首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time-resolved photovoltage measurements on destacked photosystem II membranes from spinach with the primary quinone electron acceptor Q(A) either singly or doubly reduced have been performed to monitor the time evolution of the primary radical pair P680(+)Pheo(-). The maximum transient concentration of the primary radical pair is about five times larger and its decay is about seven times slower with doubly reduced compared with singly reduced Q(A). The possible biological significance of these differences is discussed. On the basis of a simple reversible reaction scheme, the measured apparent rate constants and relative amplitudes allow determination of sets of molecular rate constants and energetic parameters for primary reactions in the reaction centers with doubly reduced Q(A) as well as with oxidized or singly reduced Q(A). The standard free energy difference DeltaG degrees between the charge-separated state P680(+)Pheo(-) and the equilibrated excited state (Chl(N)P680)* was found to be similar when Q(A) was oxidized or doubly reduced before the flash (approximately -50 meV). In contrast, single reduction of Q(A) led to a large change in DeltaG degrees (approximately +40 meV), demonstrating the importance of electrostatic interaction between the charge on Q(A) and the primary radical pair, and providing direct evidence that the doubly reduced Q(A) is an electrically neutral species, i.e., is doubly protonated. A comparison of the molecular rate constants shows that the rate of charge recombination is much more sensitive to the change in DeltaG degrees than the rate of primary charge separation.  相似文献   

2.
Trapp O  Schurig V 《Chirality》2002,14(6):465-470
The axially chiral allenes dimethyl-1,3-allenedicarboxylate 1 and diethyl-1,3-allenedicarboxylate 2 show characteristic plateau formation during enantioselective GC separation on the chiral stationary liquid phase Chirasil-beta-Dex. The elution profiles, obtained from temperature-dependent dynamic GC (DGC) experiments (1: 100-140 degrees C; 2: 110-150 degrees C) were evaluated with the recently derived approximation function (AF) k1(approx) = f(t(R)(A),t(R)(B),w(h)(A),h(plateau), N) to yield the enantiomerization rate constant directly k(1). These values were compared with those obtained by computer-aided simulation with ChromWin. The Eyring activation parameters of the experimental interconversion profiles were determined to be: DeltaG(#)(298.15 K) = 103.6 +/- 0.9 kJ mol(-1), DeltaH(#) = 44.7 +/- 0.4 kJ mol(-1), DeltaS(#) = -198 +/- 7 J K(1) mol(-1) for dimethyl-1,3-allenedicarboxylate 1, and DeltaG(#)(298.15 K) = 103.5 +/- 1.1 kJ mol(-1), DeltaH(#) = 44.7 +/- 0.5 kJ mol(-1), DeltaS(#) = -197 +/- 9 J K(-1) mol(-1) for diethyl-1,3-allenedicarboxylate 2. The approximation function (AF) presented here allows the fast determination of rate constants k(1) and activation barriers of enantiomerization DeltaG(#) from chromatographic parameters without extensive computer simulation.  相似文献   

3.
J Tandori  P Sebban  H Michel  L Baciou 《Biochemistry》1999,38(40):13179-13187
The X-ray crystallographic structure of the photosynthetic reaction center from Rhodobacter sphaeroides obtained at high resolution has revealed a number of internal water molecules (Ermler, U., Fritzsch, G., Buchanan, S. K., and Michel, H. (1994) Structure 2, 925-936; Stowell, M. H. B., McPhillips, T. M., Rees, D. C., Soltis, S. M., Abresch, E., and Feher, G. (1997) Science 276, 812-816). Some of them are organized into distinct hydrogen-bonded water chains that connect Q(B) (the terminal quinone electron acceptor of the reaction center) to the aqueous phase. To investigate the role of the water chains in the proton conduction process, proline L209, located immediately adjacent to a water chain, was mutated to the following residues: F, Y, W, E, and T. We have first analyzed the effects of the mutations on the kinetic and thermodynamic properties of the rate constants of the second electron transfer (k(AB)(2)) and of the coupled proton uptake (k(H)+) at the second flash. In all aromatic mutants, k(AB)(2) and k(H)+ are notably and concomitantly decreased compared to the wild-type, while no effect is observed in the other mutants. The temperature dependence of these rates shows activation energy values (DeltaH) similar for the proton and electron-transfer processes in the wild-type and in most of the mutants, except for the L209PW and L209PF mutants. The analysis of the enthalpy factors related to the electron and proton-transfer processes in the L209PF and the L209PW mutants allows to distinguish the respective effects of the mutations for both transfer reactions. It is noteworthy that in the aromatic mutants a substantial increase of the free energies of activation is observed (DeltaG(L209PY) < DeltaG(L209PF) < DeltaG(L209PW)) for both proton and electron-transfer reactions, while in the other mutants, DeltaG is not affected. The salt concentration dependence of k(AB)(2) shows, in the L209PF and L209PW mutants, a higher screening of the protein surface potential experienced by Q(B). Our data suggest that residues F and W in position L209 increase the polarizability of the internal water molecules and polar residues by altering the organization of the hydrogen-bond network. We have also analyzed the rates of the first electron-transfer reaction (k(AB)(1)), in the 100 micros time domain. These kinetics have previously been shown to reflect protein relaxation events possibly including proton uptake events (Tiede, D. M., Vazquez, J., Cordova, J., and Marone, P. M. (1996) Biochemistry 35, 10763-10775). Interestingly, in the L209PF and L209PW mutants, k(AB)(1) is notably decreased in comparison to the wild type and the other mutants, in a similar way as k(AB)(2) and k(H)+. Our data imply that the dynamic organization of this web is tightly coupled to the electron transfer process that is kinetically limited by protonation events and/or conformational rearrangements within the protein.  相似文献   

