首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anaesthetized fetal guinea pigs near term were studied under conditions, where maternal placental flow of haemoglobin was maintained within the normal range. The rate of maternal fetal equilibration of intravenously injected 3H2O was found to be similar as in unanaesthetized animals (half time 4 min) indicating that fetal circulation was undisturbed under the present experimental conditions. Umbilical blood flow as determined by a modified 3H2O method was 0.13 ml . min-1 . g-1 of fetal body mass. Radioactive microspheres, injected into the fetal saphenous (jugular) vein, were distributed to the placenta, the lower body, the upper body and the lungs at a ratio of 31(47):27(39):30(6):12(8). From these data, cardiac output was calculated (0.38 ml . min-1 . g-1) and found to be almost equally distributed between the placenta, the lower body and the upper body. There was preferential streaming of the inferior vena caval blood to the upper body. There was no evidence for flow through a ductus venosus. The O2-saturation in the fetal carotid arterial blood was 59 +/- 4%. The O2-supply to the fetal tissues was estimated to be 3 times the oxygen consumption.  相似文献   

2.
In 30 experiments performed on 5 pregnant sheep, the rate of glucose transfer from the placenta to fetus via the umbilical circulation was measured while varying uterine blood flow by means of a cuff-type occluder and while maintaining a constant maternal glucose concentration by means of a 'glucose clamp'. Over the range of uterine blood flows obtained, there was no significant effect on the simultaneously measured umbilical blood flow. Fetal glucose uptake and arterial glucose concentration remained normal as the uterine blood flow rate decreased from 600 to 300 ml per min per kg of fetus. At blood flow rates less than 300 ml.min-1.kg-1, the fetal glucose uptake decreased and became negative in one instance while the arterial glucose concentration became variable and markedly increased in 2 animals. This increase in fetal glucose concentration was associated with a decrease in the uterine oxygen delivery rate, a decrease in fetal oxygen content and a decrease in fetal oxygen uptake. These observations support the concept that fetal glucose metabolism is altered by severe hypoxia and demonstrate that there is little effect of uterine blood flow on fetal glucose uptake in the normal physiological range.  相似文献   

3.
The ductus venosus is the very important part of fetal venous circulation. It plays a central role in return of venous blood from the placenta. This unique shunt carries well-oxygenated blood from the umbilical vein through the inferior atrial inlet on its way across the foramen ovale. Using Doppler ultrasound, it is possible to assess the blood flow in fetal vessels including ductus venosus. It is observed, in animal and human studies, that the typical waveform for blood flow in ductus venosus in early pregnancy can be different depending on numerous conditions e.g. fetal karyotype. This study is performed to assess the physiologic parameters of blood flow in ductus venosus in uncomplicated early pregnancy. Material and Methods: 404 women were examined between 11+0 and 13+6 weeks (+ days) of gestation by ultrasound. Fetal crown-rump length (CRL) was measured to assess the gestational age. The assessment of risk of fetal abnormalities was based on nuchal translucency (NT) measurement. The ductus venosus blood flow with color and spectral Doppler was obtained in all patients. The following features were assessed: pulsatility index (PI), and direction of flow (positive/negative) during atrial contraction (wave A). All cases were followed up to 22 weeks of gestation when the control scan was performed. Results and conclusions: 30 cases were excluded from the uncomplicated group due to: high risk of fetal abnormalities, fetal loss, confirmed fetal abnormalities and utero-placental pathology. 374 women were considered as uncomplicated pregnancy. In both uncomplicated and complicated groups the mean values for pulsatility index (PI) were established. The mean PI value in uncomplicated pregnancies was: 0.91 (SD +/- 0.32). No significant differences between groups were noticed. In 370 cases of uncomplicated pregnancy the A wave direction was positive but in 1.1% of cases the reverse flow in atrial contraction was observed.  相似文献   

