首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric changes could strongly influence how terrestrial ecosystems function by altering nutrient cycling. We examined how the dynamics of nutrient release from leaf litter responded to two important atmospheric changes: rising atmospheric CO2 and tropospheric O3. We evaluated the independent and combined effects of these gases on foliar litter nutrient dynamics in aspen (Populus tremuloides Michx) and birch (Betula papyrifera Marsh)/aspen communities at the Aspen FACE Project in Rhinelander, WI. Naturally senesced leaf litter was incubated in litter bags in the field for 735 days. Decomposing litter was sampled six times during incubation and was analyzed for carbon, and both macro (N, P, K, S, Ca, and Mg) and micro (Mn, B, Zn and Cu) nutrient concentrations. Elevated CO2 significantly decreased the initial litter concentrations of N (−10.7%) and B (−14.4%), and increased the concentrations of K (+23.7%) and P (+19.7%), with no change in the other elements. Elevated O3 significantly decreased the initial litter concentrations of P (−11.2%), S (−8.1%), Ca (−12.1%), and Zn (−19.5%), with no change in the other elements. Pairing concentration data with litterfall data, we estimated that elevated CO2 significantly increased the fluxes to soil of all nutrients: N (+12.5%), P (+61.0%), K (+67.1%), S (+28.0%), and Mg (+40.7%), Ca (+44.0%), Cu (+38.9%), Mn (+62.8%), and Zn (+33.1%). Elevated O3 had the opposite effect: N (−22.4%), P (−25.4%), K (−27.2%), S (−23.6%), Ca (−27.6%), Mg (−21.7%), B (−16.2%), Cu (−20.8%), and Zn (−31.6%). The relative release rates of the nine elements during the incubation was: K ≥ P ≥ mass ≥ Mg ≥ B ≥ Ca ≥ S ≥ N ≥ Mn ≥ Cu ≥ Zn. Atmospheric changes had little effect on nutrient release rates, except for decreasing Ca and B release under elevated CO2 and decreasing N and Ca release under elevated O3. We conclude that elevated CO2 and elevated O3 will alter nutrient cycling more through effects on litter production, rather than litter nutrient concentrations or release rates.  相似文献   

2.
Dual energy x-ray absorptiometry (DEXA) offers the possibility of assessing regional soft tissue composition, i.e. lean mass (LM) and fat mass : LM may be considered a measure of muscle mass. We examined age-related differences in LM, percentage fat (%fat) and muscle strength in 100 healthy non-athletic women aged 18–87 years. Relationships between muscle strength and leg LM in 20 elite female weight lifters and in 18 inactive women with previous hip fractures were also studied. The LM and %fat of the whole body, trunk, arms and legs were derived from a whole body DEXA scan. Isokinetic knee extensor strength (KES) and flexor strength (KFS) at 30° · s–1 were assessed using an isokinetic dynamometer. The women aged 71–87 years had 35% lower KES and KFS than the women aged 18–40 years (P < 0.0001). Differences in LM were less pronounced. The LM of the legs, for instance, was 15% lower in the old than in the young women (P < 0.0001). In a multiple regression analysis with age, body mass, height and leg LM or KES as independent variables and KES or leg LM as the dependent variable, age was the most important predictor of KES (r partial = −0.74, P < 0.0001). The same applied to KFS. Body mass, not age, was the most important predictor of leg LM (r partial = 0.65, P < 0.0001) and of LM at all other measurement sites. The LM measured at different regions decreased equally with increasing age. The KES:leg LM ratio was negatively correlated with age (r = −0.70, P < 0.0001). The weight lifters had significantly higher KES:leg LM ratios than age-matched controls (+12%, P < 0.0001) and vice versa for the women with previous hip fractures (–36%, P < 0.0001). In conclusion, from our study it would seem that in healthy nonathletic women, age is a more important determinant of muscle strength than is LM as measured by DEXA. Muscle strengthening exercises and inactivity seem to have a considerably stronger influence on muscle strength than on LM. Accepted: 27 August 1996  相似文献   

