首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Molecular dynamics (MD) simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein’s constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery—the fact that the two sites involved influence one another in a symmetrical manner—can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest.  相似文献   

3.
盘基网柄菌细胞(Dictyostelium)和白细胞(leukocyte)等真核运动细胞受到外界信号刺激时,在最初的1~2 min内,胞内信号转导的首要成员PI(3,4,5)P3的浓度随时间变化呈现"双相性"(biphasic adaptation),即先后出现一大一小两个峰值,然后平息。为解释这一现象,特别是第二个峰值产生的原因,根据已有实验资料,分析了有关分子机制,建立了相应的数学模型。其中,PI(3,4,5)P3及其激活酶和抑制酶的浓度变化由一组耦合的非稳态反应-扩散方程描述,外界刺激及效应因子(如Rac和Scar/WAVE)的相互激励包含在源项中,并由蒙特-卡诺(Monte-Carlo)法处理,数值模拟结果与已有实验一致。研究发现,质膜上处于激活态的效应因子Scar/WAVE是影响PI(3,4,5)P3第二个峰值的关键,起正反馈作用。在受到胞外信号刺激后的前期,Scar/WAVE的激活态浓度受到小G蛋白Rac活性的抑制,后期反过来受到PI(3,4,5)P3的抑制,从而始终处于较低水平,这使得第二个峰值较小;当Scar/WAVE的总浓度低于0.005μmol/L后,PI(3,4,5)P3不会出现第二个峰值。由于Scar/WAVE是肌动蛋白结合蛋白,可以推测:许多经肌动蛋白合成抑制剂处理过的盘基网柄菌细胞在实验中仍然出现"双相性",应与此时的细胞骨架活性未被完全抑制有关。  相似文献   

4.
Shoot organogenesis, one of the in vitro plant regeneration processes that occur during in vitro micropropagation, is used in the study of plant development. Morphological, physiological, and molecular aspects of in vitro shoot organogenesis have been extensively studied for over 50 years. Because of the research progress in plant genetics and molecular biology, our understanding of in planta and in vitro shoot meristem development, the cell cycle and cytokinin signal transduction has advanced significantly. These research advances provide useful information as well as molecular tools to study further the genetic and molecular aspects of shoot organogenesis. A number of key molecular markers, genes, and pathways have been shown to play a critical role in the process of in vitro shoot organogenesis. Furthermore, these studies reveal that in vitro shoot organogenesis, as with in planta shoot development, is a complex, well-coordinated developmental process, given that the induction of a single molecular event is likely to be insufficient to induce the entire process. Continued study is required to identify additional molecular events that trigger dedifferentiation and act as developmental switches for de novo shoot development.  相似文献   

5.
<正>Rice tiller is a specialized grain-bearing branch that contributes greatly to grain production.Therefore,rice tillering is an important agronomic trait and provides a model system for the study of branching in monocots.Owing its importance both to agriculture and to fundamental science,much attention has been given to understand the molecular mechanisms underlying rice tillering.Although the branching pattern and the general plant architecture are obviously different from those of dicots  相似文献   

6.
Angiogenesis is the formation of new blood vessels induced by tumors as a lifeline for oxygen and nutrients and as exits for spread of cancer cells. Blocking tumors blood supply could starve tumors thus saving cancer patients, and is termed antiangiogenesis. Matrix metalloproteinases (MMPs) are a class of proteins containing Zn2+ in the active site that cleave the constituents of the extracellular matrix and control angiogenesis. Selective inhibitors of MMPs therefore hold promise in antiangiogenesis for treating cancers, but development of such inhibitors is currently hampered by a paucity of effective computational methods for evaluating the intermolecular interactions between zinc and its coordinates and for performing nanosecond length molecular dynamics simulation of zinc proteins. Here I report an approach for simulating the four-coordinate zinc complex in proteins without use of covalent bonds or harmonic restraints applied to the zinc complex. This approach uses four cationic dummy atoms tetrahedrically placed around the zinc nucleus to mimic zincs 4s4p3 vacant orbitals that accommodate lone-pair electrons of the zinc coordinates thus imposing the orientational requirement for the zinc coordinates and simulating zincs propensity to a tetrahedral coordination geometry. It hence permits evaluating binding free energy of zinc coordinates and simulating the exchanges of zincs ambidentate coordinates in proteins, and is expected to expedite the search of effective angiogenesis inhibitors to combat cancers.Electronic Supplementary Material available.  相似文献   

7.
The B Lymphocyte Stimulator (BLyS) family of ligands and receptors regulates humoral immunity by controlling B lymphocyte survival and differentiation. Herein, we review the ligands and receptors of this family, their biological functions, and the biochemical processes through which they operate. Pre-immune B lymphocytes rely on BLyS signaling for their survival, whereas antigen experienced B lymphocytes generally interact more avidly with a homologous cytokine, A Proliferation Inducing Ligand (APRIL). The molecular basis for signaling via the three BLyS family receptors reveals complex interplay with other B lymphocyte signaling systems, affording the integration of selective and homeostatic processes. As our understanding of this system advances, molecular targets for manipulating humoral immunity in both health and disease should be revealed.  相似文献   

