. Among the cell-wall components, lignin was relatively stable within each group. The major sugar species composing hemicellulose was xylose in all crop groups, but there were differences in composition, with a higher fraction of arabinose and glucose in rice as compared to the other crops. In rice, there was less lignin than in sorghum or sugar cane; this might be advantageous for the efficient saccharification of cellulose.  相似文献   

17.
Perennial grasses can sequester soil organic carbon (SOC) in sustainably managed biofuel systems, directly mitigating atmospheric CO2 concentrations while simultaneously generating biomass for renewable energy. The objective of this study was to quantify SOC accumulation and identify the primary drivers of belowground C dynamics in a zero‐tillage production system of tropical perennial C4 grasses grown for biofuel feedstock in Hawaii. Specifically, the quantity, quality, and fate of soil C inputs were determined for eight grass accessions – four varieties each of napier grass and guinea grass. Carbon fluxes (soil CO2 efflux, aboveground net primary productivity, litterfall, total belowground carbon flux, root decay constant), C pools (SOC pool and root biomass), and C quality (root chemistry, C and nitrogen concentrations, and ratios) were measured through three harvest cycles following conversion of a fallow field to cultivated perennial grasses. A wide range of SOC accumulation occurred, with both significant species and accession effects. Aboveground biomass yield was greater, and root lignin concentration was lower for napier grass than guinea grass. Structural equation modeling revealed that root lignin concentration was the most important driver of SOC pool: varieties with low root lignin concentration, which was significantly related to rapid root decomposition, accumulated the greatest amount of SOC. Roots with low lignin concentration decomposed rapidly, but the residue and associated microbial biomass/by‐products accumulated as SOC. In general, napier grass was better suited for promoting soil C sequestration in this system. Further, high‐yielding varieties with low root lignin concentration provided the greatest climate change mitigation potential in a ratoon system. Understanding the factors affecting SOC accumulation and the net greenhouse gas trade‐offs within a biofuel production system will aid in crop selection to meet multiple goals toward environmental and economic sustainability.  相似文献   

18.
Bioenergy is expected to play a critical role in climate change mitigation. Most integrated assessment models assume an expansion of agricultural land for cultivation of energy crops. This study examines the suitability of land for growing a range of energy crops on areas that are not required for food production, accounting for climate change impacts and conservation requirements. A global fuzzy logic model is employed to ascertain the suitable cropping areas for a number of sugar, starch and oil crops, energy grasses and short rotation tree species that could be grown specifically for energy. Two climate change scenarios are modelled (RCP2.6 and RCP8.5), along with two scenarios representing the land which cannot be used for energy crops due to forest and biodiversity conservation, food agriculture and urban areas. Results indicate that 40% of the global area currently suitable for energy crops overlaps with food land and 31% overlaps with forested or protected areas, highlighting hotspots of potential land competition risks. Approximately 18.8 million km2 is suitable for energy crops, to some degree, and does not overlap with protected, forested, urban or food agricultural land. Under the climate change scenario RCP8.5, this increases to 19.6 million km2 by the end of the century. Broadly, climate change is projected to decrease suitable areas in southern regions and increase them in northern regions, most notably for grass crops in Russia and China, indicating that potential production areas will shift northwards which could potentially affect domestic use and trade of biomass significantly. The majority of the land which becomes suitable is in current grasslands and is just marginally or moderately suitable. This study therefore highlights the vital importance of further studies examining the carbon and ecosystem balance of this potential land‐use change, energy crop yields in sub‐optimal soil and climatic conditions and potential impacts on livelihoods.  相似文献   

19.
Ethanol produced from lignocellulosic biomass is a renewable alternative to diminishing petroleum based liquid fuels. The release of many new sugarcane varieties by the United States Department of Agriculture to be used as energy crops is a promising feedstock alternative. Energy cane produces large amounts of biomass that can be easily transported, and production does not compete with food supply and prices because energy cane can be grown on marginal land instead of land for food crops. The purpose of this study was to evaluate energy cane for lignocellulosic ethanol production. Energy cane variety L 79-1002 was pretreated with weak sulfuric acid to remove lignin. In this study, 1.4 M sulfuric acid pretreated type II energy cane had a higher ethanol yield after fermentation by Klebsiella oxytoca without enzymatic saccharification than 0.8 M and 1.6 M sulfuric acid pretreated type II energy cane. Pretreated biomass was inoculated with K. oxytoca for cellulose fermentation and Pichia stipitis for hemicellulose fermentation under simultaneous saccahrification and fermentation (SSF) and separate hydrolysis and fermentation (SHF) conditions. For enzymatic saccharification of cellulose, the cellulase and ??-glucanase cocktail significantly increased ethanol production compared to the ethanol production of fermented acid pretreated energy cane without enzymatic saccharification. The results revealed that energy cane variety L 79-1002 produced maximum cellulosic ethanol under SHF (6995 mg/L) and produced 3624 mg/L ethanol from fermentation of hemicellulosic sugars.  相似文献   

20.
Setaria genome sequencing: an overview   总被引:1,自引:0,他引:1  
The genus Setaria includes two important C4 Panicoid grass species, namely S. italica (cultivated) and S. viridis (weed; wild ancestor), which together represent an appropriate model system for architectural, physiological, evolutionary, and genomic studies in related grasses. It is a diploid, inbreeder, self-fertile annual cereal grass having short life cycle and minimal growth requirements. There close relatedness to biofuel crops like switch grass and napier grass further signifies their importance. Further, foxtail millet is an important food and fodder grain crop grown in arid and semi-arid regions in many parts of the world. Therefore, an increasing interest in these species has led to a gradual accumulation and development of genomic data and genetic resources. Setaria genome sequencing is an outcome of such endeavors. These sequencing efforts uncovered several distinctive attributes of Setaria genome that may help in understanding its physiology, evolution and adaptation. This will not only aid in comparative genomics studies of Setaria and related crops including bioenergy grasses but also help in rapid advancements of genomics information for developing varieties with superior traits either through marker-assisted selection (MAS) or using transgenic approaches in these crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号