4.
Vallone PM  Benight AS 《Biochemistry》2000,39(26):7835-7846
Effects of different end sequences on melting, circular dichroism spectra (CD), and enzyme binding properties were investigated for four 40 base pair, non-self-complementary duplex DNA oligomers. The center sequences of these oligoduplexes have either of two 22 base pair modules flanked on both sides by sequences differing in AT content. Temperature-induced melting transitions monitored by differential scanning calorimetry (DSC) and ultraviolet absorbance were measured for the six duplexes in buffered 115 mM Na(+) solutions. Values of the melting transition enthalpy, DeltaH(cal), and entropy, DeltaS(cal), were obtained directly from DSC experiments. Melting transition parameters, DeltaH(vH) and DeltaS(vH), were also estimated from a van't Hoff analysis of optical melting curves collected as a function of DNA concentration, assuming that the melting transition is two-state. Melting free energies (20 degrees C) evaluated from DSC melting experiments on the four duplex DNAs ranged from -52.2 to -77.5 kcal/mol. Free energies based on the van't Hoff analysis were -37.9 to -58.8 kcal/mol. Although the values are different, trends in the melting free energies of the four duplex DNAs as a function of sequence were identical in both DSC and optical analyses. Subject to several assumptions, values for the initiation free energy were estimated for each duplex, defined as DeltaG(int) = DeltaG(cal) - DeltaG(pred), where DeltaG(cal) is the experimental free energy at 20 degrees C determined from the experimentially measured values of the transition enthalpy, DeltaH(cal), and entropy, DeltaS(cal). The predicted free energy of the sequence, DeltaG(pred)(20 degrees C), is obtained using published nearest-neighbor sequence stability values. For three of the four duplexes, values of DeltaG(int) are essentially nil. In contrast, the duplex with 81.8% GC has a considerably higher estimate of DeltaG(int) = 7.1 kcal/mol. The CD spectra for the six duplexes collected over the wavelength range from 200 to 320 nm are also sequence-dependent. Factor analysis of the CD spectra by singular value decomposition revealed that the experimental CD spectra could be reconstructed from linear combinations of two minor and one major subspectra. Changes in the coefficients of the major subspectrum for different sequences reflect incremental sequence-dependent variations of the CD spectra. Equilibrium binding by BamHI restriction endonuclease to the 40 base pair DNAs whose central eight base pairs contain the recognition sequence for BamHI restriction enzyme bounded by A.T base pairs, 5'-A-GGATCC-A-3' was investigated. Binding assays were performed by titering BamHI against a constant concentration of each of the duplex DNA substrates, in the absence of Mg(2+), followed by analysis by gel retardation. Under the conditions employed, the enzyme binds but does not cleave the DNAs. Results of the assays revealed two binding modes with retarded gel mobilities. Binding isotherms for the fraction of bound DNA species versus enzyme concentration for each binding mode were constructed and analyzed with a simple two-step equilibrium binding model. This analysis provided semiquantitative estimates on the equilibrium binding constants for BamHI to the four DNAs. Values obtained for the binding constants varied only 7-fold and ranged from 6 x 10(-)(8) to 42 x 10(-)(8) M, with binding free energies from -8.6 to -9.7 (+/- 0.2) kcal/mol depending on the sequence that flanks the enzyme binding site. Unlike what was found earlier in binding studies of the 22 base pair duplexes that constitute the core modules of the present 40-mers [Riccelli, P. V., Vallone, P. M., Kashin, I., Faldasz, B. D., Lane, M. J., and Benight, A. S. (1999) Biochemistry 38, 11197-11208], no obvious relationship between binding and stability was found for these longer DNAs. Apparently, effects of flanking sequence stability on restriction enzyme binding may only be measurable in very short duplex deoxyoligonucl  相似文献   