8.
Rapid and selective ion transport is essential for the generation and regulation of electrical signaling pathways in living organisms. Here, we use molecular dynamics (MD) simulations with an applied membrane potential to investigate the ion flux of bacterial sodium channel NaVMs. 5.9 µs simulations with 500 mM NaCl suggest different mechanisms for inward and outward flux. The predicted inward conductance rate of ∼27±3 pS, agrees with experiment. The estimated outward conductance rate is 15±3 pS, which is considerably lower. Comparing inward and outward flux, the mean ion dwell time in the selectivity filter (SF) is prolonged from 13.5±0.6 ns to 20.1±1.1 ns. Analysis of the Na+ distribution revealed distinct patterns for influx and efflux events. In 32.0±5.9% of the simulation time, the E53 side chains adopted a flipped conformation during outward conduction, whereas this conformational change was rarely observed (2.7±0.5%) during influx. Further, simulations with dihedral restraints revealed that influx is less affected by the E53 conformational flexibility. In contrast, during outward conduction, our simulations indicate that the flipped E53 conformation provides direct coordination for Na+. The free energy profile (potential of mean force calculations) indicates that this conformational change lowers the putative barriers between sites SCEN and SHFS during outward conduction. We hypothesize that during an action potential, the increased Na+ outward transition propensities at depolarizing potentials might increase the probability of E53 conformational changes in the SF. Subsequently, this might be a first step towards initiating slow inactivation.  相似文献   

9.
Mechanosensitive (MS) channels can prevent bacterial bursting during hypo-osmotic shocks by responding to increases in lateral tension at the membrane level through an integrated and coordinated opening mechanism. Mechanical regulation in protocells could have been one of the first mechanisms to evolve in order to preserve their integrity against changing environmental conditions. How has the rich functional diversity found in present cells been created throughout evolution, and what did the primordial MS channels look like? This review has been written with the aim of identifying which factors may have been important for the appearance of the first osmotic valve in a prebiotic context, and what this valve may have been like. It highlights the mechanical properties of lipid bilayers, the association of peptides as aggregates in membranes, and the conservation of sequence motifs as central aspects to understand the evolution of proteins that gate below the tension required for spontaneous pore formation and membrane rupture. The arguments developed here apply to both MscL and MscS homologs, but could be valid to mechano-susceptible proteins in general.  相似文献   

10.
Aquaporin (AQP) functions as a water-conducting pore. Mercury inhibits the water permeation through AQP. Although site-directed mutagenesis has shown that mercury binds to Cys189 during the inhibition process, it is not fully understood how this inhibits the water permeation through AQP1. We carried out 40 ns molecular dynamics simulations of bovine AQP1 tetramer with mercury (Hg-AQP1) or without mercury (Free AQP1). In Hg-AQP1, Cys191 (Cys189 in human AQP1) is converted to Cys-SHg+ in each monomer. During each last 10 ns, we observed water permeation events occurred 23 times in Free AQP1 and never in Hg-AQP1. Mercury binding did not influence the whole structure, but did induce a collapse in the orientation of several residues at the ar/R region. In Free AQP1, backbone oxygen atoms of Gly190, Cys191, and Gly192 lined, and were oriented to, the surface of the water pore channel. In Hg-AQP1, however, the SHg+ of Cys191-SHg+ was oriented toward the outside of the water pore. As a result, the backbone oxygen atoms of Gly190, Cys191, and Gly192 became disorganized and the ar/R region collapsed, thereby obstructing the permeation of water. We suggest that mercury disrupts the water pore of AQP1 through local conformational changes in the ar/R region.  相似文献   

11.
12.
纤维素酶及其应用   总被引:4,自引:0,他引:4  
文章介绍了纤维素酶的组成、来源及生产方法。论述了纤维素酶在饲料工业、食品加工、纺织工业、发酵食品行业的应用,并对其发展前景作了展望。  相似文献   

13.
14.
15.
Abstract

Molecular dynamics (MD) simulations at 37°C have been performed on three phospholipid bilayer systems composed of the lipids DLPE, DOPE, and DOPC. The model used included 24 explicit lipid molecules and explicit waters of solvation in the polar head group regions, together with constant-pressure periodic boundary conditions in three dimensions. Using this model, a MD simulation samples part of an infinite planar lipid bilayer. The lipid dynamics and packing behavior were characterized. Furthermore, using the results of the simulations, a number of diverse properties including bilayer structural parameters, hydrocarbon chain order parameters, dihedral conformations, electron density profile, hydration per lipid, and water distribution along the bilayer normal were calculated. Many of these properties are available for the three lipid systems chosen, making them well suited for evaluating the model and protocols used in these simulations by direct comparisons with experimental data. The calculated MD behavior, chain disorder, and lipid packing parameter, i.e. the ratio of the effective areas of hydrocarbon tails and head group per lipid (at/ah), correctly predict the aggregation preferences of the three lipids observed experimentally at 37°C, namely: a gel bilayer for DLPE, a hexagonal tube for DOPE, and a liquid crystalline bilayer for DOPC. In addition, the model and conditions used in the MD simulations led to good agreement of the calculated properties of the bilayers with available experimental results, demonstrating the reliability of the simulations. The effects of the cis unsaturation in the hydrocarbon chains of DOPE and DOPC, compared to the fully saturated one in DLPE, as well as the effects of the different polar head groups of PC and PE with the same unsaturated chains on the lipid packing and bilayer structure have been investigated. The results of these studies indicate the ability of MD methods to provide molecular-level insights into the structure and dynamics of lipid assemblies.  相似文献   