4.
Venous responses to hypoxemia in the fetal lamb   总被引:1,自引:0,他引:1  
The factors regulating umbilical venous return and its distribution between the ductus venosus and liver are poorly understood. This study was designed to determine where the major changes in resistance to umbilical venous return occur in response to fetal hypoxemia. In eight chronically-instrumented fetal lambs, during control and hypoxemic periods, we measured pressure in the descending aorta, extra-abdominal umbilical vein, portal sinus, and inferior vena cava; we also measured blood flow using radionuclide-labeled microspheres. During the control period, the umbilical arteries and placental vasculature accounted for 82% of total resistance to umbilical-placental blood flow, the umbilical veins for 11%, and the ductus venosus and liver for 7%. Hypoxemia increased resistance in the umbilical veins more than twofold, but did not affect resistance in the umbilical arteries or placenta. Although combined liver/ductus venosus resistance did not change, hepatic vascular resistance increased, and ductus venosus resistance decreased. We conclude that the major increase in resistance to umbilical venous return in response to hypoxemia resides in the umbilical veins. This increased resistance may improve maternal-fetal blood gas exchange by increasing the fetal surface area in the placenta.  相似文献   

5.
This is a study on the effect of cooling and heating amniotic fluid on blood flow to fetal tissues and organs. In 8 unanaesthetized, chronically-catheterised fetal sheep (129-137 days gestation) cold or warm water was passed through tubing encircling the fetus in utero and blood flow was measured using the radionuclide-labelled 15 mu spheres. Following cooling for 30 min, amniotic fluid temperature fell 9.6 degrees C to 29.9 +/- 2.1 degrees C (SEM) fetal arterial temperature fell 2.37 degrees C to 37.30 +/- 0.36, and maternal arterial temperature fell 0.53 degrees C to 38.58 +/- 0.16. Blood flow through the fetal skin fell 60% (P less than 0.01) to 13.6 ml/min per 100 g tissue. Blood flow to the brown fat increased 186% (P less than 0.05) to 99.6 ml/min per 100 g. Following warming for 20 min, fetal temperature rose to 40.43 +/- 0.19 degrees C, and skin blood flow did not change significantly relative to initial control period but rose 200% above that during cooling (P less than 0.01). During both cooling and heating, blood flow to the adrenals rose significantly (P less than 0.05) whereas flow to the carcass, brain, kidneys, and placenta was not altered detectably. Continuous sampling of blood from the inferior vena cava during microsphere injection failed to detect any evidence of arterio-venous shunting through the skin at any temperature studied. Overall, the blood flow responses are consistent with a thermoregulatory role for the skin and brown fat in the near-term fetal sheep.  相似文献   

6.
In early ovine fetal development, the placenta grows more rapidly than the fetus so that at mid-gestation the aggregate weight of placental cotyledons exceeds fetal weight. The purpose of this study was to compare two separate methods of measuring uterine blood flow and glucose and oxygen uptakes in seven mid-gestation ewes, each carrying a single fetus. Uterine blood flow to both uterine horns was measured by microsphere and by tritiated water steady-state diffusion methodology. Calculations of tritiated water blood flows and oxygen and glucose uptakes were based on measurements of arteriovenous concentration differences across each uterine horn. The distribution of blood flow and oxygen uptake between the two uterine horns was strongly correlated with placental mass distribution. The two methods gave comparable results for uterine blood flow (457 +/- 35 vs 476 +/- 35 ml/min), oxygen uptake (457 +/- 35 vs 476 +/- 35 mumol/min), and glucose uptake (63 +/- 8 vs 64 +/- 6 mumol/min). Uterine blood flow was approximately 38% of the late gestation value and 56.1 +/- 1 times higher than umbilical blood flow. Uteroplacental oxygen consumption was about 58% of late gestation measurements and 3.9 +/- 0.5 times higher than fetal oxygen uptake. We confirm that the large placental mass of mid-gestation is associated with high levels of maternal placental blood flow and placental oxidative metabolism.  相似文献   