5.
The conserved sequence motif "RxY(T)(S)xx(S)(N)" coordinates flavin binding in NADH:cytochrome b(5) reductase (cb(5)r) and other members of the flavin transhydrogenase superfamily of oxidoreductases. To investigate the roles of Y93, the third and only aromatic residue of the "RxY(T)(S)xx(S)(N)" motif, that stacks against the si-face of the flavin isoalloxazine ring, and P92, the second residue in the motif that is also in close proximity to the FAD moiety, a series of rat cb(5)r variants were produced with substitutions at either P92 or Y93, respectively. The proline mutants P92A, G, and S together with the tyrosine mutants Y93A, D, F, H, S, and W were recombinantly expressed in E. coli and purified to homogeneity. Each mutant protein was found to bind FAD in a 1:1 cofactor:protein stoichiometry while UV CD spectra suggested similar secondary structure organization among all nine variants. The tyrosine variants Y93A, D, F, H, and S exhibited varying degrees of blue-shift in the flavin visible absorption maxima while visible CD spectra of the Y93A, D, H, S, and W mutants exhibited similar blue-shifted maxima together with changes in absorption intensity. Intrinsic flavin fluorescence was quenched in the wild type, P92S and A, and Y93H and W mutants while Y93A, D, F, and S mutants exhibited increased fluorescence when compared to free FAD. The tyrosine variants Y93A, D, F, and S also exhibited greater thermolability of FAD binding. The specificity constant (k(cat)/K(m)(NADH)) for NADH:FR activity decreased in the order wild type > P92S > P92A > P92G > Y93F > Y93S > Y93A > Y93D > Y93H > Y93W with the Y93W variant retaining only 0.5% of wild-type efficiency. Both K(s)(H4NAD) and K(s)(NAD+) values suggested that Y93A, F, and W mutants had compromised NADH and NAD(+) binding. Thermodynamic measurements of the midpoint potential (E degrees ', n = 2) of the FAD/FADH(2) redox couple revealed that the potentials of the Y93A and S variants were approximately 30 mV more positive than that of wild-type cb(5)r (E degrees ' = -268 mV) while that of Y93H was approximately 30 mV more negative. These results indicate that neither P92 nor Y93 are critical for flavin incorporation in cb(5)r and that an aromatic side chain is not essential at position 93, but they demonstrate that Y93 forms contacts with the FAD that effectively modulate the spectroscopic, catalytic, and thermodynamic properties of the bound cofactor.  相似文献   

6.
A A Komissarov  S L Deutscher 《Biochemistry》1999,38(44):14631-14637
The recombinant anti-ssDNA Fab, DNA-1, and 16 heavy chain complementarity determining region 3 (HCDR3) mutant variants were selected for thermodynamic characterization of ssDNA binding. The affinity of Fab to (dT)(15) under different temperatures and cation concentrations was measured by equilibrium fluorescence quenching titration. Changes in the standard Gibbs free binding energy (DeltaG degrees ), enthalpy (DeltaH degrees ), entropy (DeltaS degrees ), and the number of ionic pairs (Z) formed upon interaction were determined. All Fab possessed an enthalpic nature of interaction with ssDNA, that was opposite to the previously reported entropically driven binding to dsDNA [Tanha, J., and Lee, J. S. (1997) Nucleic Acids Res. 25, 1442-1449]. The contribution of separate residues of HCDR3 to ssDNA interaction was investigated. Analysis of the changes in DeltaH degrees and TDeltaS degrees, induced by substitutions in HCDR3, revealed a complete entropy/enthalpy compensation. Mutations R98A and D108A at the ends of the HCDR3 loop produced increases in TDeltaS degrees ( )()by 10.4 and 15.9 kcal/mol, respectively. Substitution of proline for arginine at the top of HCDR3 resulted in a new electrostatic contact with (dT)(15). The observed linear correlation of Z and DeltaG degrees ( )()of nonelectrostatic interactions (DeltaG degrees (nonel)) at the anti-ssDNA combining site was used for the estimation of the specific DeltaG degrees (nonel) [-20 to -25 cal/(mol.A(2))], the average contact area (450-550 A(2)), the maximal Z (6-7), and the limit in affinity under standard cation concentrations [(0.5-1) x 10(8) M(-)(1)] for this family of Fab. Results suggested that rational engineering of HCDR3 could be utilized to control the affinity and likely the specificity of Ab-DNA interactions.  相似文献   

