首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seeding specificity in amyloid growth induced by heterologous fibrils   总被引:5,自引:0,他引:5  
Over residues 15-36, which comprise the H-bonded core of the amyloid fibrils it forms, the Alzheimer's disease plaque peptide amyloid beta (Abeta) possesses a very similar sequence to that of another short, amyloidogenic peptide, islet amyloid polypeptide (IAPP). Using elongation rates to quantify seeding efficiency, we inquired into the relationship between primary sequence similarity and seeding efficiency between Abeta-(1-40) and amyloid fibrils produced from IAPP as well as other proteins. In both a solution phase and a microtiter plate elongation assay, IAPP fibrils are poor seeds for Abeta-(1-40) elongation, exhibiting weight-normalized efficiencies of only 1-2% compared with Abeta-(1-40) fibrils. Amyloid fibrils of peptides with sequences completely unrelated to Abeta also exhibit poor to negligible seeding ability for Abeta elongation. Fibrils from a number of point mutants of Abeta-(1-40) exhibit intermediate seeding abilities for wild-type Abeta elongation, with differing efficiencies depending on whether or not the mutation is in the amyloid core region. The results suggest that amyloid fibrils from different proteins exhibit structural differences that control seeding efficiencies. Preliminary results also suggest that identical sequences can grow into different conformations of amyloid fibrils as detected by seeding efficiencies. The results have a number of implications for amyloid structure and biology.  相似文献   

2.
Shivaprasad S  Wetzel R 《Biochemistry》2004,43(49):15310-15317
Most models for the central cross-beta folding unit in amyloid fibrils of the Alzheimer's plaque protein Abeta align the peptides in register in H-bonded, parallel beta-sheet structure. Some models require the Abeta peptide to undergo a chain reversal when folding into the amyloid core, while other models feature very long extended chains, or zigzag chains, traversing the protofilament. In this paper we introduce the use of disulfide bond cross-linking to probe the fold within the core and the packing interactions between beta-sheets. In one approach, amyloid fibrils grown under reducing conditions from each of three double cysteine mutants (17/34, 17/35, and 17/36) of the Abeta(1-40) sequence were subjected to oxidizing conditions. Of these three mutants, only the Leu17Cys/Leu34Cys peptide could be cross-linked efficiently while resident in fibrils. In another approach, double Cys mutants were cross-linked as monomers before aggregation, and the resulting fibrils were assessed for stability, antibody binding, dye binding, and cross-seeding efficiency. Here too, fibrils from the 17/34 double Cys mutant most closely resemble wild-type Abeta(1-40) fibrils. These data support models of the Abeta fibril in which the Leu17 and Leu34 side chains of the same peptide pack against each other at the beta-sheet interface within the amyloid core. Related cross-linking strategies may reveal longer range spatial relationships. The ability of the cross-linked 17/35 double Cys mutant Abeta to also make amyloid fibrils illustrates a remarkable plasticity of the amyloid structure and suggests a structural mechanism for the generation of conformational variants of amyloid.  相似文献   

3.
Alzheimer's disease is characterized by the presence of insoluble, fibrous deposits composed principally of amyloid beta (Abeta) peptide. A number of studies have provided information on the fibril structure and on the factors affecting fiber formation, but the details of the fibril structure are not known. We used fluorescence quenching to investigate the solvent accessibility and surface charge of the soluble Abeta(1-40) dimer and amyloid fibrils. Analogs of Abeta(1-40) containing a single tryptophan were synthesized by substituting residues at positions 4, 10, 34, and 40 with tryptophan. Quenching measurements in the dimeric state indicate that the amino-terminal analogs (AbetaF4W and AbetaY10W) are accessible to polar quenchers, and the more carboxyl-terminal analog AbetaV34W is less accessible. AbetaV40W, on the other hand, exhibits a low degree of quenching, indicating that this residue is highly shielded from the solvent in the dimeric state. Correcting for the effect of reduced translational and rotational diffusion, fibril formation was associated with a selective increase in solvent exposure of residues 34 and 40, suggesting that a conformation change may take place in the carboxyl-terminal region coincident with the dimer to fibril transition.  相似文献   

