首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to identify an in vitro culture system that would support intact porcine follicle growth from preantral follicle to antral stages, oocyte maturation, fertilization, and embryonic development; and to evaluate factors that influence porcine preantral follicle growth in vitro. Preantral follicles isolated from prepubertal porcine ovaries were cultured for 4 days in the presence of different concentrations of porcine serum and FSH, and with different numbers of follicles per well. A series of experiments showed that porcine antral follicles can be grown at a high frequency in vitro from healthy preantral follicles with intact theca when cultured in North Carolina State University 23 medium supplemented with 1.5 ng/ml FSH, 7.5% serum, and when cultured with three follicles per well. After 4 days of culture, 68% healthy cumulus-enclosed oocytes from these follicles were obtained, and 51% of the oocytes completed meiotic maturation to the metaphase II stage. Fifty-three percent of the mature oocytes underwent fertilization, 43% of the fertilized oocytes cleaved, and 13% developed to the blastocyst stage. The results show 1) that porcine preantral follicles can grow efficiently to the antral stage using these culture conditions, and 2) that oocytes from in vitro-matured porcine preantral follicles can acquire meiotic competence and undergo fertilization and embryonic development.  相似文献   

2.
The aim of the present study was to assess the role of follicle stimulating hormone (FSH), epidermal growth factor (EGF) or a combination of EGF and FSH on the in vitro growth of porcine preantral follicles, estradiol secretion, antrum formation, oocyte maturation and subsequent embryonic development. Porcine preantral follicles were cultured for 3 days in the absence or in the presence of FSH or EGF. Oocytes from these follicles were then matured, fertilized in vitro and embryos were cultured. Estradiol secretion and histological analysis of cultured follicles were also carried out. The results showed that when FSH, or a combination of EGF and FSH, was added to the culture medium, most of preantral follicles grew to antral follicles with high estradiol secretion and the oocytes from these antral follicles could mature, fertilize and develop to the blastocyst stage. Without FSH, or a combination of EGF and FSH, preantral follicles were unable to develop to the antral stage. Histology demonstrated that the resulting follicles were nonantral, estradiol production was reduced and none of their oocytes matured after in vitro maturation. The results indicate the essential role of FSH in promoting in vitro growth of porcine preantral follicle, estradiol secretion, antrum formation, oocyte maturation and subsequent embryonic development. EGF with FSH treatment of porcine preantral follicles improves the quality of oocytes, shown by a higher frequency of embryonic development.  相似文献   

3.
Huanmin Z  Yong Z 《Theriogenology》2000,54(4):641-650
The in vitro growth and developmental pattern of caprine preantral follicles cultured in agar gel was observed. Preantral follicles 50 to 150 microm in diameter were isolated from prepuberal goat ovaries by treatment with collagenase and DNase. The isolated preantral follicles were cultured in agar gel for up to 14 days. A group of 10 follicles in different developmental stages was cultured in a culture well coated with 0.6% agar gel and filled with DMEM medium supplemented with FCS (10%), hypoxanthine (2 mmol/mL), dbcAMP (2 mmol/mL), FSH (100 ng/mL), insulin-transferrin-selenium (ITS) (50 ng/mL), IGF-1 (50 ng/mL), hydrocortisone (40 ng/mL) and antibiotics. Follicle viability was determined under an inverted phase-contrast microscope according to morphological and histological criteria, and follicle growth was assessed by their size and appearance. The results showed that the three-dimensional structures and forms of follicles were basically maintained intact during culture. Primary follicles developed into secondary follicles and a few of them into antral follicles. A large portion of secondary follicles entered the antral stage, and oocytes also acquired growth. The formation of theca lamina and zona pellucida was observed. The survival capacity of secondary follicles was greater than primary follicles. The survival rates for primary and secondary follicles were 11.36% (5/44) and 71.16% (53/74), respectively. During in vitro development the follicles demonstrated dominance. This experiment revealed the preliminary characteristics of the in vitro development of caprine preantral follicles.  相似文献   

