首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Vpr protein of HIV-1 functions as a vital accessory gene by regulating various cellular functions, including cell differentiation, apoptosis, nuclear factor of kappaB (NF-kappaB) suppression and cell-cycle arrest of the host cell. Several reports have indicated that Vpr complexes with the glucocorticoid receptor (GR), but it remains unclear whether the GR pathway is required for Vpr to function. Here, we report that Vpr uses the GR pathway as a recruitment vehicle for the NF-kappaB co-activating protein, poly(ADP-ribose) polymerase-1 (PARP-1). The GR interaction with Vpr is both necessary and sufficient to facilitate this interaction by potentiating the formation of a Vpr-GR-PARP-1 complex. The recruitment of PARP-1 by the Vpr-GR complex prevents its nuclear localization, which is necessary for Vpr to suppress NF-kappaB. The association of GR with PARP-1 is not observed with steroid (glucocorticoid) treatment, indicating that the GR association with PARP-1 is a gain of function that is solely attributed to HIV-1 Vpr. These data provide important insights into Vpr biology and its role in HIV pathogenesis.  相似文献   

2.
3.
4.
5.
Vpr is a conserved primate lentiviral protein that promotes infection of T lymphocytes in vivo by an unknown mechanism. Here we demonstrate that Vpr and its cellular co-factor, DCAF1, are necessary for efficient cell-to-cell spread of HIV-1 from macrophages to CD4+ T lymphocytes when there is inadequate cell-free virus to support direct T lymphocyte infection. Remarkably, Vpr functioned to counteract a macrophage-specific intrinsic antiviral pathway that targeted Env-containing virions to LAMP1+ lysosomal compartments. This restriction of Env also impaired virological synapses formed through interactions between HIV-1 Env on infected macrophages and CD4 on T lymphocytes. Treatment of infected macrophages with exogenous interferon-alpha induced virion degradation and blocked synapse formation, overcoming the effects of Vpr. These results provide a mechanism that helps explain the in vivo requirement for Vpr and suggests that a macrophage-dependent stage of HIV-1 infection drives the evolutionary conservation of Vpr.  相似文献   

6.
HIV-1 infected macrophages play a significant role in the neuropathogenesis of AIDS. HIV-1 viral protein R (Vpr) not only facilitates HIV-1 infection but also contribute to long-lived persistence in macrophages. Our previous studies using SILAC-based proteomic analysis showed that the expression of critical metabolic enzymes in the glycolytic pathway and tricarboxylic acid (TCA) cycle were altered in response to Vpr expression in macrophages. We hypothesized that Vpr-induced modulation of glycolysis and TCA cycle regulates glutamate metabolism and release in HIV-1 infected macrophages.

We assessed the amount of specific metabolites induced by Vpr and HIV-1 in macrophages at the intracellular and extracellular level in a time-dependent manner utilizing multiple reaction monitoring (MRM) targeted metabolomics. In addition, stable isotope-labeled glucose and an MRM targeted metabolomics assay were used to evaluate the de novo synthesis and release of glutamate in Vpr overexpressing macrophages and HIV-1 infected macrophages, throughout the metabolic flux of glycolytic pathway and TCA cycle activation.

The metabolic flux studies demonstrated an increase in glucose uptake, glutamate release and accumulation of α-ketoglutarate (α-KG) and glutamine in the extracellular milieu in Vpr expressing and HIV-1 infected macrophages. Interestingly, glutamate pools and other intracellular intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), citrate, malate, α-KG, and glutamine) showed a decreased trend except for fumarate, in contrast to the glutamine accumulation observed in the extracellular space in Vpr overexpressing macrophages.

Our studies demonstrate that dysregulation of mitochondrial glutamate metabolism induced by Vpr in HIV-1 infected macrophages commonly seen, may contribute to neurodegeneration via excitotoxic mechanisms in the context of NeuroAIDS.  相似文献   


7.
8.
9.
HIV-1 viral protein R (Vpr) is one of the human immunodeficiency virus type 1 encoded proteins that have important roles in viral pathogenesis. However, no clinical drug for AIDS therapy that targets Vpr has been developed. Here, we have established a screening system to isolate Vpr inhibitors using budding yeast cells. We purified a Vpr inhibitory compound from fungal metabolites and identified it as fumagillin, a chemical already known to be a potent inhibitor of angiogenesis. Fumagillin not only reversed the growth inhibitory activity of Vpr in yeast and human cells, but also inhibited Vpr-dependent viral gene expression upon the infection of human macrophages.  相似文献   