7.
To test the hypothesis that fetal lambs are able to maintain oxygen delivery to myocardial, brain and adrenal tissues during reduction in uterine blood flow to 25% of control, we performed experiments on five ewes and their fetuses. A snare occluder was placed around the maternal common hypogastric artery and catheters were placed for measurement of blood pressures, flows, blood gas tensions, pH and oxygen content. After a five day recovery period, control measurements were made. The snare occluder was then closed until the artery was fully occluded. The arterial occlusion caused uteroplacental blood flow to fall to 32 +/- 4% and maternal placental blood flow to fall to 25 +/- 3% of control values. This level of asphyxia was maintained for 19 +/- 3 minutes, when maternal and fetal blood flows were measured again. In response to occlusion, fetal ascending aortic PO2 fell from 21 +/- 2 (SEM) to 13 +/- 2 mmHg (P less than or equal to 0.01), oxygen content from 4.3 +/- 0.3 to 1.4 +/- 0.2 mM (P less than or equal to 0.01) and pH from 7.37 +/- 0.01 to 7.21 +/- 0.05 (P less than or equal to 0.01). PCO2 rose from 48 +/- 1 to 62 +/- 3 mmHg (P less than or equal to 0.01). Fetal arterial blood pressure increased from 51 +/- 3 to 61 +/- 3 mmHg (P less than or equal to 0.001) and heart rate decreased from 172 +/- 10 to 104 +/- 4 beats.min-1 (P less than or equal to 0.01). The heart, brain and adrenals showed vasodilation in response to the asphyxic stimulus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Color Doppler sonography was used to study umbilical and ductus venosus (DV) flow in 137 normal fetuses between 20 and 38 wk of gestation. Hepatic flows were also evaluated. In all parts of the venous circulation examined, blood flow increased significantly with advancing gestational age. The weight-specific amniotic umbilical flow did not change significantly during gestation (120 +/- 44 ml. min(-1). kg(-1)), whereas DV flow decreased significantly (from 60 to 17 ml. min(-1). kg(-1)). The percentage of umbilical blood flow shunted through the DV decreased significantly (from 40% to 15%); consequently, the percentage of flow to the liver increased. The right lobe flow changed from 20 to 45%, whereas the left lobe flow was approximately constant (40%). These changes are related to different patterns of growth of the umbilical veins and DV diameters. The present data support the hypothesis that the DV plays a less important role in shunting well-oxygenated blood to the brain and myocardium in late normal pregnancy than in early gestation, which leads to increased fetal liver perfusion.  相似文献   

9.
In adults, the responses to acute haemorrhage vary greatly depending on the amount of blood lost. While many studies have documented fetal responses to mild haemorrhage, fetal responses to severe haemorrhage are not known. In this study we examined the effect of acute, severe haemorrhage in fetal lambs. Despite the severity of haemorrhage, we found that mean arterial blood pressure was restored within 2 min, and heart rate was restored within 30 min. This restoration of blood pressure and heart rate was facilitated by an increase in peripheral vascular resistance mediated in part by secretion of catecholamines and plasma renin. In addition, about 40% of the shed blood volume was restored within 30 min by fluid from either the fetal interstitium or placenta. The PO2 of umbilical venous blood increased from 33 +/- 9 mmHg to 49 +/- 17 mmHg 2 min post-haemorrhage, and to 47 +/- 15 mmHg 30 min post-haemorrhage. However, this increase was not sufficient to offset the fall in both haemoglobin concentration and umbilical-placental blood flow, so that oxygen delivery decreased from 21.1 +/- 5.5 ml/min per kg to 9.1 +/- 5.2 ml/min per kg 2 min post-haemorrhage, and 14.1 +/- 9.2 ml/min per kg 30 min post-haemorrhage. Because of this decrease in oxygen delivery, oxygen consumption fell and a metabolic acidemia ensued. Nevertheless, oxygen delivery to the heart and brain was maintained because hepatic vasoconstriction diverted more of the well oxygenated umbilical venous return through the ductus venosus. Although the fetus was able to tolerate acute loss of 40% of blood volume, larger volumes of haemorrhage resulted in fetal death.  相似文献   

