首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative importance of growth rate and calcium concentration in sweet pepper fruits (Capsicum annuum L.) for the induction of blossom-end rot (BER) was investigated in (1) four pollination treatments in one cultivar, (2) four cultivars with the same fruit load and (3) three fruit load treatments in four cultivars. For fruits with the same pollination treatment those eventually developing BER had a higher initial fruit growth rate than those not developing BER. Within the same experiment both the growth rate of the young fruit and BER increased with the number of seeds. The Ca concentration of the pericarp in mature fruits was negatively related to both fruit size and BER incidence. Differences in levels of BER between different pollination experiments could not be explained solely by differences in growth rate of the young fruit, but related to different Ca concentrations in the mature fruits. In the spring, but not in the summer, cultivars more susceptible to BER had a larger final size but lower Ca concentration in the young fruit than the resistant ones. By lowering the fruit load in the summer both the final fruit size and the BER incidence increased, but the Ca concentrations of both proximal and distal pericarp in the young fruit of all cultivars were not consistently affected. Despite a correlation between growth rate and low Ca concentration in the fruit, the incidence of BER may only be predicted from separate effects of fruit growth and of Ca concentration of fruit. The data indicated that at a higher growth rate a higher Ca concentration is required to prevent the induction of BER. The usefulness of the total Ca concentration of the fruit for determining the critical Ca concentration in the induction of BER is discussed.Key words: Capiscum annuum L., sweet pepper, blossom-end rot, calcium, growth rate, pollination, fruit load.   相似文献   

2.
Experiments were carried out to evaluate the effect of glucose on ripening and ethylene biosynthesis in tomato fruit (Lycopersicon esculentum Mill.). Fruit at the light-red stage were vacuum infiltrated with glucose solutions post-harvest and changes in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, ACC, ACC oxidase, and ethylene production monitored over time. ACC oxidase activity was also measured in pericarp discs from the same fruits that were treated either with glucose, fructose, mannose, or galactose. While control fruit displayed a typical peak of ethylene production, fruit treated with glucose did not. Glucose appeared to exert its effect on ethylene biosynthesis by suppressing ACC oxidase activity. Fructose, mannose, and galactose did not inhibit ACC oxidase activity in tomato pericarp discs. Glucose treatment inhibited ripening-associated colour development in whole fruit. The extent of inhibition of colour development was dependent upon the concentration of glucose. These results indicate that glucose may play an important role in ethylene-associated regulation of fruit ripening.  相似文献   

3.
Factors affecting the uptake and distribution of calcium (Ca)by detached tomato (Lycopersicon esculentum Mill.) fruit wereinvestigated in seven cultivars with different susceptibilitiesto blossom-end rot (BER), a physiological disorder caused byCa deficiency. Plants were grown with different levels of salinityin the root zone or under shade to induce BER. In addition,fruit grown at different salinities were treated with CME, aninhibitor of auxin transport to alter IAA movement. The basipetalmovement of indole-3-acetic acid (IAA) out of detached fruit(i.e. IAA efflux) was determined concurrently with 45Ca uptaketo assess the possible involvement of IAA in Ca import or theincidence of BER. High salinity in the root zone during fruitdevelopment decreased both the uptake and distribution of 43Cato the blossom-end of the detached fruit. Shading and the applicationof CME reduced 45Ca uptake to a lesser extent. IAA efflux, however,was not consistently reduced by these treatments. Neither theuptake and transport of 45Ca within, nor the efflux of IAA from,detached fruit was related to the cultivar susceptibility toBER. The proposed role of IAA on the uptake and distributionof Ca by tomato fruit is assessed. Key words: Tomato, calcium, IAA, blossom-end rot, salinity  相似文献   