4.
In vitro culture of bovine preantral follicles   总被引:3,自引:0,他引:3  
Bovine preantral follicles (40-100 microm diameter at collection) were collected from ovaries of slaughtered cows and cultured in vitro with one of the four treatments: follicle stimulating hormone (FSH; 100 ng/ml) alone; FSH plus epidermal growth factor (EGF; 100 ng/ml); FSH plus insulin-transferrin-selenium (ITS; +1%) or FSH plus hypoxanthine (4 mM) in tissue culture medium (TCM 199) supplemented with 10% fetal calf serum (FCS), 0.1 mg/ml sodium pyruvate, 100 IU/ml of penicillin and 100 microg/ml streptomycin. The control culture medium was TCM 199 with supplements without any treatments. Follicles of each size were cultured separately in groups of one to three in 24-well multidishes each containing 500 microl of the appropriate culture medium. Culture commenced at follicle recovery (day 1) and continued for 10 days (harvested on day 11). In each case, half the medium was removed and replaced by fresh medium every third day. Follicle diameters were recorded on days 1, 5 and 11 of the experiment. At the end of the 10-day culture period, half of the follicles were stained with trypan blue to assess their potential viability and half were stained with bisbenzimide plus propidium iodine to estimate various morphological features of the follicles. Follicles of all initial sizes, on all culture treatments, increased in diameter during in vitro cultures with the greatest increases, both in absolute and proportional size, occurring between days 1 and 5 of culture. All of the culture medium supplements caused greater increases in follicle diameters than control medium at both days 5 and 11 of culture for all initial sizes of follicles (p<0.01). The most effective culture supplements for follicles of 40-, 60- and 80-microm initial diameter were FSH alone and FSH+EGF. The size of these follicles at both days 5 and 11 of culture on both the treatments was significantly larger (p<0.01) than follicles cultured in the presence of the other two supplementary treatments. The growth of follicles of 100-microm initial diameter did not differ between culture medium supplements. None of the culture media caused follicle size to increase to the initial diameters of the next larger size category during the 10 days of culture although follicles of 100-microm diameter achieved a diameter of 120 microm, after 4 days of culture.The overall follicular viability and morphology were better with treatments than the controls in all cases; however, there was no significant difference (p>0.05) among them.From this experiment, FSH and FSH plus EGF may be recommended for in vitro culture of smaller (40, 60 and 80 microm) follicles.  相似文献   

5.
A large number of oocytes are contained in the mammalian ovary. A very small number of these oocytes grow to the final size, mature, and are ovulated. In the ovary there are more early antral follicles than late antral or preovulatory follicles, offering a large pool of oocytes for IVM and IVF if appropriate culture conditions could be devised. In the present study, early antral follicles containing oocytes 90 to 99 microm in diameter were isolated from bovine ovaries. Cumulus-oocyte complexes (COC) with pieces of parietal granulosa (COCG) were then dissected from the follicles. The COCGs were embedded in collagen gels and cultured in Medium 199 with 10% fetal calf serum (FCS) for 8 d. In Experiment 1, the effect of hypoxanthine and FSH on the growth of bovine oocytes was examined. When hypoxanthine (2 and 4 mM) and FSH (10 ng/ml) were added to the culture medium, the number of granulosa cell-enclosed oocytes increased significantly (P < 0.05). All of the oocytes surrounded by granulosa cells showed a normal morphology and were at the germinal vesicle stage, while 75 to 94% of the denuded oocytes were degenerated and had resumed meiosis. The mean diameter of the oocytes showing normal morphology was significantly higher than that measured before culture (P < 0.05). In Experiment 2, the maturational competence of in vitro-grown bovine oocytes was examined. Oocytes which were 90 to 99 microm in diameter before culture did not have meiotic competence. After being in a growth culture of 4 mM hypoxanthine- and 10 ng/ml FSH-supplemented medium for 7 or 11 d, granulosa cell-enclosed oocytes were recovered from the COCGs. No significant difference (P < 0.05) in the diameters of the oocytes was observed between 7 and 11 d of culture (7 d: 107.5 +/- 6.1 microm, n = 30; 11 d: 108.0 +/- 5.3 microm, n = 35). After a subsequent 24 h in a maturation free of hypoxanthine and FSH medium, only 17% of the oocytes cultured for 7 d underwent germinal vesicle breakdown. On the other hand, 89% of the oocytes cultured for 11 d underwent germinal vesicle breakdown, and 11% of the oocytes emitted the first polar body and reached metaphase II. These results demonstrate for the first time that bovine oocytes harvested from early antral follicles can grow, and acquire meiotic competence in vitro.  相似文献   

