首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The roles of beta 2 integrin molecules in neutrophil accumulation and tissue injury have been examined by the use of antibodies that are reactive with human CD11b and CD18 and cross-react with the homologous epitopes on rat neutrophils. Adherence to rat pulmonary artery endothelial cells by human neutrophils and endothelial cell killing by phorbol ester-activated human neutrophils required CD11b, CD11c, and CD18. Companion adherence studies between rat neutrophils and endothelial cells revealed a requirement for both CD11b and CD18. Neither anti-CD11b nor anti-CD18 depressed in vitro responses (O2- generation and chemotactic migration) of rat neutrophils. The accumulation of neutrophils in glycogen-induced peritoneal exudates was diminished substantially in rats treated with either anti-CD18 or anti-CD11b. In oxidant-mediated acute lung injury induced by rapid intravascular infusion of cobra venom factor, treatment of rats with either anti-CD18 or anti-CD11b significantly attenuated injury as assessed by increases in vascular permeability and hemorrhage. These protective effects correlated morphologically with diminished adhesion of neutrophils to interstitial intrapulmonary capillary endothelial cells. In studies of immune complex (BSA-anti-BSA)-induced alveolitis and dermal vasculitis, anti-CD18 had protective effects at all doses of anti-BSA employed. The protective effects of anti-CD18 correlated with diminished neutrophil accumulation in tissues at lower doses of anti-BSA. Although anti-CD11b was not effective under the same experimental conditions, intratracheal administration of this antibody conveyed protection against immune complex-induced lung injury, suggesting that both CD11b and CD18 are required for the full expression of injury. The current studies also demonstrated that when surface-bound IgG immune complexes were treated with fresh rat serum, the increment in O2- and TNF alpha generated by alveolar macrophages was suppressed by anti-CD18, but not by anti-CD11b, suggesting a heretofore unrecognized role for CD18 in the O2- and TNF-alpha responses of alveolar macrophages. Thus, neutrophil beta 2 integrins play a requisite role for the full expression of complement-dependent and oxygen radical-mediated injury of the lung and dermal vasculature.  相似文献   

2.
C/EBPs, particularly C/EBPβ and C/EBPδ, are known to participate in the regulation of many genes associated with inflammation. However, very little is known regarding the activation and functions of C/EBPβ and C/EBPδ in acute lung inflammation and injury. In this study, we show that both C/EBPβ and C/EBPδ activation are triggered in lungs and in alveolar macrophages following intrapulmonary deposition of IgG immune complexes. We further show that mice carrying a targeted deletion of the C/EBPβ gene displayed significant attenuation of the permeability index (lung vascular leak of albumin), lung neutrophil accumulation (myeloperoxidase activity), total number of WBCs, and neutrophils in bronchoalveolar lavage fluids compared with wild-type mice. Moreover, the mutant mice expressed considerably less TNF-α, IL-6, and CXC/CC chemokine and soluble ICAM-1 proteins in bronchoalveolar lavage fluids, and corresponding mRNAs in the IgG immune complex-injured lung, compared with wild-type mice. These phenotypes were associated with a significant reduction in morphological lung injury. In contrast, C/EBPδ deficiency had no effect on IgG immune complex-induced lung injury. IgG immune complex-stimulated C/EBPβ-deficient alveolar macrophages released significantly less TNF-α, IL-6, MIP-2, keratinocyte cell-derived chemokine, and MIP-1α compared with wild-type cells. Similar decreases in IgG immune complex-induced inflammatory mediator production were observed following small interfering RNA ablation of C/EBPβ in a murine alveolar macrophage cell line. These findings implicate C/EBPβ as a critical regulator of IgG immune complex-induced inflammatory responses and injury in the lung.  相似文献   

