首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effect of acute pulmonary vascular congestion on bronchial reactivity in dogs in a standard challenge protocol. Airway responsiveness to histamine whose concentration was varied in a stepwise incremental fashion was assessed from changes in pulmonary resistance (RL) and dynamic compliance (Cdyn) in 10 anesthetized dogs. Brief acute pulmonary congestion was created by inflating a balloon placed in the left atrium to raise left atrial pressure to 20-30 cmH2O for 1 min. Pulmonary congestion did not change RL in the control condition. However, after histamine inhalation, RL was further increased by pulmonary congestion, making the two effects synergistic. This phenomenon could not be observed with vagi cut. Pulmonary congestion decreased Cdyn in all dogs regardless of histamine concentration, with or without vagotomy. We conclude that pulmonary vascular congestion makes the bronchi hyperreactive through vagal reflexes. The reduction in Cdyn caused by pulmonary congestion appears to stem mainly from the narrowing of peripheral airways by adjacent vascular engorgement.  相似文献   

2.
We studied the effect of exogenous prostaglandin F2 alpha (PGF2 alpha) on airway smooth muscle contraction caused by parasympathetic stimulation in 22 mongrel dogs in situ. Voltage (0-30 V, constant 20 Hz) and frequency-response (0-25 Hz, 25 V) curves were generated by stimulating the cut ends of both cervical vagus nerves. Airway response was measured isometrically as active tension (AT) in a segment of cervical trachea and as change in airway resistance (RL) and dynamic compliance (Cdyn) in bronchial airways. One hour after 5 mg/kg iv indomethacin, a cumulative frequency-response curve was generated in nine animals by electrical stimulation of the vagus nerves at 15-s intervals. Reproducibility was demonstrated by generating a second curve 7 min later. A third frequency-response curve was generated during active contraction of the airway caused by continuous intravenous infusion of 10 micrograms X kg-1 X min-1PPGF2 alpha. Additional frequency-response studies were generated 15 and 30 min after PGF2 alpha, when airway contractile response (delta RL = +2.8 +/- 0.65 cmH2O X 1(-1) X s; delta Cdyn = -0.0259 +/- 0.007 1/cmH2O) returned to base line. Substantial augmentation of AT, RL, and Cdyn responses was demonstrated in every animal studied (P less than 0.01 for all points greater than 8 Hz) 15 min after PGF2 alpha. At 30 min, response did not differ from initial base-line control. In four animals receiving sham infusion, all frequency-response curves were identical. We demonstrate that PGF2 alpha augments the response to vagus nerve stimulation in tracheal and bronchial airways. Augmentation does not depend on PGF2 alpha-induced active tone.  相似文献   

3.
Airway responses to endothelin (ET) 1, ET-2, ET-3, and sarafotoxin 6b (S6b) were investigated in paralyzed, anesthetized, mechanically ventilated cats. Intravenous injections of ET-1 (0.1-1 nmol/kg) increased transpulmonary pressure (Ptp) and lung resistance (RL) and decreased dynamic compliance (Cdyn) in a dose-related manner. Airway responses to ET-1 were decreased significantly by sodium meclofenamate, a cyclooxygenase inhibitor, and by SKF 96148, a thromboxane receptor blocking agent. In terms of relative bronchoconstrictor activity, the thromboxane mimic, U-46619, was threefold more potent than ET-1 on a molar basis in increasing Ptp. ET-1 and ET-3 had similar bronchoconstrictor activity, and these peptides were less potent than ET-2 and S6b. Bronchoconstrictor responses to ET-2, ET-3, and S6b were also decreased significantly by meclofenamate and by thromboxane receptor blocking agents. The ET-1 precursor ET-1-(1-38) (big ET-1) caused a significant slowly developing increase in Ptp, RL, and aortic pressure (PAO) and a decrease in Cdyn, whereas a monocyclic ET-1 analogue and ET-1-(16-21) hexapeptide fragment had little or no activity in the airways. The present data indicate that ET-1, ET-2, ET-3, and S6b have significant bronchoconstrictor activity in the cat and that responses are dependent in part on the release of arachidonic acid and the formation of thromboxane A2. These data also suggest that big ET-1 is converted into a mature peptide in the cat and that ET-1-(16-21) hexapeptide fragment and a monocyclic ET-1 analogue have little if any bronchoconstrictor activity in the anesthetized cat.  相似文献   