4.
We describe here details of the hydrogen-deuterium (H/D) exchange behavior of the Alzheimer's peptide Abeta(1)(-)(40), while it is a resident in the amyloid fibril, as determined by high-resolution solution NMR. Kinetics of H/D exchange in Abeta(1)(-)(40) fibrils show that about half the backbone amide protons exchange during the first 25 h, while the other half remain unexchanged because of solvent inaccessibility and/or hydrogen-bonded structure. After such a treatment for 25 h with D(2)O, fibrils of (15)N-enriched Abeta were dissolved in a mixture of 95% dimethyl sulfoxide (DMSO) and 5% dichloroacetic acid (DCA) and successive heteronuclear (1)H-(15)N HSQC spectra were collected to identify the backbone amides that did not exchange in the fibril. These studies showed that the N and C termini of the peptide are accessible to the solvent in the fibril state and the backbone amides of these residues are readily exchanged with bulk deuterium. In contrast, the residues in the middle of the peptide (residues 16-36) are mostly protected, suggesting that that many of the residues in this segment of the peptide are involved in a beta structure in the fibril. Two residues, G25 and S26, exhibit readily exchangeable backbone amide protons and therefore may be located on a turn or a flexible part of the peptide. Overall, the data substantially supports current models for how the Abeta peptide folds when it engages in the amyloid fibril structure, while also addressing some discrepancies between models.  相似文献   

5.
We describe here an alanine scanning mutational analysis of the Abeta(1-40) amyloid fibril monitored by fibril elongation thermodynamics derived from critical concentration values for fibril growth. Alanine replacement of most residues in the amyloid core region, residues 15-36, leads to destabilization of the elongation step, compared to wild-type, by about 1kcal/mol, consistent with a major role for hydrophobic packing in Abeta(1-40) fibril assembly. Where comparisons are possible, the destabilizing effects of Ala replacements are generally in very good agreement with the effects of Ala replacements of the same amino acid residues in an element of parallel beta-sheet in the small, globular protein Gbeta1. We utilize these Ala-WT DeltaDeltaG values to filter previously described Pro-WT DeltaDeltaG values, creating Pro-Ala DeltaDeltaG values that specifically assess the sensitivity of a sequence position, in the structural context of the Abeta fibril, to replacement by proline. The results provide a conservative view of the energetics of Abeta(1-40) fibril structure, indicating that positions 18-21, 25-26, and 32-33 within amyloid structure are particularly sensitive to the main-chain disrupting effects of Pro replacements. In contrast, residues 14-17, 22, 24, 27-31, and 34-39 are relatively insensitive to Pro replacements; most N-terminal residues were not tested. The results are discussed in terms of amyloid fibril structure and folding energetics, in particular focusing on how the data compare to those from other structural studies of Abeta(1-40) amyloid fibrils grown in phosphate-buffered saline at 37 degrees C under unstirred ("quiescent") conditions.  相似文献   

6.
Alzheimer disease is a neurodegenerative disorder that is tightly linked to the self-assembly and amyloid formation of the 39-43-residue-long amyloid-beta (Abeta) peptide. Considerable evidence suggests a correlation between Alzheimer disease development and the longer variants of the peptide, Abeta-(1-42/43). Currently, a molecular understanding for this behavior is lacking. In the present study, we have investigated the hydrogen/deuterium exchange of Abeta-(1-42) fibrils under physiological conditions, using solution NMR spectroscopy. The obtained residue-specific and quantitative map of the solvent protection within the Abeta-(1-42) fibril shows that there are two protected core regions, Glu11-Gly25 and Lys28-Ala42, and that the residues in between, Ser26 and Asn27, as well as those in the N terminus, Asp1-Tyr10, are solvent-accessible. This result reveals considerable discrepancies when compared with a previous investigation on Abeta-(1-40) fibrils and suggests that the additional residues in Abeta-(1-42), Ile41 and Ala42, significantly increase the solvent protection and stability of the C-terminal region Lys28-Ala42. Consequently, our findings provide a molecular explanation for the increased amyloidogenicity and toxicity of Abeta-(1-42) compared with shorter Abeta variants found in vivo.  相似文献   