10.
Lactate is produced by the sheep placenta and is an important metabolic substrate for fetal sheep. However, lactate uptake and release by the fetal liver have not been assessed directly. We measured lactate flux across the liver in 16 fetal sheep at 129 (120-138) days gestation that had catheters chronically maintained in the fetal descending aorta, inferior vena cava, right or left hepatic vein, and umbilical vein. Lactate and hemoglobin concentrations and oxygen saturation were measured in blood drawn from all vessels. Umbilical venous, portal venous, and hepatic blood flow were measured by injecting radionuclide-labeled microspheres into the umbilical vein while obtaining a reference sample from the descending aorta. We found net hepatic uptake of lactate (5.0 +/- 4.4 mg/min per 100 g liver). A large quantity of lactate was delivered to the liver (94.2 +/- 78.1 mg/min per 100 g), so that the hepatic extraction of lactate was only 7.7 +/- 6.5%. Hepatic oxygen consumption was 3.18 +/- 3.3 ml/min per 100 g, and the hepatic lactate/oxygen quotient was 2.07 +/- 1.54. There was no significant correlation between hepatic lactate uptake and hepatic lactate or glucose delivery, hepatic oxygen consumption, hepatic blood flow, hepatic glucose flux, total body oxygen consumption, arterial pH, oxygen content, or oxygen saturation. There was, however, a significant correlation between hepatic lactate uptake and umbilical lactate uptake (r = 0.74, P less than 0.005) such that net hepatic lactate uptake was nearly equivalent to that produced across the umbilical-placental circulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Observations were made of the responses of the uterine blood flow in the near-term pregnancy to occlusion of the umbilical circulation to a few cotyledons of the near-term sheep placenta and in one placenta of the multiparous rabbit pregnancy. It was found that the uterine blood flow declined to 67% of its predicted value 1 day after umbilical ligation in the sheep placenta and to 61% of its predicted value 1 day after the death of one of the fetuses of the rabbit pregnancy. The change in the uterine blood flow in response to the occlusion of the umbilical blood supply to the adjacent area is a local response and is similar in its time course and magnitude to the response of the whole placenta which has been previously observed by Raye et al. (9). This local response of the uterine blood flow is considered to be evidence that the uterine blood flow is in part determined and controlled by the structural or chemical nature of the adjacent fetal compartment.  相似文献   

12.
The pressure drop and pressure pulses in the isthmus of the ductus venosus (DV) in fetal sheep have not been measured directly and related to flow. In eight acutely anesthetized fetal sheep, a 3-Fr tip pressure transducer (TP) was inserted from the external jugular into the umbilical vein (UV). Ultrasound Doppler flow velocities, TP position, and intravenous pressures were recorded in the UV, DV, and inferior vena cava (VC) while the TP was withdrawn. Flow was steady in the UV, but small pressure fluctuations (<0.4 mmHg) could be detected. Time-averaged pressure dropped 1.9 mmHg (mean; 0.5-3.3 mmHg 95% confidence interval) across the DV isthmus. Pressure pulses increased from 1.7 mmHg (mean; 1.2-2.1 mmHg 95% confidence interval) in the DV to 3.9 mmHg (mean; 1.8-6.0 mmHg 95% confidence interval) in the inferior VC. The pressure wave from the heart arrived later [0.053 s (mean; 0.025-0.080 s 95% confidence interval)] in the isthmus of the DV than in the diaphragmatic inferior VC, indicating a wave velocity of approximately 1.1 m/s. At all locations, pressures and flow velocities were inversely related.  相似文献   

13.
The veins distributing oxygenated blood from the placenta to the fetal body have been given much attention in clinical Doppler velocimetry studies, in particular the ductus venosus. The ductus venosus is embedded in the left liver lobe and connects the intra-abdominal portion of the umbilical vein (IUV) directly to the inferior vena cava, such that oxygenated blood can bypass the liver and flow directly to the fetal heart. In the current work, we have developed a mathematical model to assist the clinical assessment of volumetric flow rate at the inlet of the ductus venosus. With a robust estimate of the velocity profile shape coefficient (VC), the volumetric flow rate may be estimated as the product of the time-averaged cross-sectional area, the time-averaged cross-sectional maximum velocity and the VC. The time average quantities may be obtained from Doppler ultrasound measurements, whereas the VC may be estimated from numerical simulations. The mathematical model employs a 3D fluid structure interaction model of the bifurcation formed by the IUV, the ductus venosus and the left portal vein. Furthermore, the amniotic portion of the umbilical vein, the right liver lobe and the inferior vena cava were incorporated as lumped model boundary conditions for the fluid structure interaction model. A hyperelastic material is used to model the structural response of the vessel walls, based on recently available experimental data for the human IUV and ductus venous. A parametric study was constructed to investigate the VC at the ductus venosus inlet, based on a reference case for a human fetus at 36 weeks of gestation. The VC was found to be \(0.687\,\pm \,0.023\) (Mean \(\pm \) SD of parametric case study), which confirms previous studies in the literature on the VC at the ductus venosus inlet. Additionally, CFD simulations with rigid walls were performed on a subsection of the parametric case study, and only minor changes in the predicted VCs were observed compared to the FSI cases. In conclusion, the presented mathematical model is a promising tool for the assessment of ductus venosus Doppler velocimetry.  相似文献   