4.
We sought to define the effects of maturation and hyperoxic stress on nitric oxide (NO)-induced modulation of bronchopulmonary responses to stimulation of vagal preganglionic nerve fibers. Experiments were performed on decerebrate, paralyzed, and ventilated rat pups at 6-7 days (n = 21) and 13-15 days of age (n = 23) breathing room air and on rat pups 13-15 days of age (n = 19) after exposure to hyperoxia (>/=95% inspired O(2) fraction for 4-6 days). Total lung resistance (RL) and lung elastance (EL) were measured by body plethysmograph. Vagal stimulation and release of acetylcholine caused a frequency-dependent increase in RL and EL in all animals. The RL response was significantly potentiated in normoxic animals by prior blockade of nitric oxide synthase (NOS) (P < 0.05). Hyperoxic exposure increased responses of RL to vagal stimulation (P < 0.05); however, after hyperoxic exposure, the potentiation of contractile responses by NOS blockade was abolished. The response of EL was potentiated by NOS blockade in the 13- to 15-day-old animals after both normoxic and hyperoxic exposure (P < 0.01). Morphometry revealed no effect of hyperoxic exposure on airway smooth muscle thickness. We conclude that NO released by stimulation of vagal preganglionic fibers modulates bronchopulmonary contractile responses to endogenously released acetylcholine in rat pups. Loss of this modulatory effect of NO could contribute to airway hyperreactivity after prolonged hyperoxic exposure, as may occur in bronchopulmonary dysplasia.  相似文献   

5.
Structural components of the airway wall may act to load airway smooth muscle and restrict airway narrowing. In this study, the effect of load on airway narrowing was investigated in pig isolated bronchial segments. In some bronchi, pieces of cartilage were removed by careful dissection. Airway narrowing was produced by maximum electrical field stimulation. An endoscope was used to record lumen narrowing. The compliance of the bronchial segments was determined from the cross-sectional area of the lumen and the transmural pressure. Airway narrowing and the velocity of airway narrowing were increased in cartilage-removed airways compared with intact control bronchi. Morphometric assessment of smooth muscle length showed greater muscle shortening to acetylcholine in cartilage-removed airways than in controls. Airway narrowing was positively correlated with airway compliance. Compliance and area of cartilage were negatively correlated. These results show that airway narrowing is increased in compliant airways and that cartilage significantly loads airway smooth muscle in whole bronchi.  相似文献   