7.
Thermodynamics of A beta(1-40) amyloid fibril elongation   总被引:1,自引:0,他引:1  
  相似文献   

8.
A subset of Alzheimer disease cases is caused by autosomal dominant mutations in genes encoding the amyloid beta-protein precursor or presenilins. Whereas some amyloid beta-protein precursor mutations alter its metabolism through effects on Abeta production, the pathogenic effects of those that alter amino acid residues within the Abeta sequence are not fully understood. Here we examined the biophysical effects of two recently described intra-Abeta mutations linked to early-onset familial Alzheimer disease, the D7N Tottori-Japanese and H6R English mutations. Although these mutations do not affect Abeta production, synthetic Abeta(1-42) peptides carrying D7N or H6R substitutions show enhanced fibril formation. In vitro analysis using Abeta(1-40)-based mutant peptides reveal that D7N or H6R mutations do not accelerate the nucleation phase but selectively promote the elongation phase of amyloid fibril formation. Notably, the levels of protofibrils generated from D7N or H6R Abeta were markedly inhibited despite enhanced fibril formation. These N-terminal Abeta mutations may accelerate amyloid fibril formation by a unique mechanism causing structural changes of Abeta peptides, specifically promoting the elongation process of amyloid fibrils without increasing metastable intermediates.  相似文献   

9.
We report investigations of the morphology and molecular structure of amyloid fibrils comprised of residues 10-40 of the Alzheimer's beta-amyloid peptide (Abeta(10-40)), prepared under various solution conditions and degrees of agitation. Omission of residues 1-9 from the full-length Alzheimer's beta-amyloid peptide (Abeta(1-40)) did not prevent the peptide from forming amyloid fibrils or eliminate fibril polymorphism. These results are consistent with residues 1-9 being disordered in Abeta(1-40) fibrils, and show that fibril polymorphism is not a consequence of disorder in residues 1-9. Fibril morphology was analyzed by atomic force and electron microscopy, and secondary structure and inter-side-chain proximity were probed using solid-state NMR. Abeta(1-40) fibrils were found to be structurally compatible with Abeta(10-40): Abeta(1-40) fibril fragments were used to seed the growth of Abeta(10-40) fibrils, with propagation of fibril morphology and molecular structure. In addition, comparison of lyophilized and hydrated fibril samples revealed no effect of hydration on molecular structure, indicating that Abeta(10-40) fibrils are unlikely to contain bulk water.  相似文献   

10.
Although the amyloid fibrils formed from the Alzheimer's disease amyloid peptide Abeta are rich in cross-beta sheet, the peptide likely also exhibits turn and unstructured regions when it becomes incorporated into amyloid. We generated a series of single-proline replacement mutants of Abeta(1-40) and determined the thermodynamic stabilities of amyloid fibrils formed from these mutants to characterize the susceptibility of different residue positions of the Abeta sequence to proline substitution. The results suggest that the Abeta peptide, when engaged in the amyloid fibril, folds into a conformation containing three highly structured segments, consisting of contiguous sequence elements 15-21, 24-28, and 31-36, that are sensitive to proline replacement and likely to include the beta-sheet portions of the fibrils. Residues relatively insensitive to proline replacement fall into two groups: (a) residues 1-14 and 37-40 are likely to exist in relatively unstructured, flexible elements extruded from the beta-sheet-rich amyloid core; (b) residues 22, 23, 29 and 30 are likely to occupy turn positions between these three structured elements. Although destabilized, fibrils formed from Abeta(1-40) proline mutants are very similar in structure to wild-type fibrils, as indicated by hydrogen-deuterium exchange and other analysis. Interestingly, however, some proline mutations destabilize fibrils while at the same time increasing the number of amide protons protected from hydrogen exchange. This suggests that the stability of amyloid fibrils, rather than being driven exclusively by the formation of H-bonded beta-sheet, is achieved, as in globular proteins, through a balance of stabilizing and destabilizing forces. The proline scanning data are most compatible with a model for amyloid protofilament structure loosely resembling the parallel beta-helix folding motif, such that each Abeta(15-36) core region occupies a single layer of a prismatic, H-bonded stack of peptides.  相似文献   