7.
Ginet N  Lavergne J 《Biochemistry》2001,40(6):1812-1823
The equilibrium and kinetic parameters for the binding of various inhibitors to the Q(B) pocket of the bacterial reaction center were investigated in chromatophores from Rhodobacter capsulatus and Rhodobacter sphaeroides. By monitoring the near-IR absorption changes specific to Q(A)(-) and Q(B)(-), we measured the fraction of inhibited centers in the dark and the kinetics and extent of inhibitor displacement after one flash due to the formation of the Q(A)Q(B)(-) state. The inhibitor release rate was much faster for triazines and o-phenanthroline (t(1/2) in the 50 ms to 1 s range) than for stigmatellin (t(1/2) approximately 20 s). For inhibitors with a rapid release rate, the fast phase of P(+) decay observed in the absence of secondary donor reflects the competition between P(+)Q(A)(-) recombination and inhibitor release: it is thus faster than the P(+)Q(A)(-) recombination, and its relative extent is smaller than the fraction of initially inhibited centers. At appropriate inhibitor concentrations, one can have almost total binding in the dark and almost total inhibitor displacement after one flash. Under such conditions, a pair of closely spaced flashes resets the two-electron gate in a single state (Q(A)Q(B)(-)), irrespective of the initial state. The apparent dissociation constant of terbutryn was significantly increased (by a factor of 4-7) in the presence of Q(A)(-), in agreement with the conclusion of Wraight and co-workers [Stein, R. R., et al. (1984) J. Cell. Biochem. 24, 243-259]. We suggest that this effect is essentially due to a tighter binding of ubiquinone in the Q(A)(-) state.  相似文献   

8.
Miyamoto R  Iwaki M  Mino H  Harada J  Itoh S  Oh-Oka H 《Biochemistry》2006,45(20):6306-6316
Electron transfer in the membranes and the type I reaction center (RC) core protein complex isolated from Heliobacterium modesticaldum was studied by optical and ESR spectroscopy. The RC is a homodimer of PshA proteins. In the isolated membranes, illumination at 14 K led to accumulation of a stable ESR signal of the reduced iron-sulfur center F(B)(-) in the presence of dithiothreitol, and an additional 20 min illumination at 230 K induced the spin-interacting F(A)(-)/F(B)(-) signal at 14 K. During illumination at 5 K in the presence of dithionite, we detected a new transient signal with the following values: g(z)= 2.040, g(y)= 1.911, and g(x)= 1.896. The signal decayed rapidly with a 10 ms time constant after the flash excitation at 5 K and was attributed to the F(X)(-)-type center, although the signal shape was more symmetrical than that of F(X)(-) in photosystem I. In the purified RC core protein, laser excitation induced the absorption change of a special pair, P800. The flash-induced P800(+) signal recovered with a fast 2-5 ms time constant below 150 K, suggesting charge recombination with F(X)(-). Partial destruction of the RC core protein complex by a brief exposure to air increased the level of the P800(+)A(0)(-) state that gave a lifetime (t(1/2)) of 100 ns at 77 K. The reactions of F(X) and quinone were discussed on the basis of the three-dimensional structural model of RC that predicts the conserved F(X)-binding site and the quinone-binding site, which is more hydrophilic than that in the photosystem I RC.  相似文献   

9.
The kinetics of charge recombination between the primary photoxidized donor (P(+)) and the secondary reduced quinone acceptor (Q(B)(-)) have been studied in reaction centers (RCs) from the purple photosynthetic bacterium Rhodobacter sphaeroides incorporated into lecithin vesicles containing large ubiquinone pools over the temperature range 275 K = (50 +/- 15) nm). Following these premises, we describe the kinetics of P(+)Q(B)(-) recombination with a truncated cumulant expansion and relate it to P(Q) and to the free energy changes for Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer (DeltaG(AB)(o)) and for quinone binding (DeltaG(bind)(o)) at Q(B). The model accounts well for the temperature and quinone dependence of the charge recombination kinetics, yielding DeltaG(AB)(o) = -7.67 +/- 0.05 kJ mol(-1) and DeltaG(bind)(o) = -14.6 +/- 0.6 kJ mol(-1) at 298 K.  相似文献   