3.
The purpose of this study was to investigate the profiles of body composition and force generation capability in professional Sumo wrestlers. The subjects were 23 professional Sumo wrestlers [mean age 22.0 (SEM 1.2) years] including those ranked in the lower- (Jonokuchi, n = 10), middle- (Sandanme, n = 8) and higher-division (Makuuchi, n = 5), 22 weight-classified athletes [5 judo athletes, 5 wrestlers, and 12 weight lifters, mean age 20.7 (SEM 0.7) years], and 21 untrained men [mean age 20.1 (SEM 0.2) years]. In the Sumo wrestlers, body mass ranged between 77.0 and 150.0 kg, body mass index between 25.9 and 44.5 kg · m−2, relative fat mass (%FM) between 11.9 and 37.0%, and fat-free mass (FFM) between 59.1 and 107.6 kg. The Sumo wrestlers showed significantly higher %FM and smaller elbow and knee extensor cross-sectional areas (CSA) than the weight-classified athletes who weighed from 90.4 kg to 133.2 kg. Moreover, isokinetic forces in the flexion and extension of elbow and knee joints, respectively, at three constant velocities of 1.05, 3.14 and 5.24 rad · s−1 were significantly lower in the Sumo wrestlers than in the weight-classified athletes and untrained subjects when expressed per unit of body mass. However, the median value of FFM relative to body height in the higher-division Sumo wrestlers was ranked high in the range of magnitude among those reported previously in the literature for heavyweight athletes. Moreover, the results on the comparisons within the Sumo wrestlers showed that not only FFM but also force generation capability, expressed both as an absolute term and as a value relative to both body mass and muscle CSA, might be factors contributing to the performance of Sumo wrestlers. Accepted: 18 August 1997  相似文献   

4.
Microsphere and morphometric techniques were used to investigate any circulatory changes that accompany secretion by the salt glands of hatchling Chelonia mydas. Salt glands were activated by a salt load of 27.0 mmol NaCl kg body mass (BM)−1, resulting in a mean sodium secretion rate of 4.14 ± 0.11 mmol Na kg BM−1 h−1 for a single gland. Microsphere entrapment was approximately 160–180 times greater in the active salt gland than the inactive gland, inferring a similar change in blood flow through salt gland capillaries. The concentration of microspheres trapped in the salt gland was significantly correlated with the rate of tear production (ml kg BM−1 h−1) and the total rate of sodium secretion (mmol Na kg BM−1 h−1) but not with tear sodium concentration (mmol Na l−1). Adrenaline (500 μg kg BM−1) inhibited tear production within 2 min and reduced microsphere entrapment by approximately 95% compared with active glands. The volume of filled blood vessels increased from 0.03 ± 0.01% of secretory lobe volume in inactive salt gland sections to 0.70 ± 0.11% in active gland sections. The results demonstrate that capillary blood flow in the salt gland of C. mydas can regulate the activity of the gland as a whole. Accepted: 12 July 2000  相似文献   

5.
The aim of this study was to quantify the degenerative and regenerative changes in rat soleus muscle resulting from 3-week hindlimb suspension at 45° tilt (HS group, n = 8) and 4-week normal cage recovery (HS-R group, n = 7). Degenerative changes were quantified by microscope examination of muscle cross sections, and the myosin heavy chain (MHC) composition of soleus muscles was studied by sodium dodecyl sulphate polyacrylamide gel electrophoresis. At the end of 3-week hindlimb suspension, histological signs of muscle degenerative changes were detected in soleus muscles. There was a significant variability in the percentage of fibres referred to as degenerating (%dg) in individual animals in the HS group [%dg = 8.41 (SEM 0.5)%, range 4.66%–14.08%]. Moreover, %dg varied significantly along the length of the soleus muscle. The percentage of fibres with internal nuclei was less than %dg in HS-soleus muscles [4.12 (SEM 0.3)%, range 1.24%–8.86%]. In 4-week recovery rats, the greater part of the fibres that were not referred to as normal, retained central nuclei [15.8 (SEM 2.2)%, range 6.2%–21.1%]. A significant increase in the slow isoform of MHC was recorded in the HS-R rats, compared to muscles from age-matched rats (P < 0.01). These results would suggest that a cycle of myofibre degeneration-regeneration occurred during HS and passive recovery, and that the increased accumulation of slow MHC observed in soleus muscles after recovery from HS could be related to the prevalence of newly formed fibres. Accepted: 14 October 1996  相似文献   