11.
The beta-amyloid peptide (Abeta) is a normal product of the proteolytic processing of its precursor (beta-APP). Normally, it elicits a very low humoral immune response; however, the aggregation of monomeric Abeta to form fibrillar Abeta amyloid creates a neo-epitope, to which antibodies are generated. Rabbits were injected with fibrillar human Abeta(1-42), and the resultant antibodies were purified and their binding properties characterized. The antibodies bound to an epitope in the first eight residues of Abeta and required a free amino terminus. Additional residues did not affect the affinity of the epitope as long as the peptide was unaggregated; the antibody bound Abeta residues 1-8, 1-11, 1-16, 1-28, 1-40, and 1-42 with similar affinities. In contrast, the antibodies bound approximately 1000-fold more tightly to fibrillar Abeta(1-42). Their enhanced affinity did not result from their bivalent nature: monovalent Fab fragments exhibited a similar affinity for the fibrils. Nor did it result from the particulate nature of the epitope: monomeric Abeta(1-16) immobilized on agarose and soluble Abeta(1-16) exhibited similar affinities for the antifibrillar antibodies. In addition, antibodies raised to four nonfibrillar peptides corresponding to internal Abeta sequences did not exhibit enhanced affinity for fibrillar Abeta(1-42). Antibodies directed to the C-terminus of Abeta bound poorly to fibrillar Abeta(1-42), which is consistent with models where the carboxyl terminus is buried in the interior of the fibril and the amino terminus is on the surface. When used as an immunohistochemical probe, the antifibrillar Abeta(1-42) IgG exhibited enhanced affinity for amyloid deposits in the cerebrovasculature. We hypothesize either that the antibodies recognize a specific conformation of the eight amino-terminal residues of Abeta, which is at least 1000-fold more favored in the fibril than in monomeric peptides, or that affinity maturation of the antibodies produces an additional binding site for the amino-terminal residues of an adjacent Abeta monomer. In vivo this specificity would direct the antibody primarily to fibrillar vascular amyloid deposits even in the presence of a large excess of monomeric Abeta or its precursor. This observation may explain the vascular meningeal inflammation that developed in Alzheimer's disease patients immunized with fibrillar Abeta. Passive immunization with an antibody directed to an epitope hidden in fibrillar Abeta and in the transmembrane region of APP might be a better choice in the search for an intervention to remove Abeta monomers without provoking an inflammatory response.  相似文献   

12.
Amyloid fibril formation is a phenomenon common to many proteins and peptides, including amyloid beta (Abeta) peptide associated with Alzheimer's disease. To clarify the mechanism of fibril formation and to create inhibitors, real-time monitoring of fibril growth is essential. Here, seed-dependent amyloid fibril growth of Abeta(1-40) was visualized in real-time at the single fibril level using total internal reflection fluorescence microscopy (TIRFM) combined with the binding of thioflavin T, an amyloid-specific fluorescence dye. The clear image and remarkable length of the fibrils enabled an exact analysis of the rate of growth of individual fibrils, indicating that the fibril growth was a highly cooperative process extending the fibril ends at a constant rate. It has been known that Abeta amyloid formation is a stereospecific reaction and the stability is affected by l/d-amino acid replacement. Focusing on these aspects, we designed several analogues of Abeta(25-35), a cytotoxic fragment of Abeta(1-40), consisting of l and d-amino acid residues, and examined their inhibitory effects by TIRFM. Some chimeric Abeta(25-35) peptides inhibited the fibril growth of Abeta(25-35) strongly, although they could not inhibit the growth of Abeta(1-40). The results suggest that a more rational design of stereospecific inhibitors, combined with real-time monitoring of fibril growth, will be useful to invent a potent inhibitor preventing the amyloid fibril growth of Abeta(1-40) and other proteins.  相似文献   