14.
Effect of reduced uterine blood flow on fetal and maternal cortisol   总被引:9,自引:0,他引:9  
We have measured the changes in fetal and maternal plasma concentrations of cortisol in relation to blood gases and percent oxygen saturation during 2- and 4-h episodes of reversibly reduced uterine blood flow in sheep between 120 days gestation and term. During that period of reduced uterine blood flow there was a significant decrease in fetal arterial percent oxygen saturation (SaO2), PO2 and pH. Fetal SaO2 decreased from 59.5 +/- 3.2% to 31.8% +/- 2.8% by 15 min, 32.9 +/- 2.9% by 60 min, and 33.5 +/- 2.9% by 120 min. Fetal PO2 decreased from 3.2 +/- 0.1 KPa to 2.0 +/- 0.2 KPa by 15 min, 2.2 +/- 0.2 KPa by 60 min and 2.3 +/- 0.1 KPa by 120 min. Fetal pH decreased from 7.36 +/- 0.01 to 7.30 +/- 0.03 by 15 min, 7.27 +/- 0.02 by 60 min and 7.25 +/- 0.03 by 120 min. During the period of reduced uterine blood flow, fetal plasma concentrations of cortisol increased from 37.1 +/- 10.8 nmol/l to 53.3 +/- 9.2 nmol/l by 15 min, 49.2 +/- 11.4 nmol/l by 60 min and 43.3 +/- 9.0 nmol/l by 120 min. The greatest percentage increase in fetal plasma concentrations of cortisol occurred in fetuses of 126-139 days gestation. There was no significant change in maternal blood gases, SaO2 or plasma concentrations of cortisol. These experiments demonstrate that there is a significant increase in fetal plasma concentrations of cortisol in response to reductions in uterine blood flow from as early as 120 days gestation.  相似文献   

15.
The effects of acute asphyxia on both the time course of blood flow changes in central and peripheral organs, including the skin, and the time course of changes in oxygen consumption were studied in 9 unanaesthetized fetal sheep in utero at 130 +/- 2 days of gestation during 4-min arrest of uterine blood flow. Blood flow distribution and total oxygen consumption were determined at 1-min intervals during asphyxia using isotope-labelled microspheres (15 micrograms diameter) and by calculating the decline of the arterial O2 content, respectively. During asphyxia peripheral blood flow including that to the skin, scalp, and choroid plexus decreased rapidly, whereas blood flow to the heart, brain stem and (in surviving fetuses only) adrenals increased slowly. Total oxygen consumption fell exponentially with time and was closely correlated with the fall in both arterial oxygen content and peripheral blood flow; the time courses of these changes were very similar to those of the decreasing blood flows to the skin and scalp. Blood flow within the brain was redistributed at the expense of the cerebrum and the choroid plexus; the total blood flow to the brain did not change. In the 5 fetuses that died during the recovery period adrenal blood flow failed to increase and, at the nadir of asphyxia, peripheral vessels dilated and central vessels constricted. We conclude that in fetal sheep near term during acute asphyxia the time course of changes in blood flow to central and peripheral organs is different; total oxygen consumption depends on arterial O2 content and peripheral blood flow; total blood flow to the brain does not change, but is redistributed towards the brain stem at the expense of the cerebrum and choroid plexus; fetal death is preceded by a failure of adrenal blood flow to increase, by peripheral vasodilatation, and by central vasoconstriction and skin blood flow validly indicates rapid changes in the distribution of blood flow and the changes in oxygen consumption that accompany it.  相似文献   

16.
Pregnant sheep were chronically instrumented with fetal and maternal catheters and an inflatable occluder and electromagnetic flow transducer were placed on the uterine artery. Uterine blood flow was reduced for approximately 15 minutes to 25 percent, 50 percent, or 75 percent of control uterine blood flow. Fetal blood gases, arterial blood pressure, heart rate and regional distribution of blood flow (by radioactive microspheres) were measured. With progressive reduction of uterine blood flow there was an increasing degree of fetal asphyxia, as measured by blood gases and acid base state. At moderate degrees of asphyxia the fetus responded by redistribution of blood flow to certain organs, namely heart, brain, and adrenal gland, thus preserving oxygenation of these organs. During the most severe degree of asphyxia induced by reduction of uterine blood flow to 25 percent of control there is a reduction of fetal blood flow due to generalized vasoconstriction of essentially all organs. We hypothesize that this is due to the inability of the vasodilator mechanisms to sufficiently oppose the vasoconstrictor mechanisms. Also, because the oxygen consumption of the "vital" organs would be decreased this can be described as the stage of decompensation.  相似文献   

