首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The methionine sulfoxide reductases MsrA and MsrB reduce Met(O) to Met in epimer-specific fashion. In Drosophila, the major ecdysone induced protein is MsrA, which is regulated by the EcR-USP complex. We tested Kc cells for induction of MsrA, MsrB, EcR, and CAT by ecdysone and found that MsrA and the EcR were induced by ecdysone, but MsrB and CAT were not. When we tested for resistance to 20mM H2O2 toxicity, viability of Kc cells was reduced 3-fold. Pretreatment with 0.2 microM ecdysone for 48 h prior to exposure to H2O2, increased viability to 77% of controls. The EcR-deficient L57-3-11 knockout line was not responsive to ecdysone, and H2O2 resistance of both control and ecdysone-treated L57-3-11 cells was similar to that of the ecdysone-untreated Kc cells. These results show that hormonal regulation of MsrA is implicated in conferring protection against oxidative stress in the Drosophila model.  相似文献   

2.
3.
4.
RNA-Seq and gene set enrichment anylysis revealed that ovarian cancer associated fibroblasts (CAFs) are mitotically active compared with normal fibroblasts (NFs). Cellular senescence is observed in CAFs treated with H2O2 as shown by elevated SA-β-gal activity and p21 (WAF1/Cip1) protein levels. Reactive oxygen species (ROS) production and p21 (WAF1/Cip1) elevation may account for H2O2-induced CAFs cell cycle arrest in S phase. Blockage of autophagy can increase ROS production in CAFs, leading to cell cycle arrest in S phase, cell proliferation inhibition and enhanced sensitivity to H2O2-induced cell death. ROS scavenger NAC can reduce ROS production and thus restore cell viability. Lactate dehydrogenase A (LDHA), monocarboxylic acid transporter 4 (MCT4) and superoxide dismutase 2 (SOD2) were up-regulated in CAFs compared with NFs. There was relatively high lactate content in CAFs than in NFs. Blockage of autophagy decreased LDHA, MCT4 and SOD2 protein levels in CAFs that might enhance ROS production. Blockage of autophagy can sensitize CAFs to chemotherapeutic drug cisplatin, implicating that autophagy might possess clinical utility as an attractive target for ovarian cancer treatment in the future.  相似文献   

5.
Prostaglandin (PG) synthetase activity and selective hormone responsiveness were examined in normal and SV40 transformed WI-38 fibroblasts (VA13-2RA). The transformed VA13-2RA cells have significantly reduced rates of PGE1, PGE2, PGF1alpha and PGF2alpha synthesis as compared to the normal WI-38 fibroblast. The transformed cell in contrast to the normal cell hyperresponds to stimulation by L-epinephrine (10 muM) and PGE1 (8.5 muM) but is unresponsive to bradykinin (BK) as measured by the accumulation of intracellular cyclic AMP. Indomethacin treatment does not significantly alter the PGE1 and L-epinephrine (EPI) responsiveness of the normal WI-38 fibroblast, however it abolishes the BK response in these cells. These results provide further evidence for the dependency of cell activation by bradykinin on the PG synthetase system. No experimental data was found to support the role of PGs as negative regulators of PGE1 and EPI responsiveness in the WI-38 fibroblast. Using the VA13-2RA cells, limited attempts to recover PG synthetase activity comparable to that found in normal WI-38 cells were unsuccessful. The VA13-2RA cell and its normal counterpart represent models for investigating the role of PGs in cell function and the mechanism of BK activation and its effect on cell metabolism.  相似文献   