13.
Ikeda K  Okada T  Sawada S  Akiyoshi K  Matsuzaki K 《FEBS letters》2006,580(28-29):6587-6595
The formation of fibrils by amyloid beta-protein (Abeta) is considered as a key step in the pathology of Alzheimer's disease (AD). Inhibiting the aggregation of Abeta is a promising approach for AD therapy. In this study, we used biocompatible nanogels composed of a polysaccharide pullulan backbone with hydrophobic cholesterol moieties (cholesterol-bearing pullulan, CHP) as artificial chaperones to inhibit the formation of Abeta-(1-42) fibrils with marked amyloidgenic activity and cytotoxicity. The CHP-nanogels incorporated up to 6-8 Abeta-(1-42) molecules per particle and induced a change in the conformation of Abeta from a random coil to alpha-helix- or beta-sheet-rich structure. This structure was stable even after a 24-h incubation at 37 degrees C and the aggregation of Abeta-(1-42) was suppressed. Furthermore, the dissociation of the nanogels caused by the addition of methyl-beta-cyclodextrin released monomeric Abeta molecules. Nanogels composed of amino-group-modified CHP (CHPNH(2)) with positive charges under physiological conditions had a greater inhibitory effect than CHP-nanogels, suggesting the importance of electrostatic interactions between CHPNH(2) and Abeta for inhibiting the formation of fibrils. In addition, CHPNH(2) nanogels protected PC12 cells from Abeta toxicity.  相似文献   

14.
Deposition of amyloid beta-peptide (Abeta) into amyloid plaques is one of the invariant neuropathological features of Alzheimer's disease. Proteins that codeposit with Abeta are potentially important for the pathogenesis, and a recently discovered plaque-associated protein is the collagenous Alzheimer amyloid plaque component (CLAC). In this study, we investigated the molecular interactions between Abeta aggregates and CLAC using surface plasmon resonance spectroscopy and a solid-phase binding immunoassay. We found that CLAC binds to Abeta with high affinity, that the central region of Abeta is necessary and sufficient for CLAC interaction, and that the aggregation state of Abeta as well as the presence of negatively charged residues is important. We also show that this binding results in a reduced rate of fibril elongation. Taken together, we suggest that CLAC becomes involved at an intermediate stage in the pathogenesis by binding to Abeta fibrils, including fibrils formed from peptides with truncated N- or C-termini, and thereby slows their growth.  相似文献   

15.
α-synuclein (αSyn) is a protein consisting of 140 amino acid residues and is abundant in the presynaptic nerve terminals in the brain. Although its precise function is unknown, the filamentous aggregates (amyloid fibrils) of αSyn have been shown to be involved in the pathogenesis of Parkinson''s disease, which is a progressive neurodegenerative disorder. To understand the pathogenesis mechanism of this disease, the mechanism of the amyloid fibril formation of αSyn must be elucidated. Purified αSyn from bacterial expression is monomeric but intrinsically disordered in solution and forms amyloid fibrils under various conditions. As a first step toward elucidating the mechanism of the fibril formation of αSyn, we investigated dynamical behavior of the purified αSyn in the monomeric state and the fibril state using quasielastic neutron scattering (QENS). We prepared the solution sample of 9.5 mg/ml purified αSyn, and that of 46 mg/ml αSyn in the fibril state, both at pD 7.4 in D2O. The QENS experiments on these samples were performed using the near-backscattering spectrometer, BL02 (DNA), at the Materials and Life Science Facility at the Japan Accelerator Research Complex, Japan. Analysis of the QENS spectra obtained shows that diffusive global motions are observed in the monomeric state but largely suppressed in the fibril state. However, the amplitude of the side chain motion is shown to be larger in the fibril state than in the monomeric state. This implies that significant solvent space exists within the fibrils, which is attributed to the αSyn molecules within the fibrils having a distribution of conformations. The larger amplitude of the side chain motion in the fibril state than in the monomeric state implies that the fibril state is entropically favorable.  相似文献   