6.
So far, standard follicle culture systems can produce blastocyst from less than 40% of the in vitro matured oocytes compared to over 70% in the in vivo counterpart. Because the capacity for embryonic development is strictly associated with the terminal stage of oocyte growth, the nuclear maturity status of the in vitro grown oocyte was the subject of this study. Mouse early preantral follicles (100-130 microm) and early antral follicles (170-200 microm) isolated enzymatically were cultured for 12 and 4 days, respectively, in a collagen-free dish. The serum-based media were supplemented with either 100 mIU/ml FSH (FSH only); 100 mIU/ml FSH + 10 mIU/ml LH (FSH-LH); 100 mIU/ml FSH + 1 mIU/ml GH (FSH-GH) or 100 mIU/ml FSH + 100 ng/ml activin A (FSH-AA). Follicle survival was highest in follicle stimulating hormone (FSH)-AA group in both cultured preantral (91.8%) and antral follicles (82.7%). Survival rates in the other groups ranged between 48% (FSH only, preantral follicle culture) and 78.7% (FSH only, antral follicle culture). Estradiol and progesterone were undetectable in medium lacking gonadotrophins while AA supplementation in synergy with FSH caused increased estradiol secretion and a simultaneously lowered progesterone secretion. Chromatin configuration of oocytes from surviving follicles at the end of culture revealed that there were twice more developmentally incompetent non-surrounded nucleolus (NSN) oocytes (>65%) than the competent surrounded nucleolus (SN) oocytes (<34%). We conclude that the present standard follicle culture system does not produce optimum proportion of developmentally competent oocytes.  相似文献   

7.
Factors that control the onset of folliculogenesis are critical to female gamete production, but poorly understood. The aim of the present study was to investigate the effects of FSH and EGF on the activation and growth of goat primordial follicles in vitro. To this end, pieces of goat ovarian cortex were cultured in vitro for 1, 3 or 5 days, at 39 degrees C in an atmosphere containing 5% CO(2), in minimum essential medium supplemented with insulin, transferrin, selenium, pyruvate, glutamine, hypoxanthine, BSA, penicillin, streptomycin and fungizone and with or without FSH (100 ng/ml) and/or EGF (100 ng/ml). At the end of the culture periods, the relative proportions of primordial, intermediate, primary and secondary follicles were calculated and compared with those in non-cultured tissue. In addition, mitotic activity of granulosa cells was studied by immunohistochemistry for proliferating cell nuclear antigen (PCNA). In brief, it was found that goat primordial follicles activate spontaneously during culture in vitro and, while neither FSH nor EGF affected the proportion of primordial follicles that entered the growth phase, both stimulated an increase in oocyte and follicle diameter, especially in intermediate and primary follicles cultured for 5 days. On the other hand, there was no significant effect of culture or either growth factor on the proportion of PCNA-stained growing follicles. Contrary to expectations, neither FSH nor EGF affected follicle viability or integrity during culture, since the percentages of intact follicles did not differ between control, FSH and/or EGF containing medium. In conclusion, this study demonstrated that goat primordial follicles activate spontaneously in vitro, and that both FSH and EGF stimulate an increase in follicle size by promoting oocyte growth.  相似文献   