3.
Vascular injury has been induced in rat lung and dermis after deposition of IgG immune complexes (BSA-anti-BSA complexes). By the use of antibodies to TNF-alpha and IL-1 and employment of the IL-1R antagonist, the requirements for these cytokines have been evaluated. In lung, both TNF-alpha and IL-1 were required for the full expression of injury. Protection was related to the dose of cytokine-blocking agent employed and was directly correlated with diminished tissue content of myeloperoxidase (MPO). In the dermis, IL-1 was required for the full expression of injury; blocking of IL-1 protected the tissue from injury in a manner that correlated with reduced MPO content. However, anti-TNF-alpha provided no protection against dermal vascular injury and failed to reduce MPO content. In contrast, the local injection of either TNF-alpha or IL-1 beta enhanced IgG immune complex-induced dermal vascular injury, proportional to the increased tissue content of MPO, indicating that the rat dermis is reactive to both cytokines. By the employment of immunohistochemical approaches, it was demonstrated that, after deposition of immune complexes, TNF-alpha and IL-1 were readily demonstrated in lung macrophages, whereas in the dermis IL-1, but not TNF-alpha, was present in a granular pattern within interstitial cells. The immunohistochemical data are consistent with the patterns of protective effects of anti-IL-1, IL-1R antagonist and anti-TNF-alpha in the two organs. As expected, blocking of TNF-alpha or IL-1 had no protective effects on acute lung injury produced by systemic C activation after i.v. infusion of the cobra venom factor. The data suggest fundamental differences in the requirements for cytokines in lung and dermal vascular injury after deposition of IgG immune complexes.  相似文献   

4.
Macrolide antibiotics have unique immunomodulatory actions apart from antimicrobial properties. We studied the effects of macrolides on IgG immune complex (IgG-ICx)-induced lung injury in rats in vivo and in vitro. Intrapulmonary deposition of IgG-ICx produced a time-dependent increase in the concentration of NO in exhaled air. There were corresponding increases in the number of neutrophils accumulated into alveolar spaces, and lung wet-to-dry weight ratio. All of these changes were inhibited by pretreatment with erythromycin or josamycin, but not by amoxicillin or cephaclor. Incubation of cultured pulmonary alveolar macrophages caused up-regulation of NO production and expression of inducible NO synthase mRNA, an effect that was dose dependently inhibited by erythromycin, roxithromycin, or josamycin. The macrolides also reduced IgG-ICx-induced release of IL-1beta and TNF-alpha, but did not alter the release of NO induced by exogenously added IL-1beta and TNF-alpha. These results suggest that macrolide antibiotics specifically inhibit immune complex-induced lung injury presumably by inhibiting cytokine release and the resultant down-regulation of inducible NO synthase gene expression and NO production by rat pulmonary alveolar macrophages.  相似文献   

5.
Growing evidences indicate that Ly-GDI, an inhibitory protein of Rho GTPases, plays an essential role in regulating actin cytoskeletal alteration which is indispensible for the process such as phagocytosis. However, the role of Ly-GDI in inflammation remains largely unknown. In the current study, we found that Ly-GDI expression was significantly decreased in the IgG immune complex-injured lungs. To determine if Ly-GDI might regulate the lung inflammatory response, we constructed adenovirus vectors that could mediate ectopic expression of Ly-GDI (Adeno-Ly-GDI). In vivo mouse lung expression of Ly-GDI resulted in a significant attenuation of IgG immune complex-induced lung injury, which was due to the decreased pulmonary permeability and lung inflammatory cells, especially neutrophil accumulation. Upon IgG immune complex deposition, mice with Ly-GDI over-expression in the lungs produced significant less inflammatory mediators (TNF-α, IL-6, MCP-1, and MIP-1α) in bronchoalveolar lavage fluid when compared control mice receiving airway injection of Adeno-GFP. Mechanically, IgG immune complex-induced NF-κB activity was markedly suppressed by Ly-GDI in both alveolar macrophages and lungs as measured by luciferase assay and electrophoretic mobility shift assay. These findings suggest that Ly-GDI is a critical regulator of inflammatory injury after deposition of IgG immune complexes and that it negatively regulates the lung NF-κB activity.  相似文献   