6.
The purpose of this investigation was to determine whether long-term, heavy resistance training would cause adaptations in rat skeletal muscle structure and function. Ten male Wistar rats (3 weeks old) were trained to climb a 40-cm vertical ladder (4 days/week) while carrying progressively heavier loads secured to their tails. After 26 weeks of training the rats were capable of lifting up to 800 g or 140% of their individual body mass for four sets of 12–15 repetitions per session. No difference in body mass was observed between the trained rats and age-matched sedentary control rats. Absolute and relative heart mass were greater in trained rats than control rats. When expressed relative to body mass, the mass of the extensor digitorum longus (EDL) and soleus muscles was greater in trained rats than control rats. No difference in absolute muscle mass or maximum force-producing capacity was evident in either the EDL or soleus muscles after training, although both muscles exhibited an increased resistance to fatigue. Individual fibre hypertrophy was evident in all four skeletal muscles investigated, i.e. EDL, soleus, plantaris and rectus femoris muscles of trained rats, but muscle fibre type proportions within each of the muscles tested remained unchanged. Despite an increased ability of the rats to lift progressively heavier loads, this heavy resistance training model did not induce gross muscle hypertrophy nor did it increase the force-producing capacity of the EDL or soleus muscles. Accepted: 17 September 1997  相似文献   

7.
Shrew species of the subfamily Soricinae have unusually high metabolic rates when compared to Crocidurinae shrews and other similar-sized mammals. The aim of this study was to clarify whether the high basal metabolic rate of Soricinae shrews is reflected in a high capillary density in their muscles. To this end, the capillary supply of four limb muscles and diaphragm of the common shrew (Sorex araneus) was quantified from cross-sectioned muscles. The capillary densities of the limb muscles were 2575 ± 329, 3111 ± 299, 2812 ± 197 and 2752 ± 173 capillaries mm−2 fibre area in gastrocnemius lateralis, g. medialis, plantaris and soleus, respectively. Capillary density of the shrew diaphragm (6691 ± 1057) was double that of the limb muscles. This value is among the highest ever measured in mammals. In general, the capillary supply in the hind limb of the common shrew is about 3–4 times higher than commonly found in the leg muscles of the laboratory rat or other bigger mammals, but similar to those in Crocidurinae shrews and some small rodents. Thus the high resting metabolism of the common shrew is not associated with an extraordinarily high capillary density. The apparent disparity between basal metabolic rate and muscle capillary supply in S. araneus is probably due to the small aerobic scope of shrews in the subfamily Soricinae. Accepted: 22 January 1998  相似文献   

8.
The aim of this study was to follow up whether the modification of pro-antioxidant status by 8-day oral application of N-acetylcysteine (NAC) in healthy men affects the haematological response, whether there is a direct relationship between antioxidant defences and erythropoietin (EPO) secretion and whether NAC intake enhances exercise performance. Fifteen healthy men were randomly assigned to one of two groups: control or NAC (1,200 mg d−1 for 8 days prior to and 600 mg on the day of exercise trial). To measure the ergogenic effectiveness of NAC, subjects performed incremental cycle exercise until exhaustion. NAC administration significantly influenced the resting and post-exercise level of glutathione (+31%) as well as the resting activity of glutathione enzymes (glutathione reductase, −22%; glutathione peroxidase, −18%). The oxidative damage markers, i.e., protein carbonylation and lipid peroxidation products (thiobarbituric acid reactive substance) were reduced by NAC by more than 30%. NAC noticeably affected the plasma level of EPO (+26%), haemoglobin (+9%), haematocrit (+9%) and erythrocytes (−6%) at rest and after exercise. The mean corpuscular volume and the mean corpuscular haemoglobin increased by more than 12%. Plasma total thiols increased by 17% and directly correlated with EPO level (r = 0.528, P < 0.05). NAC treatment, contrary to expectations, did not significantly affect exercise performance. Our study has shown that 8-day NAC intake at a daily dose of 1,200 mg favours a pro-antioxidant status and affects haematological indices but does not enhance exercise performance.  相似文献   