4.
The aim of this work was to investigate whether parthenocarpicfruit growth could avoid flushing, i.e. an irregular yield pattern,in sweet pepper. Plants were grown in a greenhouse compartmentfrom April until August. Half of the plants were grown withouta fruit set treatment (control), whereas parthenocarpic fruitswere allowed to develop on the other plants by preventing self-pollinationand applying auxin to the stigma. For node positions 3 to 17,fruit set per node varied between 21 and 55% for control plants[coefficient of variation (CV) = 11%], whereas auxin-treatedplants showed much less variation in fruit set (41–57%;CV = 5%) and average fruit set was higher. In agreement withfruit set, fruit yield was also much more regular in the auxin-treatedplants. Fruit fresh yield varied between 0.2 and 1.0 kg m-2forcontrol plants (CV = 20%), and between 0.4 and 0.8 kg m-2forauxin-treated plants (CV = 9%). Results showed that developingseeds in sweet pepper fruits are the main cause of the abortionof new flowers, and irregular fruit set and yield. Parthenocarpicfruit growth resulted in flatter, 30% smaller fruits, becauseof a reduction in fruit growth rate; the duration of fruit growthwas 1 week longer than for fruits from control plants. Parthenocarpicfruits were hardly affected by blossom-end rot (BER) with only1% of fruits being affected compared to 31% in the control.Total dry mass production was the same for treated and controlplants; however, in auxin-treated plants, 50% of the total drymass was allocated to the fruits, compared to 58% in controlplants. Copyright 2001 Annals of Botany Company Abortion, auxin, BER, blossom-end rot, Capsicum annuum L., flushing, fruit set, irregular yield pattern, parthenocarpy, sweet pepper  相似文献   

5.
Although gibberellins (GAs) have been shown to induce development of the physiological disorder blossom-end rot (BER) in tomato fruit (Solanum lycopersicum), the mechanisms involved remain largely unexplored. BER is believed to result from calcium (Ca) deficiency, but the relationship between Ca content and BER incidence is not strong. Our objectives were to better understand how GAs and a GA biosynthesis inhibitor affect BER development in tomato fruit. Tomato plants of two BER-susceptible cultivars, ‘Ace 55 (Vf)’ and ‘AB2,’ were grown in a greenhouse environment and subjected to Ca-deficiency conditions. Plants were treated weekly during fruit growth and development with 300 mg L?1 GA4+7, 300 mg L?1 prohexadione-calcium (Apogee®, a GA biosynthesis inhibitor), or water beginning 1 day after flower pollination. GA4+7 treatment induced an increase in BER incidence in both cultivars up to 100%, whereas ‘Ace 55 (Vf)’ and ‘AB2’ plants treated with Apogee did not show BER incidence. The number of functional xylem vessels was higher in the placental and pericarp tissue of tomato fruit treated with Apogee at the early stages of fruit growth. Treatment with Apogee also increased fruit pericarp Ca concentration. GA4+7 treatment enhanced the expression of the putative CAX and Ca-ATPase genes, that code for proteins involved in Ca movement into storage organelles. The lowest water-soluble apoplastic Ca concentration and the highest membrane leakage values were observed in the pericarp of GA4+7-treated fruit. These results suggest that GAs consistently reduced fruit Ca uptake and water-soluble apoplastic Ca concentration, leading to leakier plasma membranes and an increase in BER development in fruit tissue of both tomato cultivars.  相似文献   

6.
Hans Kende  Thomas Boller 《Planta》1981,151(5):476-481
Ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) levels and ACC-synthase activity were compared in intact and wounded tomato fruits (Lycopersicon esculentum Mill.) at different ripening stages. Freshly cut and wounded pericarp discs produced relatively little ethylene and had low levels of ACC and of ACC-synthase activity. The rate of ethylene synthesis, the level of ACC and the activity of ACC synthase all increased manyfold within 2 h after wounding. The rate of wound-ethylene formation and the activity of wound-induced ACC synthase were positively correlated with the rate of ethylene production in the intact fruit. When pericarp discs were incubated overnight, wound ethylene synthesis subsided, but the activity of ACC synthase remained high, and ACC accumulated, especially in discs from ripe fruits. In freshly harvested tomato fruits, the level of ACC and the activity of ACC synthase were higher in the inside parts of the fruit than in the pericarp. When wounded pericarp tissue of green tomato fruits was treated with cycloheximide, the activity of ACC synthase declined with an apparent half life of 30–40 in. The activity of ACC synthase in cycloheximide-treated, wounded pericarp of ripening tomatoes declined more slowly.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