6.
Neutrophil trafficking in lung involves transendothelial migration, migration in tissue interstitium, and transepithelial migration. In a rat model of IgG immune complex-induced lung injury, it was demonstrated that neutrophil emigration involves regulatory mechanisms including complement activation, cytokine regulation, chemokine production, activation of adhesion molecules, and their respective counter receptors. The process is presumably initiated and modulated by the production of early response cytokines and chemokines from lung cells, especially from alveolar macrophages. TNF-alpha and IL-1 up-regulate intracellular adhesion molecule-1 (ICAM-1) and E-selectin, setting the stage for neutrophil migration through endothelium. The CXC chemokines, such as macrophage inflammatory protein (MIP)-2 and cytokine-inducible neutrophil chemoattractant (CINC), constitute chemokine gradient to orchestrate neutrophil migration in lung. Complement activation induced by IgG immune complex deposition is another important event leading to neutrophil accumulation in lung. Complement activation product C5a not only plays an important role in chemoattracting neutrophils into lung, but regulates adhesion molecules, chemokines, and cytokines expression. In addition, oxidative stress may regulate neutrophil accumulation in lung by modulation of adhesion molecule activation and chemokine production. In this review, we focus on the current knowledge of the mechanisms leading to accumulation of neutrophils during acute lung injury.  相似文献   

7.
Complement activation is an important step for triggering of acute inflammatory reactions. Soluble human recombinant complement receptor type 1 (sCR1) blocks complement activation by both classical and alternative pathways. In addition to glycogen-induced peritonitis, three models of complement-dependent acute inflammatory injury have been used to assess the protective effects of sCR1: lung and dermal injury after intraalveolar or intradermal deposition of IgG immune complexes; acute lung injury resulting from intravascular activation of complement after the i.v. injection of cobra venom factor; and acute skin and lung injury (at 4 h) after thermal trauma involving 25 to 30% total body surface area. Vascular injury was quantified by increases in vascular permeability, hemorrhage, neutrophil infiltration, and, as indicated, tissue water content. Intravenous infusion of sCR1 reduced lung and dermal vascular injury in all models studied. In glycogen-induced peritoneal exudates sCR1-reduced neutrophil accumulation by 79%. In animals undergoing IgG immune complex-induced alveolitis, sCR1 treatment reduced vascular permeability and hemorrhage by 72 and 71%, respectively, and tissue accumulation of neutrophils was reduced by 68%. After cobra venom factor injection, sCR1 reduced increases in lung vascular permeability by 67%, hemorrhage by 73%, and lung myeloperoxidase content by 55%. Four hours after thermal injury of skin, sCR1-treated animals demonstrated significant protection against lung injury; increases in vascular permeability and hemorrhage were reduced by 45 and 46%, respectively, and myeloperoxidase content was lowered by 39%. In thermal injury of the skin, sCR1 injection reduced dermal vascular permeability by 25% at 1 h (p = NS) and 44% at 4 h. Water content in skin biopsies was also decreased. There was a dose-response relationship between the amount of sCR1 infused and the extent of protection in each of the injury models. These data demonstrate that sCR1 offers significant protection against complement-dependent tissue injury in the animal models studied and that the protective effects are related to reduced neutrophil content.  相似文献   

8.
Stat3 activation in acute lung injury   总被引:8,自引:0,他引:8  
Stat3 plays diverse roles in biological processes including cell proliferation, survival, apoptosis, and inflammation. Very little is known regarding its activation and function in the lung during acute inflammation. We now show that Stat3 activation was triggered in lungs and in alveolar macrophages after intrapulmonary deposition of IgG immune complexes in rats. Low levels of constitutive Stat3 were observed in normal rat lungs as determined by the EMSA. Stat3 activity in whole lung extracts increased 2 h after initiation of IgG immune complex deposition, reaching maximal levels by 4 h, whereas Stat3 activation was found in alveolar macrophages as early as 30 min after onset of injury. Expression and activation of Stat3 mRNA, protein, and protein phosphorylation was accompanied by increased gene expression of IL-6, IL-10, and suppressor of cytokine signaling-3 in whole lung tissues. Both Tyr(705) and Ser(727) phosphorylation were involved in Stat3 activation as assessed in whole lung extracts. C5a (complement 5, fragment a) per se can induce phosphorylation of Ser(727) of Stat3. In vivo, Stat3 activation was dramatically suppressed by depletion of neutrophils or lung macrophages, resulting in reduced gene expression of IL-6 and IL-10 in whole lung tissues. Using blocking Abs to IL-6, IL-10, and C5a, Stat3 activation induced by IgG immune complexes was markedly diminished. These data suggest in the lung injury model used that activation of Stat3 in lungs is macrophage dependent and neutrophil dependent. IL-6, IL-10, and C5a contribute to Stat3 activation in inflamed rat lung.  相似文献   