10.
N Kusumoto  P Sétif  K Brettel  D Seo  H Sakurai 《Biochemistry》1999,38(37):12124-12137
Reaction center preparations from the green sulfur bacterium Chlorobium tepidum, which contain monoheme cytochrome c, were studied by flash-absorption spectroscopy in the near-UV, visible, and near-infrared regions. The decay kinetics of the photooxidized primary donor P840(+), together with the amount of photooxidized cytochrome c, were analyzed along a series of four flashes spaced by 1 ms: 95% of the P840(+) was reduced by cytochrome c with a t(1/2) of approximately 65 micros after the first flash, 80% with a t(1/2) of approximately 100 micros after the second flash, and 23% with a t(1/2) of approximately 100 micros after the third flash; after the fourth flash, almost no cytochrome c oxidation occurred. The observed rates, the establishment of redox equilibrium after each flash, and the total amount of photooxidizable cytochrome c are consistent with the presence of two equivalent cytochrome c molecules per photooxidizable P840. The data are well fitted assuming a standard free energy change DeltaG degrees of -53 meV for electron transfer from one cytochrome c to P840(+), DeltaG degrees being independent of the oxidation state of the other cytochrome c. These observations support a model with two monoheme cytochromes c which are symmetrically arranged around the reaction center core. From the ratio of menaquinone-7 to the bacteriochlorophyll pigment absorbing at 663 nm, it was estimated that our preparations contain 0.6-1.2 menaquinone-7 molecules per reaction center. However, no transient signal due to menaquinone could be observed between 360 and 450 nm in the time window from 10 ns to 4 micros. No recombination reaction between the primary partners P840(+) and A(0)(-) could be detected under normal conditions. Such a recombination was observed (t(1/2) approximately 19 ns) under highly reducing conditions or after accumulation of three electrons on the acceptor side during a series of flashes, showing that the secondary acceptors can stabilize three electrons. From our data, there is no evidence for involvement of menaquinone in charge separation in the reaction center of green sulfur bacteria.  相似文献   

11.
To examine the potential role of methanobactin (mb) as the extracellular component of a copper acquisition system in Methylosinus trichosporium OB3b, the metal binding properties of mb were examined. Spectral (UV-visible, fluorescence, and circular dichroism), kinetic, and thermodynamic data suggested copper coordination changes at different Cu(II):mb ratios. Mb appeared to initially bind Cu(II) as a homodimer with a comparatively high copper affinity at Cu(II):mb ratios below 0.2, with a binding constant (K) greater than that of EDTA (log K = 18.8) and an approximate DeltaG degrees of -47 kcal/mol. At Cu(II):mb ratios between 0.2 and 0.45, the K dropped to (2.6 +/- 0.46) x 10(8) with a DeltaG degrees of -11.46 kcal/mol followed by another K of (1.40 +/- 0.21) x 10(6) and a DeltaG degrees of -8.38 kcal/mol at Cu(II):mb ratios of 0.45-0.85. The kinetic and spectral changes also suggested Cu(II) was initially coordinated to the 4-thiocarbonyl-5-hydroxy imidazolate (THI) and possibly Tyr, followed by reduction to Cu(I), and then coordination of Cu(I) to 4-hydroxy-5-thiocarbonyl imidazolate (HTI) resulting in the final coordination of Cu(I) by THI and HTI. The rate constant (k(obsI)) of binding of Cu(II) to THI exceeded that of the stopped flow apparatus that was used, i.e., >640 s(-)(1), whereas the coordination of copper to HTI showed a 6-8 ms lag time followed by a k(obsII) of 121 +/- 9 s(-)(1). Mb also solubilized and bound Cu(I) with a k(obsI) to THI of >640 s(-)(1), but with a slower rate constant to HTI (k(obsII) = 8.27 +/- 0.16 s(-)(1)), and appeared to initially bind Cu(I) as a monomer.  相似文献   