9.
This study compared the effects of supplementing the normal diets of six trained cyclists [maximal oxygen uptake O2max) 4.5 (0.36)l · min−1; values are mean (SD)] with additional carbohydrate (CHO) on muscle glycogen utilisation during a 1-h cycle time-trial (TT). Using a randomised crossover design, subjects consumed either their normal diet (NORM) for 3 days, which consisted of 426 (137) g · day−1 CHO [5.9 (1.4) g · kg−1 body mass (BM)], or additional CHO (SUPP) to increase their intake to 661 (76) g · day−1 [9.3 (0.7) g · kg−1 BM]. The SUPP diet elevated muscle glycogen content from 459 (83) to 565 (62) mmol · kg−1 dry weight (d.w.) (P < 0.05). However, despite the increased pre-exercise muscle glycogen stores, there was no difference in the distance cycled during the TT [40.41 (1.44) vs 40.18 (1.76) km for NORM and SUPP, respectively]. With NORM, muscle glycogen declined from 459 (83) to 175 (64) mmol · kg−1 d.w., whereas with SUPP the corresponding values were 565 (62) and 292 (113) mmol · kg−1 d.w. Accordingly, both muscle glycogen utilisation [277 (64) vs 273 (114) mmol · kg−1 d.w.] and total CHO oxidation [169 (20) vs 165 (30) g · h−1 for NORM and SUPP, respectively] were similar. Neither were there any differences in plasma glucose or lactate concentrations during the two experimental trials. Plasma glucose concentration averaged 5.5 (0.5) and 5.6 (0.6) mmol · l−1, while plasma lactate concentration averaged 4.4 (1.9) and 4.4 (2.3) mmol · l−1 for NORM and SUPP, respectively. The results of this study show that when well-trained subjects increase the CHO content of their diet for 3 days from 6 to 9 g · kg−1 BM there is only a modest increase in muscle glycogen content. Since supplementary CHO did not improve TT performance, we conclude that additional CHO provides no benefit to performance for athletes who compete in intense, continuous events lasting 1 h. Furthermore, the substantial muscle CHO reserves observed at the termination of exercise indicate that whole-muscle glycogen depletion does not determine fatigue at this exercise intensity and duration. Accepted: 25 November 1996  相似文献   

10.
We used electron microscopy to evaluate the effect of support unloading of m. soleus in adult Wistar rats (restrained in antiorthostatic position for 23–24 h/day within 24 days) on the ultrastructure of the intrafusal fibers and motor neuromuscular junctions of the muscle spindles, as well as the efficiency of intermittent hypergravity (+2GZ; 1 h/day for 19 days in a centrifuge in hypokinetic cages) as a countermeasure used in conditions of support unloading of this muscle. In the absence of support on the hind limbs, most of intrafusal fibers of m. soleus preserved the typical ultrastructure, while the axon terminals of the neuromuscular junctions accumulated a lot of synaptic vesicles (including large vesicles); the coated vesicles were absent due to unloading of the muscle and its muscle spindles (no contractions of the intrafusal fibers). A short-term effects of hypergravity at the background of support unloading of m. soleus mostly induced static loading of the muscle inducing different responses of the intrafusal fibers in different regions of the muscle spindles: local lysis of myofilaments was observed in single intrafusal fibers of the equatorial and intracapsular motor regions, while myofibrils remained intact in most fibers in the intra- and extracapsular regions of the spindles. The revealed adaptive response of the intrafusal fibers is, on the one hand, due to their specific innervation and ultrastructure and, on the other hand, to positive effect of hypergravity on the motor and extracapsular regions of the muscle spindles. Hypergravity decreased the number of synaptic vesicles and induced appearance of the coated vesicles in the axon terminals of the neuromuscular junctions of the intrafusal fibers in the animals restrained in antiorthostatic position (support unloading of m. soleus), which is due to increased functional load of the muscle. The ultrastructure of the muscle spindles adequately reflected the functional status of the postural m. soleus both during support unloading and support unloading combined with hypergravity load.  相似文献   

11.
The present study was undertaken to determine the effects of endurance training on glycogen kinetics during exercise. A new model describing glycogen kinetics was applied to quantitate the rates of synthesis and degradation of glycogen. Trained and untrained rats were infused with a 25% glucose solution with 6-3H-glucose and U-14C-lactate at 1.5 and 0.5 μCi · min−1 (where 1 Ci = 3.7 × 1010 Bq), respectively, during rest (30 min) and exercise (60 min). Blood samples were taken at 10-min intervals starting just prior to isotopic infusion, until the cessation of exercise. Tissues harvested after the cessation of exercise were muscle (soleus, deep, and superficial vastus lateralis, gastrocnemius), liver, and heart. Tissue glycogen was quantitated and analyzed for incorporation of 3H and 14C via liquid scintillation counting. There were no net decreases in muscle glycogen concentration from trained rats, whereas muscle glycogen concentration decreased to as much as 64% (P < 0.05) in soleus in muscles from untrained rats after exercise. Liver glycogen decreased in both trained (30%) and untrained (40%) rats. Glycogen specific activity increased in all tissues after exercise indicating isotope incorporation and, thus, glycogen synthesis during exercise. There were no differences in muscle glycogen synthesis rates between trained and untrained rats after exercise. However, training decreased muscle glycogen degradation rates in total muscle (i.e., the sum of the degradation rates of all of the muscles sampled) tenfold (P < 0.05). We have applied a model to describe glycogen kinetics in relation to glucose and lactate metabolism during exercise in trained and untrained rats. Training significantly decreases muscle glycogen degradation rates during exercise. Accepted: 22 May 1998  相似文献   