9.
Regulatory effects of eotaxin on acute lung inflammatory injury   总被引:3,自引:0,他引:3  
Eotaxin, which is a major mediator for eosinophil recruitment into lung, has regulatory effects on neutrophil-dependent acute inflammatory injury triggered by intrapulmonary deposition of IgG immune complexes in rats. In this model, eotaxin mRNA and protein were up-regulated during the inflammatory response, resulting in eotaxin protein expression in alveolar macrophages and in alveolar epithelial cells. Ab-induced blockade of eotaxin in vivo caused enhanced NF-kappaB activation in lung, substantial increases in bronchoalveolar lavage levels of macrophage inflammatory protein (MIP)-2 and cytokine-induced neutrophil chemoattractant (CINC), and increased MIP-2 and CINC mRNA expression in alveolar macrophages. In contrast, TNF-alpha levels were unaffected, and IL-10 levels fell. Under these experimental conditions, lung neutrophil accumulation was significantly increased, and vascular injury, as reflected by extravascular leak of (125)I-albumin, was enhanced. Conversely, when recombinant eotaxin was administered in the same inflammatory model of lung injury, bronchoalveolar lavage levels of MIP-2 were reduced, as was neutrophil accumulation and the intensity of lung injury. In vitro stimulation of rat alveolar macrophages with IgG immune complexes greatly increased expression of mRNA and protein for MIP-2, CINC, MIP-1alpha, MIP-1beta, TNF-alpha, and IL-1beta. In the copresence of eotaxin, the increased levels of MIP-2 and CINC mRNAs were markedly diminished, whereas MIP-1alpha, MIP-1beta, TNF-alpha, and IL-1beta expression of mRNA and protein was not affected. These data suggest that endogenous eotaxin, which is expressed during the acute lung inflammatory response, plays a regulatory role in neutrophil recruitment into lung and the ensuing inflammatory damage.  相似文献   

10.
Targeted delivery of drugs to vascular endothelium promises more effective and specific therapies in many disease conditions, including acute lung injury (ALI). This study evaluates the therapeutic effect of drug targeting to PECAM (platelet/endothelial cell adhesion molecule-1) in vivo in the context of pulmonary oxidative stress. Endothelial injury by reactive oxygen species (e.g., H2O2) is involved in many disease conditions, including ALI/acute respiratory distress syndrome and ischemia-reperfusion. To optimize delivery of antioxidant therapeutics, we conjugated catalase with PECAM antibodies and tested properties of anti-PECAM/catalase conjugates in cell culture and mice. Anti-PECAM/catalase, but not an IgG/catalase counterpart, bound specifically to PECAM-expressing cells, augmented their H2O2-degrading capacity, and protected them against H2O2 toxicity. Anti-PECAM/catalase, but not IgG/catalase, rapidly accumulated in the lungs after intravenous injection in mice, where it was confined to the pulmonary endothelium. To test its protective effect, we employed a murine model of oxidative lung injury induced by glucose oxidase coupled with thrombomodulin antibody (anti-TM/GOX). After intravenous injection in mice, anti-TM/GOX binds to pulmonary endothelium and produces H2O2, which causes lung injury and 100% lethality within 7 h. Coinjection of anti-PECAM/catalase protected against anti-TM/GOX-induced pulmonary oxidative stress, injury, and lethality, whereas polyethylene glycol catalase or IgG/catalase conjugates afforded only marginal protective effects. This result validates vascular immunotargeting as a prospective strategy for therapeutic interventions aimed at immediate protective effects, e.g., for augmentation of antioxidant defense in the pulmonary endothelium and treatment of ALI.  相似文献   