7.
Zhou YD  Fang XF  Cui ZJ 《Cell calcium》2009,45(1):18-28
UVA is a major bio-active component in solar irradiation, and is shown to have immunomodulatory and anti-inflammatory effects. The detailed molecular mechanism of UVA action in regard to calcium signaling in mast cells, however, is not fully understood. In this study, it was found that UVA induced ROS formation and cytosolic calcium oscillations in individual rat mast cells. Exogenously added H2O2 and hypoxanthine/xanthine oxidase (HX/XOD) mimicked UVA effects on cytosolic calcium increases. Regular calcium oscillation induced by UVA irradiation was inhibited completely by the phosphatidylinositol-specific phospholipase C inhibitor U73122, but U73343 was without effect. Tetrandrine, a calcium entry blocker, or calcium-free buffer abolished UVA-induced calcium oscillations. L-type calcium channel blocker nifedipine and stores-operated calcium channel blocker SK&F96365 had no such inhibitory effect. ROS induction by UVA was abolished after pre-incubation with anti-oxidant NAC or with NAD(P)H oxidase inhibitor DPI; such treatment also made UVA-induced calcium oscillation to disappear. UVA irradiation did not increase mast cell diameter, but it made mast cell structure more granular. Spectral confocal imaging revealed that the emission spectrum of the endogenous fluorophore in single mast cell contained a sizable peak which corresponded to that of NAD(P)H. Taken together, these data suggest that UVA in rat mast cells could activate NAD(P)H oxidase, to produce ROS, which in turn activates phospholipase C signaling, to trigger regular cytosolic calcium oscillation.  相似文献   

8.
9.
This study, of how Ca2+ availability (intracellular, extracellular or linked to the membrane) influences the functionality of aquaporins of pepper (Capsicum annuum L.) plants grown under salinity stress, was carried out in plants treated with NaCl (50 mM), CaCl2 (10 mM), and CaCl2 (10 mM) + NaCl (50 mM). For this, water transport through the plasma membrane of isolated protoplasts, and the involvement of aquaporins and calcium (extracellular, intracellular and linked to the membrane) has been determined. After these treatments, it could be seen that the calcium concentration was reduced in the apoplast, in the cells and on the plasma membrane of roots of pepper plants grown under saline conditions; these concentrations were increased or restored when extra calcium was added to the nutrient solution. Protoplasts extracted from plants grown under Ca2+ starvation showed no aquaporin functionality. However, for the protoplasts to which calcium was added, an increase of aquaporin functionality of the plasma membrane was observed [osmotic water permeability (Pf) inhibition after Hg addition]. Interestingly, when verapamil (a Ca2+ channel blocker) was added, no functionality was observed, even when Ca2+ was added with verapamil. Therefore, calcium seems to be involved in plasma membrane aquaporin regulation via a chain of processes within the cell but not by alteration of the stability of the plasma membrane.  相似文献   

10.
The possible causes of blossom-end rot (BER) in tomato fruitwere investigated by comparing the uptake of calcium by theroots, the distribution of 45Ca within the fruit and the vascularbundle network in the fruit of susceptible cultivars (Calypsoand Spectra) with those of a less susceptible cultivar (Counter)grown in a range of salinities (electrical conductivity of 5,10 and 15 mS cm–1). The daily calcium uptake rates at5 mS cm–1 as estimated from the xylem exudation of thedecapitated stem stump in young plants of Calypso and old plantsof Spectra, were lower than that of Counter. The uptake of 45Caby, and the transport to, the distal part of the detached fruitof susceptible cultivars, especially Calypso, were less thanin Counter at 10 mS cm–1. The number of vascular bundlesin both proximal and distal fruit tissues was similar in allcultivars and was only slightly reduced by salinity. However,the number of bundles containing lignified xylem vessels, asdetected by safranin staining, was reduced substantially bysalinity, particularly in Calypso. The estimated area of thefruit tissue served by individual xylem bundles in the BER susceptiblefruit grown at high salinity was greater than in Counter. Theincidence of BER in all trusses was linearly related to theproduct of average daily irradiance and daily temperature throughoutthe year. Temperature appears to be the major environmentalfactor which induces BER, regardless of cultivars and salinitytreatment. The most likely causes of BER in susceptible cultivarsare the interactions of (a) light and temperature on fruit enlargement,(b) inadequate xylem tissue development in the fruit and (c)competition between leaves and fruit for the available Ca. Key words: Lycopersicon esculentum, calcium transport, susceptibility to blossom-end rot, root exudation, xylem  相似文献   