12.
Effects of 14 days of hindlimb unloading or synergist ablation-related overloading with or without deafferentation on the fiber cross-sectional area, myonuclear number, size, and domain, the number of nucleoli in a single myonucleus, and the levels in the phosphorylation of the ribosomal protein S6 (S6) and 27-kDa heat shock protein (HSP27) were studied in rat soleus. Hypertrophy of fibers (+24%), associated with increased nucleolar number (from 1–2 to 3–5) within a myonucleus and myonuclear domain (+27%) compared with the preexperimental level, was induced by synergist ablation. Such phenomena were associated with increased levels of phosphorylated S6 (+84%) and HSP27 (+28%). Fiber atrophy (–52%), associated with decreased number (–31%) and domain size (–28%) of myonuclei and phosphorylation of S6 (–98%) and HSP27 (–63%), and with increased myonuclear size (+19%) and ubiquitination of myosin heavy chain (+33%, P > 0.05), was observed after unloading, which inhibited the mechanical load. Responses to deafferentation, which inhibited electromyogram level (–47%), were basically similar to those caused by hindlimb unloading, although the magnitudes were minor. The deafferentation-related responses were prevented and nucleolar number was even increased (+18%) by addition of synergist ablation, even though the integrated electromyogram level was still 30% less than controls. It is suggested that the load-dependent maintenance or upregulation of the nucleolar number and/or phosphorylation of S6 and HSP27 plays the important role(s) in the regulation of muscle mass. It was also indicated that such regulation was not necessarily associated with the neural activity. rat soleus muscle; functional overload; deafferentation; 27-kDa heat shock protein; ubiquitination of myosin heavy chain  相似文献   

13.
Open-flow oxygen and carbon dioxide respirometry was used in Neumünster Zoo (Germany) to examine the energy requirements of six Asian small-clawed otters (Amblonyx cinerea) at rest and swimming voluntarily under water. Our aim was to compare their energy requirements with those of other warm-blooded species to elucidate scale effects and to test whether the least aquatic of the three otter species differs markedly from these and its larger relatives. While at rest on land (16 °C, n = 26), otters (n = 6, mean body mass 3.1 ± 0.4 kg) had a respiratory quotient of 0.77 and a resting metabolic rate of 5.0 ± 0.8 Wkg−1(SD). This increased to 9.1 ± 0.8 Wkg−1 during rest in water (11–15 °C, n = 4) and to 17.6 ± 1.4 Wkg−1 during foraging and feeding activities in a channel (12 °C, n = 5). While swimming under water (n = 620 measurements) in an 11-m long channel, otters preferred a speed range between 0.7 ms−1 and 1.2 ms−1. Transport costs were minimal at 1 ms−1 and amounted to 1.47 ± 0.24 JN−1 m−1 (n = 213). Metabolic rates of small-clawed otters in air were similar to those of larger otter species, and about double those of terrestrial mammals of comparable size. In water, metabolic rates during rest and swimming were larger than those extrapolated from larger otter species and submerged swimming homeotherms. This is attributed to high thermoregulatory costs, and high body drag at low Reynolds numbers. Accepted: 21 December 1998  相似文献   