11.
The complement inhibitor soluble complement receptor type 1 (sCR1) and a truncated form of sCR1, sCR1[desLHR-A], have been generated with expression of the selectin-reactive oligosaccharide moiety, sialyl Lewisx (sLex), as N-linked oligosaccharide adducts. These modified proteins, sCR1sLex and sCR1[desLHR-A]sLex, were assessed in the L-selectin- and P-selectin-dependent rat model of lung injury following systemic activation of complement by cobra venom factor and in the L-selectin-, P-selectin-, and E-selectin-dependent model of lung injury following intrapulmonary deposition of IgG immune complexes. In the cobra venom factor model, sCR1sLex and sCR1[desLHR-A]sLex caused substantially greater reductions in neutrophil accumulation and in albumin extravasation in lung when compared with the non-sLex-decorated forms. In this model, increased lung vascular binding of sCR1sLex and sCR1[desLHR-A]sLex occurred in a P-selectin-dependent manner, in contrast to the absence of any increased binding of sCR1 or sCR1[desLHR-A]. In the IgG immune complex model, sCR1[desLHR-A]sLex possessed greater protective effects relative to sCR1[desLHR-A], based on albumin extravasation and neutrophil accumulation. Enhanced protective effects correlated with greater lung vascular binding of sCR1[desLHR-A]sLex as compared with the non-sLex-decorated form. In TNF-alpha-activated HUVEC, substantial in vitro binding occurred with sCR1[desLHR-A]sLex (but not with sCR1[desLHR-A]). This endothelial cell binding was blocked by anti-E-selectin but not by anti-P-selectin. These data suggest that sLex-decorated complement inhibitors have enhanced antiinflammatory effects and appear to have enhanced ability to localize to the activated vascular endothelium.  相似文献   

12.
Cellular and humoral immune responses induced following murine Chlamydia trachomatis infection confer almost sterile protection against homologous reinfection. On the other hand, immunization with inactivated organism induces little protective immunity in this model system. The underlying mechanism(s) that determines such divergent outcome remains unclear, but elucidating the mechanism will probably be important for chlamydial vaccine development. One of the distinct differences between the two forms of immunization is that chlamydia replication in epithelial cells causes the secretion of a variety of proinflammatory cytokines and chemokines, such as GM-CSF, that may mobilize and mature dendritic cells and thereby enhance the induction of protective immunity. Using a murine model of C. trachomatis mouse pneumonitis lung infection and intrapulmonary adenoviral GM-CSF transfection, we demonstrate that the expression of GM-CSF in the airway compartment significantly enhanced systemic Th1 cellular and local IgA immune responses following immunization with inactivated organisms. Importantly, immunized mice had significantly reduced growth of chlamydia and exhibited less severe pulmonary inflammation following challenge infection. The site of GM-CSF transfection proved important, since mice immunized with inactivated organisms after GM-CSF gene transfer by the i.p. route exhibited little protection against pulmonary challenge, although i.p. immunization generated significant levels of systemic Th1 immune responses. The obvious difference between i.p. and intrapulmonary immunization was the absence of lung IgA responses following i.p. vaccination. In aggregate, the findings demonstrate that the local cytokine environment is critical to the induction of protective immunity following chlamydial vaccination and that GM-CSF may be a useful adjuvant for a chlamydial vaccine.  相似文献   

13.
Previous studies have shown that the isotype of an antibody response is selected, in part, by the inhibition of isotype-specific suppression. The antisuppressor model predicts that isotype selection is initiated through an interaction between Ag, Ig, and a T cell-derived factor within 6 h of immunization. This report characterizes some of these molecules and their contribution to isotype regulation. Cultures of murine spleen cells stimulated with the T cell-dependent Ag SRBC led to Ag-specific IgG and IgA responses that could be suppressed and then antisuppressed by a molecular complex produced by mixing purified serum Ig with the supernatant of Ag-pulsed macrophages co-cultured with T cells. The supernatants from separate cultures of Ag-pulsed macrophages and rIL-1 alpha stimulated CD4+ T cells, could be pooled and mixed with Ig to produce functional antisuppressive complexes thereby allowing the factors from the different cell types to be studied separately. Adsorption of the co-culture or the rIL-1 alpha stimulated T cell supernatants against monoclonal IgG or IgA, removed IgG and IgA binding factors, respectively, and abrogated the ability to enhance the corresponding isotype. The adherent material could be recovered and used to reconstitute enhancement by the supernatants depleted of the binding factors. When affinity purified IgG or IgA was used as the source of Ig within the antisuppressive complexes, the enhancement of the antibody response was limited to the isotype of the regulatory Ig used to form the complex. Thus, manipulation of the antisuppressive molecules has a predictable effect on isotype selection. Release of isotype-specific binding factors by CD4+ cells by rIL-1 alpha supports the hypothesis that T cell circuits play a role in initiating isotype regulation.  相似文献   