11.
The ripening of discs cut from the pericarp of green tomato (Lycopersicon esculentum Mill.) fruits is inhibited by treatments with GA3 and several divalent cations, including calcium. Normal ripening is marked by an increase in the solubility of wall pectins. Calcium and GA3 alter the pattern of pectin solubility changes. In part this may be because polygalacturonase synthesis and/or secretion to the apoplast is reduced. The impact of divalent cations on ripening-related tissue softening appears to have a nonmetabolic component. Ripening-inhibiting ions rapidly reduce tissue softening, pectin solubilization and the normal ripening-related decrease in cellular turgor.  相似文献   

12.
Abstract. When plants of rice ( Oryza saliva L.) are subjected to mildly saline (50mol m−3 NaCl) conditions, the leaves show symptoms of water deficit, even though ion accumulation has been more than sufficient to adjust to the decrease in external water potential. After a few days of exposure to salt, there is a negative correlation, in a population of leaves, between the leaf water concentration (g water per g dry weight) and their sodium concentration (mmol Na per g dry weight). Ion concentrations in the cell walls and the cytoplasm of cells of plants grown in low salinity were measured by X-ray microanalysis. The NaCl concentration in solution in the apoplast was calculated to be around 600mol m−3 in leaves of plants whose roots were exposed to only 50 mol m−3 NaCl. This constitutes strong evidence that an important factor in salt damage in rice is dehydration due to the extracellular accumulation of salt as suggested in the Oertli hypothesis. The implication, that changes in tissue ion concentration and solute potentials equivalent to the external medium is not evidence of plant osmotic adjustment to salinity, is discussed.  相似文献   

13.
Determination of vitamin E in the fruit pericarp of green, yellow and red varieties of Capsicum annuum L. from the local market points to a parallel accumulation in pepper fruits of α-tocopherol with secondary carotenoids and triacylglycerols enriched in unsaturated fatty acids. Highest α-tocopherol concentrations of about 400 nmol per g of dry weight have been found in red fruits. Ripe yellow and red pepper fruits grown under greenhouse conditions were smaller and contained lower α-tocopherol contents than corresponding ones from the local market. An approximation to the α-tocopherol levels in market fruits has been observed, however, if the green plants had been treated with the bleaching herbicide norflurazone before fruit ripening, affecting the carotenoid pathway. Optimum herbicide efficiency has been obtained via watering of the green plants. In ripe fruits of the yellow and red varieties α-tocopherol contents were paralleled by increasing γ-tocopherol methyltransferase activities. In chromoplast preparations from pepper, methylation capacities have been found for γ- and δ-tocopherol as well as for the structurally related tocotrienols, the diterpene side chain of which consists of a geranylgeranyl- instead of the reduced phytyl residue found in tocopherols. β-Tocopherol was not methylated, which supports the position-specific methylation of prenylquinones at the 5 position of the tocopherol aromatic headgroup.  相似文献   

14.
Lee HS  Son SM  Kim YK  Hong KW  Kim CD 《Life sciences》2003,72(24):2719-2730
Reactive oxygen species (ROS) have been implicated in the pathogenesis of vascular dysfunction in diabetes mellitus, and NAD(P)H oxidase is known as the most important source of ROS in the vasculatures. To determine whether NAD(P)H oxidase is a major participant in the critical intermediary signaling events in high glucose (HG, 25 mM)-induced proliferation of vascular smooth muscle cells (VSMC), we investigated in explanted aortic VSMC from rats the role of NAD(P)H oxidase on the HG-related cellular proliferation and superoxide production. VSMC under HG condition had increased proliferative capacity that was inhibited by tiron (1 mM), a cell membrane permeable superoxide scavenger, but not by SOD, which is not permeable to cell membrane. The nitroblue tetrazolium staining in the HG-exposed VSMC was more prominent than that of VSMC under normal glucose (5.5 mM) condition, which was significantly inhibited by DPI (10 microM), an NAD(P)H oxidase inhibitor, but not by inhibitors for other oxidases such as NADH dehydrogenase, xanthine oxidase, and nitric oxide synthase. In the VSMC under HG condition, the enhanced NAD(P)H oxidase activity with increased membrane translocation of Rac1 was observed, but the protein expression of p22phox and gp91phox was not increased. These data suggest that HG-induced changes in VSMC proliferation are related to the intracellular production of superoxide through enhanced activity of NAD(P)H oxidase.  相似文献   