8.
The aim of the study was to determine the contribution of cumulus cells on the developmental competence of porcine oocytes during follicle growth. Oocytes from large (5-8mm) and small (2-3mm) follicles were cultured with or without follicle stimulating hormone (FSH), subsequently examined for nuclear stage and spindle morphology, or fertilized and cultured for embryo development, or analyzed for glutathione content. Additionally, the significance of cumulus investment, corona radiata cells, cumulus cell number and origin of cumulus cells for oocyte maturation were investigated. Small follicle oocytes cultured without FSH exhibited the highest incidence of spindle aberrations. Oocytes cultured without FSH exhibited reduced sperm penetration and blastocyst rates, and a higher proportion monospermic oocytes developed to the blastocyst stage when derived from large follicles. The glutathione content in oocytes increased during follicle growth and oocyte maturation, but no direct correlation between oocyte glutathione content and oocyte developmental capacity was observed. Oocytes with a bigger cumulus investment exhibited better embryo development. Oocytes with a single corona radiata cell layer (CROs) exhibited similar progression through meiosis to oocytes with more cumulus cell layers, but showed reduced embryo development. More blastocysts were observed when CROs were cultured with disconnected cumulus cells during IVM, but no blastocyst increase was observed when CROs were cocultured with a higher number of cumulus cells or with cumulus cells from large follicles. We conclude that increased developmental capacity of oocytes during follicle growth is intrinsic and whether cumulus cells originate from large or small follicles, their contribution to oocyte maturation remains unchanged. Further, cumulus investment can be used as a variable to predict oocyte developmental capacity.  相似文献   

9.
In the bovine, the concentration of 17beta-estradiol (E2) in the follicular fluid of the dominant follicle is high, indicating a possible role of E2 on the cytoplasmic maturation that occurs before the LH surge. The aim of this study was to investigate the role of E2 on the developmental competence of bovine oocytes originating from different sized follicles and temporarily maintained at the germinal vesicle stage with roscovitine (ROS). First, the efficiency of ROS to inhibit germinal vesicle breakdown (GVBD) in oocytes harvested from small (3-4 mm diameter) and medium (5-8 mm diameter) sized follicles was demonstrated. Next, the effect of E2 during temporary inhibition of GVBD by ROS on the subsequent nuclear maturation was evaluated. Oocytes from small and medium sized follicles were cultured in the presence of ROS, FSH and with or without E2 for 24 h. After this period, oocytes were cultured for another 24 h with FSH but without ROS and E2, after which the nuclear stages and the developmental competence of oocytes were assessed. In conclusion, it is demonstrated that exposure to E2, during temporary inhibition of the GVBD with ROS, affected neither nuclear nor cytoplasmic maturation of oocytes originating from small and medium sized follicles. It might be that in vivo, the increase of E2 during follicle growth is more related to selection of the dominant follicle than to the cytoplamsic maturation of the oocyte as such.  相似文献   

10.
Some culture systems have been shown to support oocyte growth in mice, although there has been little success in applying these systems to other species. In the present study, we compared three culture conditions for growing bovine oocytes and examined the effect of hypoxanthine on oocyte growth. In the first experiment, early antral follicles, 0.4-0.7 mm in diameter were collected, and oocyte-cumulus-granulosa cell complexes (OCGs) and oocyte-cumulus cell complexes (OCs) were dissected from the follicles. Follicles (Fs), OCGs and OCs were embedded in collagen gels and cultured in serum-supplemented medium for 16 days. In the Fs, OCGs and OCs cultured in hypoxanthine-free medium, 21%, 9% and 4% of the oocytes showed normal morphology, respectively, and hypoxanthine (4 mM) increased the percentages in all the groups (Fs, 37%; OCGs, 29%; OCs, 10%). In the second experiment, Fs were cultured in serum-free medium with or without hypoxanthine for 16 days. Histological examination demonstrated that hypoxanthine maintained the integrity of the follicular basement membrane. After a growth culture, 91% of the oocytes showed normal morphology, and 87% of the oocytes were at the germinal vesicle stage in serum-free, hypoxanthine-supplemented medium. The mean diameters of the oocytes were significantly larger (117.6 +/- 5.7 microm) than they were in the other groups and than they had been before the culture (approximately 95 microm). After a subsequent maturation culture of the oocytes, 85% underwent germinal vesicle breakdown and 23% reached the second metaphase. These results demonstrate that growing bovine oocytes from early antral follicles grow efficiently in follicles cultured in serum-free, hypoxanthine-supplemented medium and acquire meiotic competence.  相似文献   