14.
The clearance of organisms from the lungs of mice was followed after aerosol administration. Preopsonisation of the organisms with immune serum, as a source of specific antibody, enhanced the rate of pulmonary clearance while s.IgA delayed clearance. In the peritoneal cavity, bacteria pre-treated with immune serum were cleared more rapidly than unopsonised bacteria, but s.IgA had little effect. The presence of Fc receptors for IgG and not s.IgA on alveolar macrophages suggests that, in secretions, IgG is the predominant antibody promoting phagocytosis by alveolar macrophages and that any protective effect of s.IgA is not mediated by these cells.  相似文献   

15.
16.
The role of the CC chemokines, macrophage inflammatory protein-1 beta (MIP-1 beta), monocyte chemotactic peptide-1 (MCP-1), and RANTES, in acute lung inflammatory injury induced by intrapulmonary deposition of IgG immune complexes injury in rats was determined. Rat MIP-1 beta, MCP-1, and RANTES were cloned, the proteins were expressed, and neutralizing Abs were developed. mRNA and protein expression for MIP-1 beta and MCP-1 were up-regulated during the inflammatory response, while mRNA and protein expression for RANTES were constitutive and unchanged during the inflammatory response. Treatment of rats with anti-MIP-1 beta Ab significantly decreased vascular permeability by 37% (p = 0.012), reduced neutrophil recruitment into lung by 65% (p = 0.047), and suppressed levels of TNF-alpha in bronchoalveolar lavage fluids by 61% (p = 0.008). Treatment of rats with anti-rat MCP-1 or anti-rat RANTES had no effect on the development of lung injury. In animals pretreated intratracheally with blocking Abs to MCP-1, RANTES, or MIP-1 beta, significant reductions in the bronchoalveolar lavage content of these chemokines occurred, suggesting that these Abs had reached their targets. Conversely, exogenously MIP-1 beta, but not RANTES or MCP-1, caused enhancement of the lung vascular leak. These data indicate that MIP-1 beta, but not MCP-1 or RANTES, plays an important role in intrapulmonary recruitment of neutrophils and development of lung injury in the model employed. The findings suggest that in chemokine-dependent inflammatory responses in lung CC chemokines do not necessarily demonstrate redundant function.  相似文献   

17.
Norovirus (NoV) P domain complexes, the 24 mer P particles and the P dimers, induced effective humoral immunity, but their role in the cellular immune responses remained unclear. We reported here a study on cellular immune responses of the two P domain complexes in comparison with the virus-like particle (VLP) of a GII.4 NoV (VA387) in mice. The P domain complexes induced significant central memory CD4+ T cell phenotypes (CD4+ CD44+ CD62L+ CCR7+) and activated polyclonal CD4+ T cells as shown by production of Interleukin (IL)-2, Interferon (IFN)-γ, and Tumor Necrosis Factor (TNF)-α. Most importantly, VA387-specific CD4+ T cell epitope induced a production of IFN-γ, indicating an antigen-specific CD4+ T cell response in P domain complex-immunized mice. Furthermore, P domain complexes efficiently induced bone marrow-derived dendritic cell (BMDC) maturation, evidenced by up-regulation of co-stimulatory and MHC class II molecules, as well as production of IL-12 and IL-1β. Finally, P domain complex-induced mature dendritic cells (DCs) elicited proliferation of specific CD4+ T cells targeting VA387 P domain. Overall, we conclude that the NoV P domain complexes are efficiently presented by DCs to elicit not only humoral but also cellular immune responses against NoVs. Since the P particle is highly effective for both humoral and cellular immune responses and easily produced in Escherichia coli (E. coli), it is a good choice of vaccine against NoVs and a vaccine platform against other diseases.  相似文献   