6.
Normal human diploid fibroblasts (HF) have a limited life span, undergo senescence, and rarely, if ever, spontaneously immortalize in culture. Introduction of the gene for T antigen encoded by the DNA virus SV40 extends the life span of HF and increases the frequency of immortalization; however, immortalization requires both T-dependent and T-independent functions. We previously generated independent SV40-transformed non-immortal (pre-immortal) HF cell lines from which we then obtained immortal sublines as part of a multifaceted approach to identify functions responsible for immortalization. In this study we undertook a search for cellular mRNAs which are differentially expressed upon immortalization. A λcDNA library was prepared from a pre-immortal SV40-transformed HF (HF-C). We screened the library with a subtracted probe enriched for sequences present in HF-C and reduced in immortal AR5 cells. A more limited screen was also employed for sequences overexpressed in AR5 using a different strategy. Alterations in the level of mRNAs in AR5 encoding functions relevant to signal transduction pathways were identified; however, most cDNAs encoded novel sequences. In an effort to clarify which of the altered mRNAs are most relevant to immortalization, we performed Northern analysis with RNA prepared from three paired sets of independent pre-immortal and immortal (4 cell lines) SV40-transformants using eight cloned cDNAs which show reduced expression in AR5. Three of these were reduced in additional immortal cell lines as well; one, J4-4 (unknown function) is reduced in all the immortal cell lines tested; a second, J4-3 (possible PP2C type phosphatase) is reduced in 2 of the 3 matched sets; and a third, J2-2 (unknown function) is redu ced in 2 unrelated immortal cell lines. Although the roles of these genes are as yet unclear, their further analysis should extend our understanding of the molecular bases for immortalization. In particular, the patterns of expression of J4-4 and J4-3 strongly suggest that they are involved in the process of immortalization and/or can serve as target genes for assessing regulators of gene expression in this process. J. Cell. Physiol. 171:325–335, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
8.
Lim Y  Lee E  Lee J  Oh S  Kim S 《Journal of biochemistry》2008,144(4):523-529
Protein arginine methylation is one of the post-translational modifications which yield monomethyl and dimethyl (asymmetric or symmetric) arginines in proteins. In the present study, we investigated the status of protein arginine methylation during human diploid fibroblast senescence. When the expression of protein arginine methyltransferases (PRMTs), namely PRMT1, PRMT4, PRMT5 and PRMT6 was examined, a significant reduction was found in replicatively senescent cells as well as their catalytic activities against histone mixtures compared with the young cells. Furthermore, when the endogenous level of arginine-dimethylated proteins was determined, asymmetric modification (the product of type I PRMTs including PRMT1, PRMT4 and PRMT6) was markedly down-regulated. In contrast, both up- and down-regulations of symmetrically arginine-methylated proteins (the product of type II PRMTs including PRMT5) during replicative senescence were found. Furthermore, when young fibroblasts were induced to premature senescence by sub-cytotoxic H2O2 treatment, results similar to replicative senescence were obtained. Finally, we found that SV40-mediated immortalized WI-38 and HeLa cell lines maintained a higher level of asymmetrically modified proteins as well as type I PRMTs than young fibroblasts. These results suggest that the maintenance of asymmetric modification in the expressed target proteins of type I PRMTs might be critical for cellular proliferation.  相似文献   

9.
Methionine sulfoxide reductase A (MsrA), a member of the Msr gene family, can reduce methionine sulfoxide residues in proteins formed by oxidation of methionine by reactive oxygen species (ROS). Msr is an important protein repair system which can also function to scavenge ROS. Our studies have confirmed the expression of MsrA in mouse embryonic stem cells (ESCs) in culture conditions. A cytosol‐located and mitochondria‐enriched expression pattern has been observed in these cells. To confirm the protective function of MsrA in ESCs against oxidative stress, a siRNA approach has been used to knockdown MsrA expression in ES cells which showed less resistance than control cells to hydrogen peroxide treatment. Overexpression of MsrA gene products in ES cells showed improved survivability of these cells to hydrogen peroxide treatment. Our results indicate that MsrA plays an important role in cellular defenses against oxidative stress in ESCs. Msr genes may provide a new target in stem cells to increase their survivability during the therapeutic applications. J. Cell. Biochem. 111: 94–103, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Hybrid cells derived from whole-cell fusions of replicating phase-II normal fibroblast cells (WI-38s) with SV40 transformed WI-38 fibroblast cells (CL-1s) demonstrated that the majority of the hybrid experimental cells still maintained a finite life-span. Approximately 2% demonstrated sustained and possibly indefinite replication. Experimental binucleate cells and subsequent hybrid synkaryons were also formed by fusing CL-1 karyoplasts into phase-II WI-38 replicating normal fibroblasts. In addition, viable cells were constructed from WI-38 fibroblast cytoplasts with CL-1 karyoplasts. Sustained replication was not observed in these crosses.  相似文献   

11.
Acetaminophen protects human erythrocytes against oxidative stress   总被引:1,自引:0,他引:1  
Acetaminophen protects human erythrocytes against various modes of oxidative stress. Protection against ozone-induced damage can be explained by a direct scavenging reaction between the drug and ozone. With t-butylhydroperoxide acetaminophen appeared to be an effective scavenger of radicals, generated in secondary reactions. The protection by acetaminophen against t-butylhydroperoxide- and hydrogen peroxide-induced lipid peroxidation and K+-leakage can be explained along these lines. In all cases the protective effect of acetaminophen was attended with covalent binding of acetaminophen to membrane proteins.  相似文献   