14.
In this study we measured growth and milk intake and calculated energy intake and its allocation into metabolism and stored tissue for hooded seal (Cystophora cristata) pups. In addition, we measured mass loss, change in body composition and metabolic rate during the first days of the postweaning fast. The mean body mass of the hooded seal pups (n = 5) at the start of the experiments, when they were new-born, was 24.3 ± 1.3 kg (SD). They gained an average of 5.9 ± 1.1. kg · day−1 of which 19% was water, 76% fat and 5% protein. This corresponds to an average daily energy deposition of 179.8 ± 16.0 MJ. The pups were weaned at an average body mass of 42.5 ± 1.0 kg 3.1 days after the experiment was initiated. During the first days of the postweaning fast the pups lost an average of 1.3 ± 0.5␣kg of body mass daily, of which 56% was water, 16% fat and 28% protein. During the nursing period the average daily water influx for the pups was 124.6 ± 25.8 ml · kg−1. The average CO2 production during this period was 1.10 ± 0.20 ml · g−1 · h−1, which corresponds to a field metabolic rate of 714 ± 130 kJ ·  kg−1 · day−1, or 5.8 ± 1.1 times the predicted basal metabolic rate according to Kleiber (1975). During the postweaning fast the average daily water influx was reduced to 16.1 ± 6.6 ml · kg−1. The average CO2 production in␣this period was 0.58 ± 0.17 ml · g−1 · h−1 which corresponds to a field metabolic rate of 375 ± 108 kJ · kg−1 · day−1 or 3.2 ± 0.9 times the predicted basal metabolic rate. Average values for milk composition were 33.5% water, 58.6% fat and 6.2% protein. The pups drank an average of 10.4 ± 1.8␣kg of milk daily, which represents an energy intake of 248.9 ± 39.1 MJ · day−1. The pups were able to store 73.2 ± 7.7% of this energy as body tissue. Accepted: 15 August 1996  相似文献   

15.
We examined the extent of morphological alterations and the myosin heavy chain (MHC) distribution in the rat soleus muscle after a 4-week period of spontaneous recovery or retraining after hindlimb suspension (HS). Moreover, we tested the hypothesis that dantrolene sodium, which affects the flux of calcium over the sarcoplasmic reticulum membrane, was able to attenuate muscle damage. Three groups of rats were submitted to 3 weeks of HS, followed by either 4 weeks of unrestricted cage activity (HC, n = 7), or running training for the same period and were compared to age-matched animals (C, n = 8). Trained rats were treated with either placebo or dantrolene sodium (HTP, HTD, n = 8 each, respectively). Four weeks after HS recovery, the percentage of myofibres with internal nuclei (%in) was determined by histological staining with hematoxylin and eosin. %in was affected by the individual rat (P < 0.001), and was higher in the mid-belly region of the muscle (P < 0.05). Muscle damage, as estimated by %in, was more extensive in trained rats (i.e. HTP and HTD) than in HC animals (23% and 12%, respectively). Moreover, dantrolene sodium tended to exert a protective effect on training-induced muscle injury. A 12% increase in type I MHC was observed in both HTP and HTD rats, in comparison with group C animals (P < 0.001). The relative proportion of type-I MHC was inversely correlated with %in (r = −0.65, P < 0.001). Running recovery led to an increased citrate synthase activity in comparison with that of C or HC rats. In conclusion, the present findings demonstrate that running recovery from HS increases the incidence of muscle damage, and that dantrolene sodium administration has only limited protective effects against exercise-induced muscle injury. Accepted: 29 April 1997  相似文献   

16.
The coexistence of the Lakeland Downs short-tailed mouse Leggadina lakedownensis and house mouse Mus domesticus on Thevenard Island, in the arid north of Western Australia, prompted a study to compare their seasonal water and sodium metabolism using tritiated water and sodium-22 as tracers. Fractional water influx rates for M. domesticus (40.3 ± 1.6% total body-water day−1) were significantly higher than those for L. lakedownensis (25.3 ± 1.2% total body-water day−1). Water effluxes were higher in both species of mouse after the passage of a cyclonic storm near the study site. Water flux differences remained significant between species when turnover rates were scaled with body mass. A comparison of water influx rates of M. domesticus with those predicted for field populations of other eutherian rodents showed that rates for M. domesticus on Thevenard Island were higher than expected. In contrast, water influx rates for L. lakedownensis did not differ significantly from expected values for a desert rodent. Rates of sodium influx for M. domesticus (41.7 ± 3.6 mmol kg−1 day−1) were over twice those of L. lakedownensis (19.7 ± 4.8 mmol kg−1 day−1), and were reflected in the significantly higher concentrations of sodium ingested in the diet, and excreted in the urine, of M. domesticus. Furthermore, the rate of water influx was positively correlated with the rate of sodium influx in M. domesticus, suggesting that they were obtaining both water and sodium from the one dietary source. There was no evidence to suggest that mice of either species were experiencing water or sodium stress, because water and sodium influxes and effluxes remained in balance. These results suggest that M. domesticus on Thevenard Island had a higher-than-expected daily water requirement, and may represent a mesic deme of house mice that have yet to adapt to the island environment. Accepted: 9 May 1999  相似文献   