11.
Development of in vitro culture protocol for early stage ovarian follicles of zebrafish is important since cryopreserved early stage ovarian follicles would need to be matured in vitro following cryopreservation before they can be fertilised. Development of molecular markers for zebrafish (Danio rerio) ovarian follicle growth assessment following in vitro culture of early stage zebrafish ovarian follicles in ovarian tissue fragments is reported here for the first time although some work has been reported for in vitro culture of isolated early stage zebrafish ovarian follicles. The main aim of the present study was to develop molecular markers in an optimised in vitro culture protocol for stage I and stage II zebrafish ovarian follicles in ovarian tissue fragments. The effect of concentration of the hormones human chorionic gonadotropin and follicle stimulating hormones, and additives such as Foetal Bovine Serum and Bovine Serum Albumin were studied. The results showed that early stage zebrafish ovarian fragments containing stage I and stage II follicles which are cultured in vitro for 24 h in 20% FBS and 100mIU/ml FSH in 90% L-15 medium at 28 °C can grow to the size of stage II and stage III ovarian follicles respectively. More importantly the follicle growth from stage I to stage II and from stage II to stage III were confirmed using molecular markers such as cyp19a1a (also known as P450aromA) and vtg1 genes respectively. However, no follicle growth was observed following cryopreservation and in vitro culture.  相似文献   

12.
Growing porcine oocytes from early antral follicles (1.2-1.5 mm in diameter) do not mature to metaphase II (MII, 4%) under culture conditions which supported maturation (MII, 95%) of fully grown oocytes from large (4-6 mm) antral follicles. We hypothesized that FSH and dbcAMP supported growth and acquisition of meiotic competence. Growing oocytes (113.0 ± 0.4 μm, mean ± SEM) were cultured for 5 d in medium supplemented with 1 mM dbcAMP, 0.01 IU/mL FSH or both; in these media, oocytes reached, 120.5 ± 0.4, 123.5 ± 0.4 and 125.7 ± 0.2 μm, respectively, after 5 d, and then were matured in vitro for 48 h. Oocytes remained enclosed by cumulus cells when cultured with FSH (82%) or both FSH and dbcAMP (80%), but not with dbcAMP alone (0%). Furthermore, oocytes cultured with FSH maintained trans-zonal projections of cumulus cells. Oocytes remained at the GV stage at higher rates when cultured with dbcAMP and FSH (99%), or dbcAMP (97%), than with FSH (64%), or without either (75%). Following in vitro maturation, oocytes reached MII after in vitro growth with dbcAMP (19%), FSH (11%), or both (68%). When oocytes were cultured with both FSH and dbcAMP, activation of Cdc2 and MAP kinases in growing oocytes was similar to fully grown oocytes. In conclusion, growing porcine oocytes grew and acquired meiotic competence in medium supplemented with dbcAMP and FSH; the former maintained oocytes in meiotic arrest, whereas the latter maintained trans-zonal projections of cumulus cells to oocytes during in vitro growth culture.  相似文献   

13.
The present investigation attempts to improve the frequency of in vitro maturation of oocytes by culturing small (150–250 μm) and large (>250–400 μm) preantral follicles (PFs) of sheep for 6 days in various combinations/sequences of thyroxin (T4), FSH, LH, transforming growth factor alpha (TGF-), epidermal growth factor (EGF) and heat-treated foetal calf serum (FCS). Bicarbonate-buffered tissue culture medium 199, supplemented with 50 μg ml−1 gentamicin sulphate, served as the control medium. In vitro development was initially assessed by the proportion of PFs exhibiting an increase in size, mean increase in diameter and antrum formation. Nuclear maturation to the metaphase II stage of the oocytes isolated from cultured PFs, after an additional 24-h in vitro maturation, indicated success. A total of 15% of oocytes from small PFs and 55% from large PFs, cultured in T4 + FSH, matured to metaphase II. Culture of PFs in other combinations/sequences of hormones and growth factors, including the control medium, supported a significantly lower proportion of oocytes maturing to metaphase II stage. It is concluded that 6-day in vitro culture of sheep PFs in thyroxin and FSH greatly improves the frequency of oocyte maturation to metaphase II stage.  相似文献   