12.
In the crystal structure of bovine mitochondrial F(1)-ATPase (MF(1)) (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), the side chain oxygen of betaThr(163) interacts directly with Mg(2+) coordinated to 5'-adenylyl beta, gamma-imidodiphosphate or ADP bound to catalytic sites of beta subunits present in closed conformations. In the unliganded beta subunit present in an open conformation, the hydroxyl of betaThr(163) is hydrogen-bonded to the carboxylate of betaGlu(199). Substitution of betaGlu(201) (equivalent to betaGlu(199) in MF(1)) in the alpha(3)beta(3)gamma subcomplex of the F(1)-ATPase from the thermophilic Bacillus PS3 with cysteine or valine increases the propensity to entrap inhibitory MgADP in a catalytic site during hydrolysis of 50 microM ATP. These substitutions lower K(m3) (the Michaelis constant for trisite ATP hydrolysis) relative to that of the wild type by 25- and 10-fold, respectively. Fluorescence quenching of alpha(3)(betaE201C/Y341W)(3)gamma and alpha(3)(betaY341W)(3)gamma mutant subcomplexes showed that MgATP and MgADP bind to the third catalytic site of the double mutant with 8.4- and 4.4-fold higher affinity, respectively, than to the single mutant. These comparisons support the hypothesis that the hydrogen bond observed between the side chains of betaThr(163) and betaGlu(199) in the unliganded catalytic site in the crystal structure of MF(1) stabilizes the open conformation of the catalytic site during ATP hydrolysis.  相似文献   

13.
The thermodynamics and dynamics of the Cys21-Cys48 disulfide "S" if "R" conformational isomerism in the three-iron, single cubane cluster ferredoxin (Fd) from the hyperthermophilic archaeon Pyrococcus furiosus (Pf) have been characterized by (1)H NMR spectroscopy in both water and water/methanol mixed solvents. The mean interconversion rate at 25 degrees C is 3 x 10(3) s(-1) and DeltaG(298) = -0.2 kcal/mol [DeltaH = 4.0 kcal/mol; DeltaS = 14 cal/(mol.K)], with the S orientation as the more stable form at low temperature (< 0 degrees C) but the R orientation predominating at >100 degrees C, where the organism thrives. The distinct pattern of ligated Cys beta-proton contact shifts for the resolved signals and their characteristic temperature behavior for the forms of the 3Fe Fd with alternate disulfide orientations have been analyzed to determine the influences of disulfide orientation and methanol cosolvent on the topology of the inter-iron spin coupling in the 3Fe cluster. The Cys21-Cys48 disulfide orientation influences primarily the spin couplings involving the iron ligated to Cys17, whose carbonyl oxygen is a hydrogen bond acceptor to the Cys21 peptide proton. Comparison of the Cys beta-proton contact shift pattern for the alternate disulfide orientations with the pattern exhibited upon cleaving the disulfide bridge confirms an earlier [Wang, P.-L., Calzolai, L., Bren, K. L., Teng, Q., Jenney, F. E., Jr., Brereton, P. S., Howard, J. B., Adams, M. W. W., and La Mar, G. N. (1999) Biochemistry 38, 8167-8178] proposal that the structure of the same Fd with the R disulfide orientation resembles that of the Fd upon cleaving the disulfide bond.  相似文献   

14.
We report time-resolved optical measurements of the primary electron transfer reactions in Rhodobacter capsulatus reaction centers (RCs) having four mutations: Phe(L181) --> Tyr, Tyr(M208) --> Phe, Leu(M212) --> His, and Trp(M250) --> Val (denoted YFHV). Following direct excitation of the bacteriochlorophyll dimer (P) to its lowest excited singlet state P, electron transfer to the B-side bacteriopheophytin (H(B)) gives P(+)H(B)(-) in approximately 30% yield. When the secondary quinone (Q(B)) site is fully occupied, P(+)H(B)(-) decays with a time constant estimated to be in the range of 1.5-3 ns. In the presence of excess terbutryn, a competitive inhibitor of Q(B) binding, the observed lifetime of P(+)H(B)(-) is noticeably longer and is estimated to be in the range of 4-8 ns. On the basis of these values, the rate constant for P(+)H(B)(-) --> P(+)Q(B)(-) electron transfer is calculated to be between approximately (2 ns)(-)(1) and approximately (12 ns)(-)(1), making it at least an order of magnitude smaller than the rate constant of approximately (200 ps)(-)(1) for electron transfer between the corresponding A-side cofactors (P(+)H(A)(-) --> P(+)Q(A)(-)). Structural and energetic factors associated with electron transfer to Q(B) compared to Q(A) are discussed. Comparison of the P(+)H(B)(-) lifetimes in the presence and absence of terbutryn indicates that the ultimate (i.e., quantum) yield of P(+)Q(B)(-) formation relative to P is 10-25% in the YFHV RC.  相似文献   