16.
Polymerization of the soluble beta-amyloid peptide into highly ordered fibrils is hypothesized to be a causative event in the development of Alzheimer's disease. Understanding the interactions of Abeta with inhibitors on an atomic level is fundamental for the development of diagnostics and therapeutic approaches, and can provide, in addition, important indirect information of the amyloid fibril structure. We have shown recently that trRDCs can be measured in solution state NMR for peptide ligands binding weakly to amyloid fibrils. We present here the structures for two inhibitor peptides, LPFFD and DPFFL, and their structural models bound to fibrillar Abeta(14-23) and Abeta(1-40) based on transferred nuclear Overhauser effect (trNOE) and transferred residual dipolar coupling (trRDC) data. In a first step, the inhibitor peptide structure is calculated on the basis of trNOE data; the trRDC data are then validated on the basis of the trNOE-derived structure using the program PALES. The orientation of the peptide inhibitors with respect to Abeta fibrils is obtained from trRDC data, assuming that Abeta fibrils orient such that the fibril axis is aligned in parallel with the magnetic field. The trRDC-derived alignment tensor of the peptide ligand is then used as a restraint for molecular dynamics docking studies. We find that the structure with the lowest rmsd value is in agreement with a model in which the inhibitor peptide binds to the long side of an amyloid fibril. Especially, we detect interactions involving the hydrophobic core, residues K16 and E22/D23 of the Abeta sequence. Structural differences are observed for binding of the inhibitor peptide to Abeta14-23 and Abeta1-40 fibrils, respectively, indicating different fibril structure. We expect this approach to be useful in the rational design of amyloid ligands with improved binding characteristics.  相似文献   

17.
The brains of Alzheimer's disease (AD) patients contain large numbers of amyloid plaques that are rich in fibrils composed of 40- and 42-residue amyloid-beta (Abeta) peptides. Several lines of evidence indicate that fibrillar Abeta and especially soluble Abeta aggregates are important in the etiology of AD. Recent reports also stress that amyloid aggregates are polymorphic and that a single polypeptide can fold into multiple amyloid conformations. Here we demonstrate that Abeta-(1-40) can form soluble aggregates with predominant beta-structures that differ in stability and morphology. One class of aggregates involved soluble Abeta protofibrils, prepared by vigorous overnight agitation of monomeric Abeta-(1-40) at low ionic strength. Dilution of these aggregation reactions induced disaggregation to monomers as measured by size exclusion chromatography. Protofibril concentrations monitored by thioflavin T fluorescence decreased in at least two kinetic phases, with initial disaggregation (rate constant approximately 1 h(-1)) followed by a much slower secondary phase. Incubation of the reactions without agitation resulted in less disaggregation at slower rates, indicating that the protofibrils became progressively more stable over time. In fact, protofibrils isolated by size exclusion chromatography were completely stable and gave no disaggregation. A second class of soluble Abeta aggregates was generated rapidly (<10 min) in buffered 2% hexafluoroisopropanol (HFIP). These aggregates showed increased thioflavin T fluorescence and were rich in beta-structure by circular dichroism. Electron microscopy and atomic force microscopy revealed initial globular clusters that progressed over several days to soluble fibrous aggregates. When diluted out of HFIP, these aggregates initially were very unstable and disaggregated completely within 2 min. However, their stability increased as they progressed to fibers. Relative to Abeta protofibrils, the HFIP-induced aggregates seeded elongation by Abeta monomer deposition very poorly. The techniques used to distinguish these two classes of soluble Abeta aggregates may be useful in characterizing Abeta aggregates formed in vivo.  相似文献   

18.
The mechanisms of deposition and dissociation are implicated in the assembly of amyloid fibrils. To investigate the kinetics of unbinding of Abeta(16-22) monomers from preformed fibrils, we use molecular dynamics (MD) simulations and the structures for Abeta(16-22) amyloid fibrils. Consistent with experimental studies, the dissociation of Abeta(16-22) peptides involves two main stages, locked and docked, after which peptides unbind. The lifetime of the locked state, in which a peptide retains fibril-like structure and interactions, extends up to 0.5 micros under normal physiological conditions. Upon cooperative rupture of all fibril-like hydrogen bonds (HBs) with the fibril, a peptide enters a docked state. This state is populated by disordered random coil conformations and its lifetime ranges from approximately 10 to 200 ns. The docked state is stabilized by hydrophobic side chain interactions, while the contribution from HBs is small. Our simulations also suggest that the peptides located on fibril edges may form stable beta-strand conformations distinct from the fibril "bulk". We propose that such edge peptides can act as fibril caps, which impede fibril elongation. Our results indicate that the interactions between unbinding peptides constitute the molecular basis for cooperativity of peptide dissociation. The kinetics of fibril growth is reconstructed from unbinding assuming the reversibility of deposition/dissociation pathways. The relation of in silica dissociation kinetics to experimental observations is discussed.  相似文献   