12.
Methionine sulfoxide reductase A overexpressing WI-38 SV40 human fibroblasts have been previously shown to exhibit higher resistance to oxidative stress by decreasing intracellular reactive oxygen species content and oxidative damage to proteins [C.R. Picot, I. Petropoulos, M. Perichon, M. Moreau, C. Nizard, B. Friguet, Overexpression of MsrA protects WI-38 SV40 human fibroblasts against H(2)O(2)-mediated oxidative stress, Free Radic Biol Med 39 (2005) 1332-1341]. In order to get further insight into the molecular mechanisms underlying this resistance to oxidative stress, proteins that are differentially expressed in methionine sulfoxide reductase A overexpressing cells were identified by 2D gel and Western blot quantitative analyses. Five proteins were shown to be differentially expressed and were identified by mass spectrometry, some of them were related to either cellular protection against oxidative stress, apoptosis or premature ageing.  相似文献   

13.
14.
A fibroblast of human lung origin (WI-38) synthesizes thromboxane A2 from the prostaglandin endoperoxide PGH2. Thromboxane A2 synthesis was demonstrated by radio thin layer chromatography, gas chromatography/mass spectrometry, and by bioassay. This is the first demonstration of thromboxane A2 biosynthesis in a homogeneous cell population other than the human platelet.  相似文献   

15.
Broken cell preparations of WI-38 and SV40-transformed WI-38 (VA13) fibroblasts were used to compare the cyclic nucleotide phosphodiesterase activities of the two cell strains. The bulk of the cAMP or cGMP phosphodiesterase activity of WI-38 and VA13 homogenates was found in the 100,000 x g fibroblast supernatant fractions. WI-38 and VA13 soluble phosphodiesterase activities showed anomalous kinetic behavior with either cAMP or cGMP as the substrate. At low substrate concentrations, e.g., 0.1 muM, WI-38 supernatant fractions hydrolyzed cGMP much more rapidly than cAMP. At high substrate concentrations, e.g., 100muM, the same enzyme preparations degraded cAMP more than twice as fast as cGMP. In contrast, VA13 soluble phosphodiesterase activity catalyzed the hydrolysis of a wide range of cAMP and cGMP concentrations at similar rates. Phosphodiesterase activity in WI-38 supernatant fractions was generally more sensitive than that of the comparable VA13 enzyme activity to inhibition by MIX and papaverine. The cAMP phosphodiesterase activity of both WI-38 and VA13 supernatant preparations was decreased by cGMP in a concentration-dependent manner. cAMP was an effective inhibitor of cGMP hydrolysis by VA13 soluble phosphodiesterase activity. Yet, the cGMP phosphodiesterase activity of WI-38 supernatant fractions was only slightly reduced in the presence of cAMP. DEAE-cellulose chromatography of WI-38 and VA13 supernatant preparations revealed two major peaks of phosphodiesterase activity for each cell type. WI-38 peak I showed much greater activity with 1muM cGMP than with 1muM cAMP and appeared to be composed of two different phosphodiesterase activities. WI-38 peak Ia included phosphodiesterase activity which could be stimulated by boiled, dialyzed fibroblast homogenates while WI-38 peak Ib coincided with column fractions which contained most of the cyclic GMP hydrolytic activity. VA13 peak I phosphodiesterase activity was eluted from DEAE cellulose columns at the same ionic strength as WI-38 peak Ia and hydrolyzed these two substrates at nearly identical rates. This enzyme activity was also increased in the presence of boiled, dialyzed fibroblast preparations. Peak II phosphodiesterase activities from both WI-38 and VA13 fibroblasts were relatively specific for cAMP as the substrate. Phosphodiesterase activity with the properties of WI-38 peak Ib was not isolated from VA13 supernatant fractions. These results suggested that the dissimilar patterns of cAMP accumulation in WI-38 and VA13 cultures may be at least partially related to different phosphodiesterase activities in the normal and the transformed fibroblasts.  相似文献   