10.
11.
Destruction of CD4+ T cells, the hallmark of AIDS, is caused in part by HIV-1-induced apoptosis of both infected cells and noninfected "bystander" cells. The HIV-1 auxiliary regulatory protein Vpr has been shown to harbor a pro-apoptotic activity that may contribute to cellular and tissue damage during AIDS pathogenesis. The biochemical mechanism of this Vpr function remains unclear. In this report, substitutions of a single amino acid residue Leu64 with Pro, Ala, or Arg are shown to dramatically enhance the pro-apoptotic activity of Vpr, as evidenced by the degradation of cellular DNA into fragments of 200-bp increments. Substitutions of Leu64 with conservative residues have no effect. The pro-apoptotic activity of the VprL64P mutant also requires activation of caspase(s) and is inhibited by the secondary mutation I61A, indicating a high specificity for Vpr-induced apoptosis. Among the three HIV-1 subtypes examined, a subtype B Vpr and an A/G subtype recombinant Vpr have a moderate level of pro-apoptotic activity, whereas a subtype D Vpr has no detectable activity. However, the L64P mutation efficiently enhances the pro-apoptotic potential of the subtype B and subtype D Vpr molecules but not that of the A/G recombinant Vpr. It is hypothesized that Vpr molecules from different HIV-1 subtypes as well as Vpr variants that emerge during HIV-1 infection may have different pro-apoptotic potentials and contribute to the diversity of AIDS pathogenesis.  相似文献   

12.
13.
Zhao LJ  Jian H  Zhu H 《FEBS letters》2004,563(1-3):170-178
The auxiliary regulatory protein Vpr of HIV-1 possesses several biological activities which are believed to facilitate HIV-1 replication and pathogenesis. In this report, experimental evidence suggests a novel biological activity of Vpr: facilitation of the turnover of Vpr mutants bearing the L64P mutation. This novel activity of Vpr was shared by Vpr molecules from different subtypes of HIV-1. Co-expression of the wild type Vpr with the VprW54A/L64P mutant resulted in normal synthesis of the mutant mRNA but enhanced ubiquitination and turnover of the mutant protein. These results suggest that Vpr may interact with the ubiquitin/proteasome pathway to regulate the stability of viral or cellular proteins.  相似文献   

14.

Background

A hallmark of AIDS progression is a switch of cytokines from Th1 to Th2 in the plasma of patients. IL-12, a critical Th1 cytokine secreted by antigen presenting cells (APCs) is suppressed by Vpr, implicating it as an important virulence factor. We hypothesize that Vpr protein packaged in the virion may be required for disabling APCs of the first infected mucosal tissues. Consistent with this idea are reports that defects in the C-terminus of Vpr are associated with long-term non-progression.

Principal Findings

Vpr RNA amplified from various sources was electroporated into monocyte-derived DC and IL-12 levels in supernatants were analyzed. The analysis of previously reported C-terminal Vpr mutations demonstrate that they do not alleviate the block of IL-12 secretion. However, a novel single conservative amino acid substitution, R90K, reverses the IL-12 suppression. Analysis of 1226 Vpr protein sequences demonstrated arginine (R) present at position 90 in 98.8%, with other substitutions at low frequency. Furthermore, none of sequences report lysine (K) in position 90. Vpr clones harboring the reported substitutions in position 90 were studied for their ability to suppress IL-12. Our data demonstrates that none of tested substitutions other than K relieve IL-12 suppression. This suggests a natural selection for sequences which suppress IL-12 secretion by DC and against mutations which relieve such suppression. Further analyses demonstrated that the R90K, as well as deletion of the C-terminus, directs the Vpr protein for rapid degradation.

Conclusion

This study supports Vpr as an HIV virulence factor during HIV infection and for the first time provides a link between evolutionary conservation of Vpr and its ability to suppress IL-12 secretion by DC. DC activated in the presence of Vpr would be defective in the production of IL-12, thus contributing to the prevailing Th2 cytokine profile associated with progressive HIV disease. These findings should be considered in the design of future immunotherapies that incorporate Vpr as an antigen.  相似文献   

15.
Viral pathogens utilize host cell machinery for their benefits. Herein, we identify that HIV-1 Vpr (viral protein R) negatively modulates telomerase activity. Telomerase enables stem and cancer cells to evade cell senescence by adding telomeric sequences to the ends of chromosomes. We found that Vpr inhibited telomerase activity by down-regulating TERT protein, a catalytic subunit of telomerase. As a molecular adaptor, Vpr enhanced the interaction between TERT and the VPRBP substrate receptor of the DYRK2-associated EDD-DDB1-VPRBP E3 ligase complex, resulting in increased ubiquitination of TERT. In contrast, the Vpr mutant identified in HIV-1-infected long-term nonprogressors failed to promote TERT destabilization. Our results suggest that Vpr inhibits telomerase activity by hijacking the host E3 ligase complex, and we propose the novel molecular mechanism of telomerase deregulation in possibly HIV-1 pathogenesis.  相似文献   