14.
Sheep preantral follicles (PFs) measuring 250-400 μm in diameter were cultured for six days in serum-free media supplemented differently with growth factors and hormones. Subsequently, oocytes from the cultured follicles were subjected to an additional 24 h of in vitro maturation (IVM) followed by in vitro fertilization (IVF) and embryo culture for 6 days. Five different experiments were conducted. In the first experiment individual concentrations of Insulin-Transferrin-Selenite (ITS), Insulin-like growth factor-I (IGF-I), Transforming growth factor-beta (TGF-β), Insulin (INS), and Growth hormone (GH) that supported the best in vitro development of the PFs were determined. The influence of different combinations of the above hormones and growth factors at their best concentrations as determined in the first experiment was investigated in the second experiment. In the third experiment the best combinations of the growth factors and hormones obtained in the second experiment were additionally supplemented with Thyroxin (T4) and follicle stimulating hormone (FSH) and the influence on in vitro development of the PFs was studied. In the fourth experiment, two methods of culturing PFs—micro drops and agar gel embedding—were compared. In the fifth experiment oocytes from cultured PFs were subjected to IVF and in vitro development of the resulting embryos was followed to the blastocyst stage.Based on the proportion of the PFs exhibiting growth, mean increase in diameter, proportions of PFs developing antrum, ovulations in vitro and oocytes maturing to M-II stage, 1% ITS, 10 ng/mL each of IGF-I, and Insulin and 1 mIU/mL of GH were found to support the best development of sheep PFs. However, the oocytes from PFs cultured in any concentration of TGF-β failed to mature to M-II stage. Similarly, among the combinations studied, IGF-I+GH was found to be the best. In combination with T4 and FSH, IGF-I+GH supported the best development of the PFs. Culture of PFs in micro drops or agar gel supported similarly high development. In vitro fertilization of the oocytes from the cultured sheep PFs resulted in the embryos developing to the morula stage for the first time.  相似文献   

15.
We describe a 7-d culture in droplets of collagen gel of isolated small bovine preantral follicles in medium with or without 10% fetal bovine serum (FBS). In addition, the effect of human recombinant FSH and 17beta-estradiol on the morphology and growth of the preantral follicles was investigated in medium without FBS. After culture in medium with 10% FBS, the increase in follicle diameter was 13.1 +/- 8.4 microm, the percentage of BrdU-labeled cells was 49.9 +/- 11.3 and the number of cells per area granulosa was 11.1 +/- 1.8. Omission of serum from the culture medium had no effect on the percentage of labeled cells, but the diameter increase was lower and the cells were smaller. Apparently, serum affects the size of the granulosa cells from small preantral follicles rather than the stimulation of cell proliferation. Addition of human recombinant FSH and/or 17beta-estradiol to serum-free medium resulted in a larger diameter increase during culture compared with that of the control. With FSH, this was due to an increase in cell proliferation, while with estradiol this was caused by an increase in granulosa cell size. The effects of simultaneous treatment with FSH and estradiol was simply the combination of their individual effects. In conclusion, small bovine preantral follicles can be cultured for 7 d in the absence of serum and hormones. The follicles increase in diameter and react to FSH with enhanced cell proliferation and to estradiol with an increase in cell size.  相似文献   