16.
Nanotechnology is a crucial field for future scientific development where many different disciplines meet. Computational modelization of nanometer-sized structures is a key issue in this development because (i) it allows a considerable saving of resources and costly experimental setups intended to fabricate nanometric test devices and (ii) nowadays the study of nanometric sized systems is feasible with thoroughly designed computational codes and relatively low cost computational resources. This article describes how molecular dynamics simulations, in combination with potentials obtained in the framework of the embedded atom method, are able to describe the properties of two systems of interest for the development of future nanoelectronic devices: metallic nanowires and metallic nanofilms. Our results show that nanowire stretching results in a series of well-defined geometric structures (shells) and that thin films experiment a crystallographic phase transition for a decreasing number of layers. In both cases, good agreement with experiments is found.  相似文献   

17.
The extent to which current force fields faithfully reproduce conformational properties of lipids in bilayer membranes, and whether these reflect the structural principles established for phospholipids in bilayer crystals, are central to biomembrane simulations. We determine the distribution of dihedral angles in palmitoyl-oleoyl phosphatidylcholine from molecular dynamics simulations of hydrated fluid bilayer membranes. We compare results from the widely used lipid force field of Berger et al. with those from the most recent C36 release of the CHARMM force field for lipids. Only the CHARMM force field produces the chain inequivalence with sn-1 as leading chain that is characteristic of glycerolipid packing in fluid bilayers. The exposure and high partial charge of the backbone carbonyls in Berger lipids leads to artifactual binding of Na+ ions reported in the literature. Both force fields predict coupled, near-symmetrical distributions of headgroup dihedral angles, which is compatible with models of interconverting mirror-image conformations used originally to interpret NMR order parameters. The Berger force field produces rotamer populations that correspond to the headgroup conformation found in a phosphatidylcholine lipid bilayer crystal, whereas CHARMM36 rotamer populations are closer to the more relaxed crystal conformations of phosphatidylethanolamine and glycerophosphocholine. CHARMM36 alone predicts the correct relative signs of the time-average headgroup order parameters, and reasonably reproduces the full range of NMR data from the phosphate diester to the choline methyls. There is strong motivation to seek further experimental criteria for verifying predicted conformational distributions in the choline headgroup, including the 31P chemical shift anisotropy and 14N and CD3 NMR quadrupole splittings.  相似文献   

18.
Abstract

Solid solution crystals appear widely in the fields of earth sciences and inorganic material sciences. The physical properties of solid solutions may vary continuously with chemical composition. Sometimes, linear relationships of the properties with composition are assumed. However, this approximation is not always applicable (e.g., [1], [2], [3]). In order to elucidate the properties of solid solutions, studies on the relation between the macroscopic properties and the atomic configurations (microscopic property) in the crystal are desirable. One of the most effective approaches to the subject is molecular dynamics (MD). However, as far as the authors are aware there have been no molecular dynamics studies on solid solution crystals.  相似文献   

19.
Abstract

Methods for simulating phase transitions in narrow pores are reviewed, and the advantages and disadvantages of different techniques are discussed. Examples are given of applications to vapor-liquid, liquid-liquid, melting and freezing, solid-solid and layering transitions. While there has been a considerable body of simulation work on vapor-liquid, wetting and layering transitions for simple fluids and pore geometries, much remains to be done on more complex geometries and network effects, on heterogeneous surfaces, and on liquid-liquid, melting and solid-solid transitions in pores.  相似文献   

20.
Molecular Dynamics Simulations of Lipid Membrane Electroporation   总被引:1,自引:0,他引:1  
The permeability of cell membranes can be transiently increased following the application of external electric fields. Theoretical approaches such as molecular modeling provide a significant insight into the processes affecting, at the molecular level, the integrity of lipid cell membranes when these are subject to voltage gradients under similar conditions as those used in experiments. This article reports on the progress made so far using such simulations to model membrane—lipid bilayer—electroporation. We first describe the methods devised to perform in silico experiments of membranes subject to nanosecond, megavolt-per-meter pulsed electric fields and of membranes subject to charge imbalance, mimicking therefore the application of low-voltage, long-duration pulses. We show then that, at the molecular level, the two types of pulses produce similar effects: provided the TM voltage these pulses create are higher than a certain threshold, hydrophilic pores stabilized by the membrane lipid headgroups form within the nanosecond time scale across the lipid core. Similarly, when the pulses are switched off, the pores collapse (close) within similar time scales. It is shown that for similar TM voltages applied, both methods induce similar electric field distributions within the membrane core. The cascade of events following the application of the pulses, and taking place at the membrane, is a direct consequence of such an electric field distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号