17.
Microgravity-induced changes in body composition (decrease in muscle mass and increase in fat mass) and energy metabolism were studied in seven healthy male subjects during a 42-day bed-rest in a head-down tilt (HDT) position. Resting energy expenditure (REE), fat and glucose oxidation were estimated by indirect calorimetry on days 0, +8 and +40 of the HDT period. Assessments were performed both in post-absorptive conditions and following two identical test meals given at 3-h intervals. Body composition (dual x-ray absorptiometry) was measured on days 0, +27, +42. Mean post-absorptive lipid oxidation decreased from 53 (SEM 8) mg · min−1 (day 0) to 32 (SEM 10) mg · min−1 (day 8, P=0.04) and 36 (SEM 8) mg · min−1 (day 40, P=0.06). Mean post-absorptive glucose oxidation rose from 126 (SEM 15) mg · min−1 (day 0) to 164 (SEM 14) mg · min−1 (day 8, P=0.04) and 160 (SEM 20) mg · min−1 (day 40, P=0.07). Mean fat-free mass (FFM) decreased between days 0 and 42 [58.0 (SEM 1.8) kg and 55.3 (SEM 1.7) kg, P<0.01] while fat mass increased without reaching statistical significance. The mean REE decreased from 1688 (SEM 50) kcal · day−1 to 1589 (SEM 42) kcal · day−1 (P=0.056). Changes in REE were accounted for by changes in FFM. Mean energy intake decreased from 2532 (SEM 43) kcal · day−1 to 2237 (SEM 50) kcal · day−1 (day 40, P<0.01) with only a minor decrease in the proportion of fat. We concluded that changes in fat oxidation at the whole body level can be found during HDT experiments. These changes were related to the decrease in FFM and could have promoted positive fat balance hence an increase in fat mass. Accepted: 26 March 1998  相似文献   

18.
The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained morphological changes in human skeletal muscle, leading to physical performance enhancement.  相似文献   

19.
The effect of castration on the development of muscle mass of postural and non-postural muscles was studied in 18 male mice (9 castrated, 9 uncastrated). Results obtained indicated that the castrated males grew faster and were bigger in body size and weight at maturity than the intact males. The bigger body size of castrated males was not due to larger muscle mass but was probably due to increased subcutaneous fat deposition. Atrophy of muscles usually observed following castration was significantly greater in the non-postural (biceps brachii) muscle of the forelimb as compared to the postural (triceps brachii) muscle of the forelimb. Conversely, the amount of reduction in muscle mass was similar in both postural (soleus) and non-postural (tibialis cranialis) muscles of the hindlimb.  相似文献   

20.
The role of thyroid hormones in the development of the locomotor and cardiac muscles of the barnacle goose (Branta leucopsis) was investigated. From 2 weeks of age, goslings were treated with thyroxine, triiodothyronine, or methimazole (a thyroid inhibitor). Birds were killed at 6 weeks (n = 5) or 9 weeks (n = 4) and various locomotor and cardiac muscle masses recorded and tissue samples taken for analysis of citrate synthase activity. The effects of thyroxine and triiodothyronine were not significantly different from each other, except in the case of the iliofibularis at 9 weeks. The mass-specific citrate synthase activity of the iliofibularis, semimembranosus muscles and liver were significantly increased by thyroid hormone treatment. Cardiac muscle showed a significant hypertrophy at 9 weeks of age following treatment with thyroxine. Hypothyroidism induced by treatment with methimazole exhibited the greatest effect on the pectoralis muscle, reducing citrate synthase activity by 33%. Mass-specific citrate synthase activity of the pectoralis and pectoralis mass (% body wt.) were found to be highly correlated (r 2 = 0.74) at 6 weeks of age. It is suggested that thyroid hormones may be involved in controlling the tissue-specific timing of the maturation of locomotor and cardiac muscles. Accepted: 16 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号