15.
Suzuki K  Shono M  Egawa Y 《Protoplasma》2003,222(3-4):149-156
Summary. Blossom-end rot (BER) of tomato (Lycopersicon esculentum) fruits is considered to be a physiological disorder caused by calcium deficiency. We attempted to clarify the localization of calcium in the pericarp cells and the ultrastructural changes during the development of BER. Calcium precipitates were observed as electron-dense deposits by an antimonate precipitation method. Some calcium precipitates were localized in the cytosol, nucleus, plastids, and vacuoles at an early developmental stage of normal fruits. Calcium precipitates were increased markedly on the plasma membrane during the rapid-fruit-growth stage compared with their level at the early stage. Cell collapse occurred in the water-soaked region at the rapid-fruit-growth stage in BER fruits. There were no visible calcium precipitates on the traces of plasma membrane near the cell wall of the collapsed cells. The amount of calcium precipitates on plasma membranes near collapsed cells was smaller than that in the cells of normal fruits and normal parts of BER fruits, and the amount on cells near collapsed cells was small. The amount of calcium precipitates on the plasma membranes increased as the distance from collapsed cells increased. On the other hand, calcium precipitates were visible normally in the cytosol, organelles, and vacuoles and even traces of them in collapsed cells. The distribution pattern of the calcium precipitates on the plasma membrane was thus considerably different between normal and BER fruits. On the basis of these observations, we concluded that calcium deficiency in plasma membranes caused cell collapses in BER tomato fruits.Correspondence and reprints: National Institute of Vegetable and Tea Science, National Agricultural Research Organization, Ano, Mie, 514-2392, Japan.  相似文献   

16.
Translocation of Calcium in Relation to Tomato Fruit Growth   总被引:5,自引:1,他引:4  
Regulation of the uptake and distribution of calcium in thetomato plant was investigated in plants grown in recirculatingnutrient solutions at electrical conductivities of 2,7,12 and17 millisiemens (mS). Despite an increased calcium content inthe nutrient solution at high conductivity (7–17 mS),the accumulation of calcium by fruit was progressively reducedby increasing salinity, particularly in the distal half. Theincidence of blossom-end rot in fruit (BER) also increased withsalinity. The uptake of water and 45Ca by plants was substantially reducedin the high salinity treatment (17 mS) and, to a lesser extent,by high relative humidity (90 per cent r.h. at 20 °C). Further,the translocation of 45Ca from roots to shoots was reduced byhigh salinity, while the percentage distribution of 45Ca tothe apex was reduced by high humidity. Only approx. 2 per centof the 45Ca taken up by a plant was imported by the truss. The uptake of 45Ca and its distribution among pedicel, calyxand berry by detached fruit in 24 h showed that fruit from highsalinity plants had a reduced uptake and a lower accumulationof 45 Ca in the berry than in the calyx. In addition, plants grown at high conductivity had a lower rateof xylem sap exudation from decapitated plants. The fruit ofthese plants had a smaller xylem cross-sectional area in thefruit pedicel and a smaller calyx than those of the low conductivitytreatment. Calcium, translocation, tomato, fruit, blossom-end rot  相似文献   

17.
This field study examined the ecophysiological responses of three tree species to salinity in the Austin Bay Nature Reserve, adjacent to the Peel-Harvey Estuary in Western Australia (115°46' E 32°37' S). The area is at increased risk of flooding with saline water during storm surges due to the construction of a channel between the estuary and Indian Ocean in 1994. Banksia attenuata R.Br. occurs on small sandy ridges adjacent to a seasonal wetland, while Melaleuca cuticularis Labill. and Casuarina obesa Miq. occur in a seasonally flooded wetland. Landscape position determined exposure to salinity, with M. cuticularis and C. obesa experiencing high soil and groundwater salinity during summer (electrical conductivity, EC, up to 70 dS m−1) while B. attenuata was not exposed to soil or groundwater with EC greater than 20 dS m−1. B. attenuata had relatively stable leaf water status throughout the year and did not osmotically adjust as root-zone salinity increased. By contrast, M. cuticularis and C. obesa had large variation in stem water potential and exhibited osmotic adjustment during summer. Whereas the sap flow rates of M. cuticularis and C. obesa remained high throughout the year, sap flow of B. attenuata decreased during summer which may have limited uptake of salt. The three species also exhibited differences in traits associated with tissue-level salt tolerance, as M. cuticularis and C. obesa produced compatible organic solutes (methyl proline in M. cuticularis and proline in C. obesa ), whereas B. attenuata did not. The distributions of these species within the Austin Bay Nature Reserve are determined in part by their tolerance to salinity, which will influence their responses to hydrological disturbance.  相似文献   