15.
The x-ray structure analysis of photosystem I (PS I) crystals at 4-A resolution (Schubert et al., 1997, J. Mol. Biol. 272:741-769) has revealed the distances between the three iron-sulfur clusters, labeled F(X), F(1), and F(2), which function on the acceptor side of PS I. There is a general consensus concerning the assignment of the F(X) cluster, which is bound to the PsaA and PsaB polypeptides that constitute the PS I core heterodimer. However, the correspondence between the acceptors labeled F(1) and F(2) on the electron density map and the F(A) and F(B) clusters defined by electron paramagnetic resonance (EPR) spectroscopy remains controversial. Two recent studies (Diaz-Quintana et al., 1998, Biochemistry. 37:3429-3439;, Vassiliev et al., 1998, Biophys. J. 74:2029-2035) provided evidence that F(A) is the cluster proximal to F(X), and F(B) is the cluster that donates electrons to ferredoxin. In this work, we provide a kinetic argument to support this assignment by estimating the rates of electron transfer between the iron-sulfur clusters F(X), F(A), and F(B). The experimentally determined kinetics of P700(+) dark relaxation in PS I complexes (both F(A) and F(B) are present), HgCl(2)-treated PS I complexes (devoid of F(B)), and P700-F(X) cores (devoid of both F(A) and F(B)) from Synechococcus sp. PCC 6301 are compared with the expected dependencies on the rate of electron transfer, based on the x-ray distances between the cofactors. The analysis, which takes into consideration the asymmetrical position of iron-sulfur clusters F(1) and F(2) relative to F(X), supports the F(X) --> F(A) --> F(B) --> Fd sequence of electron transfer on the acceptor side of PS I. Based on this sequence of electron transfer and on the observed kinetics of P700(+) reduction and F(X)(-) oxidation, we estimate the equilibrium constant of electron transfer between F(X) and F(A) at room temperature to be approximately 47. The value of this equilibrium constant is discussed in the context of the midpoint potentials of F(X) and F(A), as determined by low-temperature EPR spectroscopy.  相似文献   

16.
The binding parameters (K, omega) and the free energy (DeltaG(0)) of triple helix formation have been estimated for complexes of oligo(U)(n) (n = 5, 7-10) with poly(A) . poly(U) on the basis of hypochromicity measurements. The data were treated according to the formula of McGhee and von Hippel [J. Mol. Biol. 86 (1974) 469] by a computer program ALAU [H. Schütz et al., Stud. Biophys. 104 (1984) 23] which takes absorbancies and total concentrations as input. In 1 mM cacodylate buffer pH 7.0 with 10 mM NaCl and 10 mM MgCl(2) at 5 degrees C the free energy of contiguous binding was found to be a linear function of the oligomer length with a slope of DeltaG(c,U)(0) = -0.72 (+/-0.03) kcal x mol(-1) per nucleotide. The mean cooperativity coefficient (omega) was 24.5 (+/- 5.6), and the corresponding free energy of interaction between the neighbouring oligonucleotides in the third strand was DeltaG(0(omega)) = -1.74 (+/-0.13) kcal x mol(-1).  相似文献   

17.
Complexes of the uranyl cation [UO(2)(2+)] with histidine (His), N-acetyl-histidine (NAH), tyrosine (Tyr), and N-acetyl-tyrosine (NAT) were studied by UV-visible and NMR spectroscopy, and by potentiometric titration. Protonation constants for each ligand are reported, as are cumulative formation constants for uranyl-amino acid complexes. Coupling constant data (J(CH)) for uranyl-histidine complexes indicate that inner-sphere solution interactions between histidine and uranyl cation are solely at the carboxylate site. At 25 degrees C the major uranyl-histidine complex has a cumulative formation constant of logbeta(110)=8.53, and a proposed formula of [UO(2)HisH(2)(OH)(2)](+); the stepwise formation constant, logK(UL), is estimated to be 5.6 ( approximately 8.53-(-6.1)-(-6.1)-15.15). Outer-sphere interactions, H-bonding or electrostatic interactions, are proposed as contributing a significant portion of the stability to the ternary uranyl-hydroxo-amino acid complexes. The temperature dependent protonation constants of histidine and formation constants between uranyl cation and histidine are reported from 10 to 35 degrees C; at 25 degrees C, DeltaG=-43.3 kJ/mol.  相似文献   