17.
To determine the capacity of the fetus to adapt to chronic O2 deficiency produced by decreased placental perfusion in the early development of growth retardation, we embolized the umbilical placental vascular bed of fetal sheep for a period of 9 days. Fetal umbilical placental embolization decreased arterial O2 content by 39%, decreased total placental blood flow by 33%, and produced a 20% reduction in mean fetal body weight. Neither the combined ventricular output nor the regional blood flow distribution was significantly different between the 8 growth-retarded and 7 normally grown fetuses despite the 39% decrease in fetal arterial O2 content. Thus a 33% reduction in total placental blood flow restricts normal fetal growth, but does not exceed the placental circulatory reserve capacity necessary to maintain normal basal metabolic oxygenation. Because the proportion of combined ventricular output to the placenta at rest is decreased in late IUGR fetuses but not in early IUGR fetuses, despite chronic oxygen deficiency, we conclude that the growth retarded fetus maintains a normal regional blood flow distribution until the placental circulatory reserve capacity is depleted.  相似文献   

18.
In an attempt to explore the acute maternal responses to exercise we measured oxygen consumption, uterine blood flow, and blood volume in 13 chronically catheterized pregnant sheep at rest and while exercising on a treadmill. With maximal exercise O2 consumption increased 5.6 times, from a resting value of 5.8 +/- 0.3 (SE) to 32.1 +/- 2.8 ml X min -1 X kg -1, cardiac output increased 2.7 times, from 149 +/- 8 to 404 +/- 32 ml X min -1 X kg -1, and arteriovenous oxygen content difference increased 2.1 times, from 3.9 +/- 0.2 to 8.0 +/- 0.4 ml X dl -1. Total uterine blood flow decreased from a mean resting value of 292 +/- 6 to 222 +/- 19 ml X min -1 X kg fetus -1 near exhaustion during prolonged (40 min) exercise at 70% maximal oxygen consumption. Maternal blood volume decreased 14% (P less than 0.01) from 67.5 +/- 3.7 to 57.8 +/- 3.6 ml X kg -1 during this exercise period, with a 20% decrease in plasma volume without a change in red cell volume. We conclude that uterine blood flow decreases during maternal exercise. However, hemoconcentration helps to maintain a relatively constant oxygen delivery to the uterus.  相似文献   

19.
Evidence is presented to show that there is a functional bypass in the liver of the fetal piglet between the umbilical vein and the posterior vena cava. Injections of labelled microspheres (14 micrometer) into the umbilical vein in six fetuses in late gestation resulted in the appearance of radioactivity in the arterial blood and throughout the tissues of all piglets. About 60% of the umbilical venous blood bypassed the liver whereas in a fetal foal, injection in a similar manner, no evidence for a shunt was found. Radiographic studies confirmed the presence of a large vascular connection, equivalent to the ductus venosus, between the umbilical vein and posterior vena cava in the fetal piglet.  相似文献   

20.
The aim of this study was to describe the changes of uterine artery, umbilical artery and fetal abdominal aorta, renal and internal carotid arteries blood flow in abnormal canine pregnancy. Twenty-two, Brucella-negative pregnant bitches were retrospectively classified into abnormal (which had either interrupted their pregnancy between days 52 and 60 or had perinatal death >60% of the litter; n=11) and normal (which had delivered healthy puppies at term; n=11). In all the animals, color and pulsed-wave Doppler examinations of uterine artery were conducted every 10 days from Day 20 to 50 from estimated luteinizing hormone peak. Doppler ultrasonography was also conducted in the fetuses to assess umbilical artery, abdominal aorta, renal and internal carotid arteries from Day 40 to 60 of gestation. Throughout the study, resistance index (RI) of uterine, umbilical and fetal renal arteries decreased up to -15% compared to -36% (P<0.01), -11% compared to -23% (P<0.05) and 2% compared to -13% (P<0.05), respectively in the abnormal and normal bitches. Fetal abdominal aorta and internal carotid did not differ between groups (P>0.05). It is concluded that in dogs, uterine artery, umbilical artery and fetal renal artery RI differ between normal and abnormal gestation being useful for the prediction of adverse obstetric outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号