16.
The developmental requirements of ovarian follicles are dependent on the maturation stage of the follicle; in particular, elegant studies with genetic models have indicated that FSH is required for antral, but not preantral, follicle growth and maturation. To elucidate further the role of FSH and other regulatory molecules in preantral follicle development, in vitro culture systems are needed. We employed a biomaterials-based approach to follicle culture, in which follicles were encapsulated within matrices that were tailored to the specific developmental needs of the follicle. This three-dimensional system was used to examine the impact of increasing doses of FSH on follicle development for two-layered secondary (100-130 microm; two layers of granulosa cells surrounding the oocyte) and multilayered secondary (150-180 microm, several layers of granulosa cells surrounding the oocyte) follicles isolated from mice. Two-layered secondary follicles were FSH responsive when cultured in alginate-collagen I matrices, exhibiting FSH dose-dependent increases in follicle growth, lactate production, and steroid secretion. Multilayered secondary follicles were FSH dependent, with follicle survival, growth, steroid secretion, metabolism, and oocyte maturation all regulated by FSH. However, doses greater than 25 mIU/ml of FSH negatively impacted multilayered secondary follicle development (reduced follicle survival). The present results indicate that the hormonal and environmental needs of the follicular complex change during the maturation process. The culture system can be adapted to each stage of development, which will be especially critical for translation to human follicles that have a longer developmental period.  相似文献   

17.
Culture of preantral follicles has important biotechnological implications through its potential to produce large quantities of oocytes for embryo production and transfer. A long-term culture system for bovine preantral follicles is described. Bovine preantral follicles (166 +/- 2.15 micrometer), surrounded by theca cells, were isolated from ovarian cortical slices. Follicles were cultured under conditions known to maintain granulosa cell viability in vitro. The effects of epidermal growth factor (EGF), insulin-like growth factor (IGF)-I, FSH, and coculture with bovine granulosa cells on preantral follicle growth were analyzed. Follicle and oocyte diameter increased significantly (P < 0.05) with time in culture. FSH, IGF-I, and EGF stimulated (P < 0.05) follicle growth rate but had no effect on oocyte growth. Coculture with granulosa cells inhibited FSH/IGF-I-stimulated growth. Most follicles maintained their morphology throughout culture, with the presence of a thecal layer and basement membrane surrounding the granulosa cells. Antrum formation, confirmed by confocal microscopy, occurred between Days 10 and 28 of culture. The probability of follicles reaching antrum development was 0.19 for control follicles. The addition of growth factors or FSH increased (P < 0.05) the probability of antrum development to 0.55. Follicular growth appeared to be halted by slower growth of the basement membrane, as growing follicles occasionally burst the basement membrane, extruding their granulosa cells. In conclusion, a preantral follicle culture system in which follicle morphology can be maintained for up to 28 days has been developed. In this system, FSH, EGF, and IGF-I stimulated follicle growth and enhanced antrum formation. This culture system may provide a valuable approach for studying the regulation of early follicular development and for production of oocytes for nuclear/embryo transfer, but further work is required.  相似文献   

18.
The objectives were to quantify insulin-like growth factor receptor-1 (IGFR-1) mRNA in preantral follicles on Days 0 and 18 of in vitro culture in the presence or absence of FSH, and to evaluate the effects of IGF-I on the rate of normal follicles, antral cavity formation, and in vitro growth and maturation of caprine oocytes on Days 0, 6, 12, and 18 of culture. The expression of IGFR-1 was analyzed using real-time RT-PCR before and after follicle culture. Preantral follicles were isolated from the cortex of caprine ovaries and individually cultured for 18 d in the presence or absence of bovine IGF-I (50 or 100 ng/mL). At the end of the culture period, the oocytes were submitted to IVM. The expression of IGFR-1 mRNA in preantral follicles cultured in vitro only approached being significantly higher in follicles supplemented with FSH when compared to follicles immediately after recovery (P < 0.06) and cultured without FSH (P < 0.1). There was a higher (P < 0.05) percentage of normal follicles on Days 6, 12, and 18 of culture in IGF-I 50 (97, 92, 67%, respectively) and IGF-I 100 (100, 90, 80%) groups versus the control (90, 64, 36%). In addition, the rate of antrum formation at 6 and 12 d of culture was higher (P < 0.05) in IGF-I groups (IGF-I 50: 72 and 90% and IGF-I 100: 69 and 85%) than the control group (41 and 59%). After 18 d of culture, the percentages of grown oocytes acceptable for IVM were higher (P < 0.05) in follicles cultured in the presence of IGF-I (82 vs 49%). Furthermore, follicles cultured in the presence of IGF-I 50 and IGF-I 100 had higher (P < 0.05) meiotic resumption rates (63 and 66%, respectively) than the control group (11%). In conclusion, treatment with FSH tended to increase IGFR-1 mRNA expression during the in vitro culture of preantral follicles and the addition of IGF-I to the culture medium clearly improved the in vitro development of caprine preantral follicles.  相似文献   