18.
One reason why pancreatic cancer is so aggressive and unresponsive to treatments is its resistance to apoptosis. We report here that reactive oxygen species (ROS) are a prosurvival, antiapoptotic factor in pancreatic cancer cells. Human pancreatic adenocarcinoma MIA PaCa-2 and PANC-1 cells generated ROS, which was stimulated by growth factors (serum, insulin-like growth factor I, or fibroblast growth factor-2). Growth factors also stimulated membrane NAD(P)H oxidase activity in these cells. Both intracellular ROS and NAD(P)H oxidase activity were inhibited by antioxidants tiron and N-acetylcysteine and the inhibitor of flavoprotein-dependent oxidases, diphenylene iodonium, but not by inhibitors of various other ROS-generating enzymes. Using Rho(0) cells deficient in mitochondrial DNA, we showed that a nonmitochondrial NAD(P)H oxidase is a major source of growth factor-induced ROS in pancreatic cancer cells. Among proteins that have been implicated in NAD(P)H oxidase activity, MIA PaCa-2 and PANC-1 cells do not express the phagocytic gp91(phox) subunit but express several nonphagocytic oxidase (NOX) isoforms. Transfection with Nox4 antisense oligonucleotide inhibited NAD(P)H oxidase activity and ROS production in MIA PaCa-2 and PANC-1 cells. Inhibiting ROS with the antioxidants, Nox4 antisense, or MnSOD overexpression all stimulated apoptosis in pancreatic cancer cells as measured by internucleosomal DNA fragmentation, phosphatidylserine externalization, cytochrome c release, and effector caspase activation. The results show that growth factor-induced ROS produced by NAD(P)H oxidase (probably Nox4) protect pancreatic cancer cells from apoptosis. This mechanism may play an important role in pancreatic cancer resistance to treatment and thus represent a novel therapeutic target.  相似文献   

19.
The purpose of the present study was to determine the subcellular localization of NAD(P)H oxidase, a reactive oxygen species (ROS)-producing enzyme, in the human placenta at various gestational ages. Ultrastructural enzyme histochemistry for NAD(P)H oxidase, using cerium as a capturing agent, was carried out. Placentas from patients with severe preeclampsia and patients who delivered infants with fetal growth restriction (FGR) were also studied. Electron-dense precipitates indicating NAD(P)H oxidase activity were visible in the microvillous membranes of the placentas, especially on the surface plasma membrane of the syncytiotrophoblast microvilli, after 25 weeks of gestation. The distribution pattern and enzyme intensities were apparently the same among normal, preeclamptic, and FGR placentas. Cytochemical control experiments ensured the specific detection of NAD(P)H oxidase activity. These observations indicated that syncytiotrophoblasts possessed NAD(P)H oxidase activity, and thus ROS-generating activity. Placental NAD(P)H oxidase may play a role in placental lipid peroxidation and the placental defense mechanism.  相似文献   

20.
成熟和褐变荔枝果实呼吸作用和脂氧合酶活性   总被引:5,自引:0,他引:5  
孙谷畴   《广西植物》1993,13(1):80-83
荔枝果实完全成熟和果皮变鮮红时,呼吸速率降低,仅相当于果皮带绿时的39.4%。此时果皮和果肉的脂氧合酶活性亦明显降低,分别相当于后者的60.2%和49.1%。成熟荔枝果实果皮呼吸作用对KCN抑制敏感。2mM KCN抑制果皮总呼吸的91.8%,而仅抑制果肉的56.9%。荔枝果皮呼吸的电了传递主要是通过细胞色素氧化酶途径,而果肉則可能一半是通过其它氧化酶途径。2mKCN和1.5mM SHAM抑制成熟果皮总呼吸97.9%,为SHAM抑制的交替途径呼吸占总呼吸5.28%。相同浓度KCN和SHAM抑制褐变果皮总呼吸79.7%,则SHAM抑制的交替途径呼吸占27.1%。果实褐变时,果成交替途径呼吸比例增高。这一变化可能促进H_2O_2积累、乙烯产生和果皮褐变深化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号