18.
Exposure of control (non-hardened) Arabidopsis leaves for 2 h at high irradiance at 5 degrees C resulted in a 55% decrease in photosystem II (PSII) photochemical efficiency as indicated by F(v)/F(m). In contrast, cold-acclimated leaves exposed to the same conditions showed only a 22% decrease in F(v)/F(m). Thermoluminescence was used to assess the possible role(s) of PSII recombination events in this differential resistance to photoinhibition. Thermoluminescence measurements of PSII revealed that S(2)Q(A)(-) recombination was shifted to higher temperatures, whereas the characteristic temperature of the S(2)Q(B)(-) recombination was shifted to lower temperatures in cold-acclimated plants. These shifts in recombination temperatures indicate higher activation energy for the S(2)Q(A)(-) redox pair and lower activation energy for the S(2)Q(B)(-) redox pair. This results in an increase in the free-energy gap between P680(+)Q(A)(-) and P680(+)Pheo(-) and a narrowing of the free energy gap between primary and secondary electron-accepting quinones in PSII electron acceptors. We propose that these effects result in an increased population of reduced primary electron-accepting quinone in PSII, facilitating non-radiative P680(+)Q(A)(-) radical pair recombination. Enhanced reaction center quenching was confirmed using in vivo chlorophyll fluorescence-quenching analysis. The enhanced dissipation of excess light energy within the reaction center of PSII, in part, accounts for the observed increase in resistance to high-light stress in cold-acclimated Arabidopsis plants.  相似文献   

19.
Cystic fibrosis transmembrane conductance regulator (CFTR) regulates both HCO(3)(-) secretion and HCO(3)(-) salvage in secretory epithelia. At least two luminal transporters mediate HCO(3)(-) salvage, the Na(+)/H(+) exchanger (NHE3) and the Na(+)-HCO(3)(-) cotransport (NBC3). In a previous work, we show that CFTR interacts with NHE3 to regulate its activity (Ahn, W., Kim, K. W., Lee, J. A., Kim, J. Y., Choi, J. Y., Moe, O. M., Milgram, S. L., Muallem, S., and Lee, M. G. (2001) J. Biol. Chem. 276, 17236-17243). In this work, we report that transient or stable expression of human NBC3 (hNBC3) in HEK cells resulted in a Na(+)-dependent, DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid)- and 5-ethylisopropylamiloride-insensitive HCO(3)(-) transport. Stimulation of CFTR with forskolin markedly inhibited NBC3 activity. This inhibition was prevented by the inhibition of protein kinase A. NBC3 and CFTR could be reciprocally coimmunoprecipitated from transfected HEK cells and from the native pancreas and submandibular and parotid glands. Precipitation of NBC3 or CFTR from transfected HEK293 cells and from the pancreas and submandibular gland also coimmunoprecipitated EBP50. Glutathione S-transferase-EBP50 pulled down CFTR and hNBC3 from cell lysates when expressed individually and as a complex when expressed together. Notably, the deletion of the C-terminal PDZ binding motifs of CFTR or hNBC3 prevented coimmunoprecipitation of the proteins and inhibition of hNBC3 activity by CFTR. We conclude that CFTR and NBC3 reside in the same HCO(3)(-)-transporting complex with the aid of PDZ domain-containing scaffolds, and this interaction is essential for regulation of NBC3 activity by CFTR. Furthermore, these findings add additional evidence for the suggestion that CFTR regulates the overall trans-cellular HCO(3)(-) transport by regulating the activity of all luminal HCO(3)(-) secretion and salvage mechanisms of secretory epithelial cells.  相似文献   

20.
Ser(11) in rat glutathione transferase T2-2 is important for stabilization of the reactive enzyme-bound glutathione thiolate in the reaction with 1-menaphthyl sulfate. The S11A mutation increased the pK(a) value for the pH dependence of the rate constant for pre-steady-state product formation, from 5.7 to 7.9. This pH dependence is proposed to reflect titration of enzyme-bound glutathione thiol. Further, the mutation lowered the k(cat) value but not because of the impaired stabilization of the glutathione thiolate. In fact, several steps on the reaction pathway were affected by the S11A mutation, and the cause of the decreased k(cat) for the mutant was found to be a slower product release. The data presented here contradict the hypothesis that glutathione transferase T2-2 could act as a sulfatase that is not dependent on Ser(11) for the catalytic activity, as proposed for the corresponding human enzyme (Tan, K.-L., Chelvanayagam, G., Parker, M. W., and Board, P. G. (1996) Biochem. J. 319, 315-321; Rossjohn, J., McKinstry, W. J., Oakley, A. J., Verger, D., Flanagan, J., Chelvanayagam, G., Tan, K.-L., Board, P. G., and Parker, M. W. (1998) Structure 6, 309-322). On the contrary, Ser(11) governs both chemical and physical steps of the catalyzed reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号