19.
Amyloid beta (Abeta) peptide amyloidogenesis, involving the formation of numerous distinct quaternary structures, appears to cause Alzheimer's disease. However, the precise identification of the toxic structure(s) and the neurotoxicity mechanism(s) remains elusive. Mutating the Abeta 1-40 Phe19-Phe20 backbone amide bond to an isostructural E-olefin bond enables formation of spherical aggregates to the exclusion of detectable amyloid fibrils. Herein, the fibrillization and toxicity of amide-to-ester mutants of Abeta 1-40 at the 19-20 position and surrounding backbone amide bonds are compared to the fibrillization and toxicity of the 19-20 E-olefin Abeta analogue and wild type Abeta. Whereas isostructural amide-to-E-olefin mutations eliminate both the H-bond donor and acceptor capabilities, isostructural amide-to-ester mutations eliminate the donor while retaining the ester carbonyl as a weakened acceptor. None of the amide-to-ester Abeta 1-40 mutants prevent fibrillization; in fact several exhibit hastened amyloidogenesis. The 18-19 amide-to-ester substitution is the only backbone mutation within the hydrophobic core region of the fibril (residues 17-21) that significantly slows fibrillization. Despite forming different morphologies, the 19-20 E-olefin mutant, the 18-19 amide-to-ester mutant, and WT Abeta 1-40 fibrils all exhibit similar toxicities when applied to PC12 cells at 18 h into the aggregation reactions, as assessed by MTT metabolic activity measurements. This result suggests that a common but low abundance aggregate morphology, that is accessible to these Abeta analogues, mediates toxicity, or that several different aggregate morphologies are similarly toxic.  相似文献   

20.
Aggregation and fibril formation of amyloid-beta (Abeta) peptides Abeta40 and Abeta42 are central events in the pathogenesis of Alzheimer disease. Previous studies have established the ratio of Abeta40 to Abeta42 as an important factor in determining the fibrillogenesis, toxicity, and pathological distribution of Abeta. To better understand the molecular basis underlying the pathologic consequences associated with alterations in the ratio of Abeta40 to Abeta42, we probed the concentration- and ratio-dependent interactions between well defined states of the two peptides at different stages of aggregation along the amyloid formation pathway. We report that monomeric Abeta40 alters the kinetic stability, solubility, and morphological properties of Abeta42 aggregates and prevents their conversion into mature fibrils. Abeta40, at approximately equimolar ratios (Abeta40/Abeta42 approximately 0.5-1), inhibits (> 50%) fibril formation by monomeric Abeta42, whereas inhibition of protofibrillar Abeta42 fibrillogenesis is achieved at lower, substoichiometric ratios (Abeta40/Abeta42 approximately 0.1). The inhibitory effect of Abeta40 on Abeta42 fibrillogenesis is reversed by the introduction of excess Abeta42 monomer. Additionally, monomeric Abeta42 and Abeta40 are constantly recycled and compete for binding to the ends of protofibrillar and fibrillar Abeta aggregates. Whereas the fibrillogenesis of both monomeric species can be seeded by fibrils composed of either peptide, Abeta42 protofibrils selectively seed the fibrillogenesis of monomeric Abeta42 but not monomeric Abeta40. Finally, we also show that the amyloidogenic propensities of different individual and mixed Abeta species correlates with their relative neuronal toxicities. These findings, which highlight specific points in the amyloid peptide equilibrium that are highly sensitive to the ratio of Abeta40 to Abeta42, carry important implications for the pathogenesis and current therapeutic strategies of Alzheimer disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号