19.
We examined the effect of supplementing the culture medium with follicular fluid (FF) on the growth of porcine preantral follicles and oocytes. Firstly, preantral follicles were retrieved from ovaries and then FF was collected from all antral follicles that were 2-7 mm in diameter (AFF), which included large follicles of 4-7 mm in diameter (LFF) and small follicles of 2-3 mm in diameter (SFF). When preantral follicles with a diameter of 250 mum were cultured in medium containing AFF, the growth of follicles and oocytes was greater than when follicles were cultured in medium containing fetal calf serum (FCS). When this growth-promoting effect in AFF was compared for LFF and SFF, the LFF were shown to be significantly more effective than SFF. This LFF effect was lost, however, when the concentration of LFF in the medium was decreased from 5% to 0.5% or when LFF were heat treated (60 degrees C for 30 min) or trypsin was added. In contrast, a decrease in SFF concentration from 5% to 0.5% and heat treatment of the SFF enhanced preantral follicle growth. Furthermore, proteins obtained from LFF that had molecular weights greater than 10 kDa (LFF > 10 kDa) had similar, but relatively reduced, growth-promoting properties. The remaining three LFF protein fractions (<10 kDa or <100 kDa or >100 kDa), however, did not have these growth-promoting properties. In conclusion, the supplementation of medium with LFF, rather than serum, enhanced preantral follicle and oocyte growth. Factors that enhanced follicle development in LFF and factors that suppressed follicle development in SFF were proteins and these LFF factors ranged in size from 10 kDa to over 100 kDa.  相似文献   

20.
Mechanically isolated early preantral mouse follicles were cultured singly for 16 d and fully grown oocytes were obtained from these follicles. We then compared in vitro and in vivo follicle growth by trypsinising the follicles and counting their cell numbers in a Neubauer-counting chamber and recording the diameter and meiotic status of oocytes under an inverted microscope. As long as the granulosa cells were within the basal membrane, proliferation was slow. From Day 6, when granulosa cells had broken through the basal membrane, the proliferation rate progressed up to Day 10 and decreased thereafter to approximately 12,000 cells per culture droplet. Incorporation of BrdU revealed that proliferating cells were evenly distributed throughout the follicle until antrum formation. As granulosa cell differentiation progressed, proliferation of mural-granulosa cells ceased, while cells around the oocytes continued dividing. Oocyte diameter increased discontinuously in relation to follicle remodelling. During the first growth phase, diameters increased from 56.5 (+/- 4.4 microns) to 67 (+/- 4.1 microns) until the onset of antral-like cavity formation. The last growth phase started after Day 10, and by Day 14 oocyte diameters were not significantly different from those of 26-d-old in vivo control oocytes. The potential to resume meiosis after mechanical removal of granulosa cells was first reached on Day 8; thereafter, removal of the corona showed that all oocytes cultured with FSH remained arrested at the GV stage up to Day 16. After Day 8, approximately 70% of all oocytes underwent GVBD as a result of granulosa-cell removal, but only 23% of these reached MII after 24 h. The in vivo controls reached a comparable GVBD rate (66%) when the granulosa was removed, but most of the oocytes (82%) underwent first polar body extrusion 24 h later. These results suggest that although oocyte diameters after IVM are not different from those of the controls, culture conditions are not yet adequate to support complete meiotic maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号