18.
Role of IL-18 in acute lung inflammation.   总被引:12,自引:0,他引:12  
We have examined the role of IL-18 after acute lung inflammation in rats caused by intrapulmonary deposition of IgG immune complexes. Constitutive IL-18 mRNA and protein expression (precursor form, 26 kDa) were found in normal rat lung, whereas in inflamed lungs, IL-18 mRNA was up-regulated; in bronchoalveolar (BAL) fluids, the 26-kDa protein form of IL-18 was increased at 2-4 h in inflamed lungs and remained elevated at 24 h, and the "mature" protein form of IL-18 (18 kDa) appeared in BAL fluids 1-8 h after onset of inflammation. ELISA studies confirmed induction of IL-18 in inflamed lungs (in lung homogenates and in BAL fluids). Prominent immunostaining for IL-18 was found in alveolar macrophages from inflamed lungs. When rat lung macrophages, fibroblasts, type II cells, and endothelial cells were cultured in vitro with LPS, only the first two produced IL-18. Intratracheal administration of rat recombinant IL-18 in the lung model caused significant increases in lung vascular permeability and in BAL content of neutrophils and in BAL content of TNF-alpha, IL-1beta, and cytokine-induced neutrophil chemoattractant, whereas intratracheal instillation of anti-IL-18 greatly reduced these changes and prevented increases in BAL content of IFN-gamma. Intratracheal administration of the natural antagonist of IL-18, IL-18 binding protein, resulted in suppressed lung vascular permeability and decreased BAL content of neutrophils, cytokines, and chemokines. These findings suggest that endogenous IL-18 functions as a proinflammatory cytokine in this model of acute lung inflammation, serving as an autocrine activator to bring about expression of other inflammatory mediators.  相似文献   

19.
Macaca monkeys experimentally infected with Schistosoma japonicum developed a chronic progressive kidney lesion characterized by an increase of mesangial matrix, local glomerular hypercellularity, and local thickening of glomerular basement membrane. Immunofluorescence studies revealed the localization of IgG, IgM, IgA, and IgE immunoglobulins mostly in the mesangial area of the glomeruli accompanied by the deposition of Schistosoma antigens. By electron microscopy, in addition to the local thickening of the glomerular basement membrane, dense homogeneous deposits and those with moth-eaten appearance were detected in the mesangial matrix. These findings suggest that worms in the bloodstream continuously release antigenic materials that stimulate host's antibody response belonging to various immunoglobulin classes including IgE. The produced antibodies and antigens would form immune complexes that deposited in the glomeruli. The increased vascular permeability caused by antigen-IgE antibody interaction may play an important role in the deposition of immune complexes and in the rapid development of kidney injury.  相似文献   

20.
Switching from IgM to IgG and IgA is essential for antiviral immunity and requires engagement of CD40 on B cells by CD40L on CD4(+) T cells. HIV-1 is thought to impair CD40-dependent production of protective IgG and IgA by inducing progressive loss of CD4(+) T cells. Paradoxically, this humoral immunodeficiency is associated with B cell hyperactivation and increased production of nonprotective IgG and IgA that are either nonspecific or specific for HIV-1 envelope glycoproteins, including gp120. Nonspecific and gp120-specific IgG and IgA are sensitive to antiretroviral therapy and remain sustained in infected individuals with very few CD4(+) T cells. One interpretation is that some HIV-1 Ags elicit IgG and IgA class switch DNA recombination (CSR) in a CD40-independent fashion. We show that a subset of B cells binds gp120 through mannose C-type lectin receptors (MCLRs). In the presence of gp120, MCLR-expressing B cells up-regulate the CSR-inducing enzyme, activation-induced cytidine deaminase, and undergo CSR from IgM to IgG and IgA. CSR is further enhanced by IL-4 or IL-10, whereas Ab secretion requires a B cell-activating factor of the TNF family. This CD40L-related molecule is produced by monocytes upon CD4, CCR5, and CXCR4 engagement by gp120 and cooperates with IL-4 and IL-10 to up-regulate MCLRs on B cells. Thus, gp120 may elicit polyclonal IgG and IgA responses by linking the innate and adaptive immune systems through the B cell-activating factor of the TNF family. Chronic activation of B cells through this CD40-independent pathway could impair protective T cell-dependent Ab responses by inducing immune exhaustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号