16.
HIV-1, the etiologic agent of human AIDS, causes cell death in host and non-host cells via HIV-1 Vpr, one of its auxiliary gene product. HIV-1 Vpr can also cause cell cycle arrest in several cell types. The cellular processes that link HIV-1 Vpr to the cell death machinery are not well characterized. Here, we show that the C terminal portion of HIV-1 Vpr which encompasses amino acid residues 71-96 (HIV-1 Vpr(71-96)), also termed HIV-1 Vpr cell death causing peptide, is an activator of protein phosphatase-2A(1) when applied extracellularly to CD(4+) T cells. HIV-1 Vpr(71-96) is a direct activator of protein phosphatase-2A(1) that has been purified from CD(4+) T cells. Full length HIV-1 Vpr by itself does not cause the activation of protein phosphatase-2A(1) in vitro. HIV-1 Vpr(71-96) also causes the activation of protein phosphatase-2A(0) and protein phosphatase-2A(1) from brain, liver, and adipose tissues. These results indicate that HIV-1 can cause cell death of infected cells and non-infected host and non-host cells via HIV-1 Vpr derived C terminal peptide(s) which act(s) by cell penetration and targeting of a key controller of the cell death machinery, namely, protein phosphatase-2A(1). The activation of other members of the protein phosphatase-2A subfamily of enzymes which are involved in the control of several metabolic pathways in brain, liver, and adipose tissues by HIV-1 Vpr derived C terminal peptide(s) may underlie various metabolic disturbances that are associated with HIV-1 infection.  相似文献   

17.
18.
Mechanisms underlying HIV-1 latency remain among the most crucial questions that need to be answered to adopt strategies for purging the latent viral reservoirs. Here we show that HIV-1 accessory protein Vpr induces depletion of class I HDACs, including HDAC1, 2, 3, and 8, to overcome latency in macrophages. We found that Vpr binds and depletes chromatin-associated class I HDACs through a VprBP-dependent mechanism, with HDAC3 as the most affected class I HDAC. De novo expression of Vpr in infected macrophages induced depletion of HDAC1 and 3 on the HIV-1 LTR that was associated with hyperacetylation of histones on the HIV-1 LTR. As a result of hyperacetylation of histones on HIV-1 promotor, the virus established an active promotor and this contributed to the acute infection of macrophages. Collectively, HIV-1 Vpr down-regulates class I HDACs on chromatin to counteract latent infections of macrophages.  相似文献   

19.
Human immunodeficiency virus type 1 encoded viral protein Vpr is essential for infection of macrophages by HIV-1. Furthermore, these macrophages are resistant to cell death and are viral reservoir. However, the impact of Vpr on the macrophage proteome is yet to be comprehended. The goal of the present study was to use a stable-isotope labeling by amino acids in cell culture (SILAC) coupled with mass spectrometry-based proteomics approach to characterize the Vpr response in macrophages. Cultured human monocytic cells, U937, were differentiated into macrophages and transduced with adenovirus construct harboring the Vpr gene. More than 600 proteins were quantified in SILAC coupled with LC-MS/MS approach, among which 136 were significantly altered upon Vpr overexpression in macrophages. Quantified proteins were selected and clustered by biological functions, pathway and network analysis using Ingenuity computational pathway analysis. The proteomic data illustrating increase in abundance of enzymes in the glycolytic pathway (pentose phosphate and pyruvate metabolism) was further validated by western blot analysis. In addition, the proteomic data demonstrate down regulation of some key mitochondrial enzymes such as glutamate dehydrogenase 2 (GLUD2), adenylate kinase 2 (AK2) and transketolase (TKT). Based on these observations we postulate that HIV-1 hijacks the macrophage glucose metabolism pathway via the Vpr-hypoxia inducible factor 1 alpha (HIF-1 alpha) axis to induce expression of hexokinase (HK), glucose-6-phosphate dehyrogenase (G6PD) and pyruvate kinase muscle type 2 (PKM2) that facilitates viral replication and biogenesis, and long-term survival of macrophages. Furthermore, dysregulation of mitochondrial glutamate metabolism in macrophages can contribute to neurodegeneration via neuroexcitotoxic mechanisms in the context of NeuroAIDS.  相似文献   

20.
Cell cycle is one of the most complex processes in the life of a dividing cell. It involves numerous regulatory proteins, which direct the cell through a specific sequence of events for the production of two daughter cells. Cyclin-dependent kinases (cdks), which complex with the cyclin proteins, are the main players in the cell cycle. They can regulate the progression of the cells through different stages regulated by several proteins including p53, p21(WAF1), p19, p16, and cdc25. Downstream targets of cyclin-cdk complexes include pRB and E2F. A cell cycle can be altered to the advantage of many viral agents, most notably polyomaviruses, papillomaviruses, adenoviruses, and retroviruses. In addition, viral protein R (Vpr) is a protein encoded by the human immunodeficiency virus type 1 (HIV-1). HIV-1, the causative agent of acquired immunodeficiency syndrome (AIDS), is a member of the lentivirus class of retroviruses. This accessory protein plays an important role in the regulation of the cell cycle by causing G(2) arrest and affecting cell cycle regulators. Vpr prevents infected cells from proliferating, and collaborates with the matrix protein (MA) to enable HIV-1 to enter the nucleus of nondividing cells. Studies from different labs including ours showed that Vpr affects the functions of cell cycle proteins, including p53 and p21(WAF1). Thus, the replication of HIV-1, and ultimately its pathogenesis, are intrinsically tied to cell-cycle control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号