16.
The production of reactive oxygen species (ROS) during oxidative stress may cause cellular injury. Interleukin-15 (IL-15) is one of the skeletal muscle secreted myokines, and there is no information that reported its anti-oxidative capability in skeletal muscle. The aim of this study therefore is to investigate the protective effects of myokine IL-15 against H2O2-mediated oxidative stress in C2C12 myoblasts. The results showed that IL-15 pre-incubation reduced the intracellular creatine kinase and lactate dehydrogenase activities, decreased the ROS overload, and protect the mitochondrial network via up-regulated mRNA expression levels of IL-15 and uncoupling protein 3. It also down-regulated the levels of IL-6 and p21 of the myoblasts compared to the cells treated only with H2O2. Meanwhile, apurinic/aprimidinic endonuclease 1 expression and the Akt signaling pathway were stimulated. These effects could contribute to the resumption of cell viability and act as protective mechanism. In conclusion, myokine IL-15 could be a novel endogenous regulator to control intracellular ROS production and attenuate oxidative stress in skeletal muscle cells.  相似文献   

17.
The higher resistance of stationary-phase Saccharomyces cerevisiae to H2O2 when compared with exponential phase is well characterized, but the molecular mechanisms underlying it remain mostly unknown. By applying the steady-state H2O2-delivery model, we show that (a) cellular permeability to H2O2 is five times lower in stationary--than in exponential phase; (b) cell survival to H2O2 correlates with H2O2 cellular gradients for a variety of cells; and, (c) cells in stationary phase are predicted to be more susceptible to intracellular H2O2 than in exponential phase. In conclusion, limiting H2O2 diffusion into cells is a key protective mechanism against extracellular H2O2.  相似文献   

18.
19.
You HJ  Lee KJ  Jeong HG 《FEBS letters》2002,517(1-3):175-179
Incorporation of inter- or intramolecular covalent cross-links into food proteins with microbial transglutaminase (MTG) improves the physical and textural properties of many food proteins, such as tofu, boiled fish paste, and sausage. By using nuclear magnetic resonance, we have shown that the residues exhibiting relatively high flexibility in MTG are localized in the N-terminal region; however, the N-terminal region influences the microenvironment of the active site. These results suggest that the N-terminal region is not of primary importance for the global fold, but influences the substrate binding. Therefore, in order to increase the transglutaminase activity, the N-terminal residues were chosen as candidates for site-directed replacement and deletion. We obtained several mutants with higher activity, del1-2, del1-3, and S2R. We propose a strategy for enzyme engineering targeted toward flexible regions involved in the enzymatic activity. In addition, we also briefly describe how the number of glutamine residues in a substrate protein can be increased by mixing more than two kinds of TGases with different substrate specificities.  相似文献   

20.
Retinal degeneration diseases (RDDs) are common and devastating eye diseases characterized by the degeneration of photoreceptors, which are highly associated with oxidative stress. Previous studies reported that mitochondrial dysfunction is associated with various neurodegenerative diseases. However, the role of mitochondrial proteostasis mainly regulated by mitophagy and mitochondrial unfolded protein response (mtUPR) in RDDs is unclear. We hypothesized that the mitochondrial proteostasis is neuroprotective against oxidative injury in RDDs. In this study, the data from our hydrogen peroxide (H2O2)-treated mouse retinal cone cell line (661w) model of RDDs showed that nicotinamide riboside (NR)-activated mitophagy increased the expression of LC3B II and PINK1, and promoted the co-localization of LC3 and mitochondria, as well as PINK1 and Parkin in the H2O2-treated 661w cells. However, the NR-induced mitophagy was remarkably reversed by chloroquine (CQ) and cyclosporine A (CsA), mitophagic inhibitors. In addition, doxycycline (DOX), an inducer of mtUPR, up-regulated the expression of HSP60 and CHOP, the key proteins of mtUPR. Activation of both mitophagy and mtUPR increased the cell viability and reduced the level of apoptosis and oxidative damage in the H2O2-treated 661w cells. Furthermore, both mitophagy and mtUPR played a protective effect on mitochondria by increasing mitochondrial membrane potential and maintaining mitochondrial mass. By contrast, the inhibition of mitophagy by CQ or CsA reversed the beneficial effect of mitophagy in the H2O2-treated 661w cells. Together, our study suggests that the mitophagy and mtUPR pathways may serve as new therapeutic targets to delay the progression of RDDs through enhancing mitochondrial proteostasis.Subject terms: Cell death, Diseases  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号