6.
Full methacholine dose-response curves were performed on anesthetized tracheostomized Fischer 344 adult rats treated neonatally with capsaicin (50 mg/kg) or with vehicle alone. Capsaicin, the hot extract of pepper, releases substance P (SP) from nonmyelinated sensory nerve endings and causes acute bronchoconstriction and airway microvascular leakiness. Chronic treatment with capsaicin leads to depletion of SP and other tachykinins from afferent C-fibers and can therefore be used as a tool to investigate the contribution of SP innervation to airway responses. The rats (9 controls and 6 treated with capsaicin) were paralyzed with succinylcholine and mechanically ventilated at a constant tidal volume and frequency. Airway resistance (RL) and dynamic compliance (Cdyn) were determined at each dose of methacholine from measurements of volume, flow, and transpulmonary pressure. Capsaicin-treated rats were found to have a significantly reduced baseline RL [0.150 +/- 0.039 (SD) vs. 0.225 +/- 0.050 cmH2O.ml-1.s, P = 0.009] and a correspondingly significantly elevated Cdyn (0.371 +/- 0.084 vs. 0.268 +/- 0.053 ml/cmH2O, P = 0.012). There was no significant difference in sensitivity to methacholine, but the maximal response to methacholine was significantly greater in the capsaicin-treated rats. In terms of RL, the maximal response for capsaicin-treated rats was 6.03 x baseline +/- 0.98 vs. 4.30 x baseline +/- 1.80 (P = 0.05) for controls, and for Cdyn changes the maximal decrease was 5.75 x baseline +/- 1.22 vs. 3.83 +/- 0.69 (P = 0.002). The observed differences in RL and Cdyn coupled with the differences in maximal responses can be attributed to the selective destruction of a subpopulation of pulmonary afferent C-fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Although several studies have examined the pulmonary response to muscarinic agonists in the newborn, none has addressed the functional capabilities or "maturity" of vagal innervation to airway smooth muscle in the newborn. The purpose of the present study was to provide a quantitative analysis of the ability of vagal excitatory innervation (encompassing the pre- and postganglionic fibers, airway ganglia, and airway smooth muscle) to alter pulmonary mechanics in the newborn. We measured the changes in pulmonary mechanics elicited by electrical stimulation of the vagus nerves in 20 newborn cats and 18 puppies anesthetized with chloralose urethan. Animals were tracheotomized and ventilated (chest open), and the cervical vagus nerves were sectioned and placed on stimulating electrodes. Animals were placed in a flow plethysmograph, and mean inspiratory resistance (RL,I) and dynamic compliance were measured on a breath-by-breath basis. In each animal RL,I increased, dynamic compliance decreased, and heart rate slowed during 10 s of vagal stimulation at frequencies ranging from 2 to 20 pulses/s. At each stimulus frequency there was a spectrum of responses with respect to the percent change in RL,I. At 15 pulses/s there was a fourfold difference in the RL,I response of the most- and least-sensitive animals. In both species, higher stimulus frequencies caused greater increases in RL,I; at 2 pulses/s RL,I increased on average approximately 40%, compared with approximately 250% at 20 pulses/s. The increase in RL,I was similar in the kitten and puppy at stimulus frequencies of 6 and 15 pulses/s but was less in the kitten at 2 pulses/s (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Vagal, nonadrenergic inhibitory system (NAIS) innervation to airway smooth muscle has been demonstrated in adults of several species, including humans. However, the functional status of this system in newborns is not known. The NAIS of intestinal smooth muscle has been demonstrated in newborns and develops in parallel with cholinergic innervation (14). Since the lung is derived embryologically from the foregut and cholinergic innervation is operative at birth, we tested the hypothesis that NAIS innervation to the airways is functional in newborn cats. Nineteen cats (2-11 days of age) were anesthetized with chloralose-urethan, and a tracheal cannula was inserted. The chest was opened and the animals were mechanically ventilated. The cervical vagus nerves were separated from the sympathetics, cut, and placed on stimulating electrodes. Mean inspiratory resistance (RL, I) and dynamic compliance (Cdyn, L) were measured on a breath-by-breath basis. Atropine and propranolol were administered (2 mg/kg iv) to block cholinergic and adrenergic pathways, respectively. Subsequently, serotonin infusion was used to increase RL, I approximately 150%. Stimulation (10 s) at frequencies ranging from 2 to 20/s caused a slow-onset (30 s to peak) long-lasting decrease in RL, I and a much smaller increase in Cdyn, L. The magnitude and duration of the bronchodilation increased with stimulus frequency to a plateau at approximately 15/s. At a stimulus frequency of 2/s, RL, I decreased 11 +/- 1.9 vs 36 +/- 4.8% (SE) at 20/s, whereas Cdyn, L increased 2 +/- 1.1 vs. 6 +/- 1.7%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
S Matsumoto 《Life sciences》1999,65(1):103-112
The present study was carried out to investigate whether there is the difference between low and high frequencies of vagal stimulation on the functional appearance of M2 receptors in the rabbit. The animals were anesthetized, artificially ventilated and bilaterally vagotomized. Bilateral vagus nerve stimulation (5 to 30 Hz) for 30 sec caused bronchoconstriction (measured as an increase in R(L) and a decrease in Cdyn) in a frequency-dependent manner. The bronchoconstriction evoked by ACh injection (1 and 3 microg/kg) was dose-dependent. Although administration of methoctramine (50 and 300 microg/kg), a selective M2 receptor antagonist, had no significant effect on ACh-induced bronchoconstriction, methoctramine dose-dependently augmented the R(L) and Cdyn responses to vagal stimulation at 5-15 Hz but did not potentiate bronchoconstrictive responses to the stimulation at 30 Hz. Administration of [D-Pro2, D-Try(7,9)]-SP (0.5 mg/kg, a selective tachykinin receptor antagonist) that had no significant effect on the R(L) and Cdyn responses to vagal stimulation (5-15 Hz) attenuated the bronchoconstrictive response to the stimulation at 30 Hz. Conversely, thiorphan (2 mg/kg, a neutral endopeptidase inhibitor) potentiated the bronchoconstriction evoked by vagal stimulation at 30 Hz only. These results suggest that M2 receptors function as the inhibitory receptors in the bronchoconstrictive response to vagal stimulation at the lower frequencies (5-15 Hz), but that the M2 receptor antagonism is diminished when vagal stimulation at a higher frequency (30 Hz) results in the release of SP from the lungs.  相似文献   

10.
We investigated whether an hypoxia-induced increase in airway resistance mediated by vagal efferents participates in the increase in end-expiratory lung volume (EELV) observed in hypoxia. We also assessed the contribution of the end-expiratory activity of the diaphragm (DE) to this phenomenon. Therefore, we measured EELV, total lung resistance (RL), dynamic lung compliance (Cdyn), DE, and minute ventilation (VE) in anesthetized rats during normoxia and hypoxia (10% O(2)) before (control) and after administration of atropine or saline. In the control group, hypoxia increased EELV, Cdyn, DE, and VE but slightly decreased RL. These changes were unaffected by saline or atropine, except that, in the atropine-treated rats, hypoxia did not change RL. These results suggest that 1) the increase in EELV observed in hypoxia cannot result from an increase in airway resistance; 2) the increased and persistent activity of inspiratory muscles during expiration is the most likely cause of the increase in EELV during hypoxia; and 3) the decrease in RL induced by hypoxia could result from the increase in lung volume including EELV.  相似文献   

11.
To understand the immunologic mechanisms underlying the variation in airway response to inhaled Ascaris antigen (AA) in Basenji-Greyhound (BG) dogs having hyperreactive airways, we examined the relationship between leukocyte histamine release, Ascaris-specific serum IgE, changes in pulmonary resistance (RL), and decreases in dynamic compliance (Cdyn). All Ascaris-sensitive BG dogs showing airway responses to AA aerosol challenge exhibited an antigen dose-dependent release of leukocyte histamine, with total leukocyte histamine ranging from 68 to 123 ng/10(7) cells. Airway response to inhaled antigen more closely correlated with antigen dose releasing 50% total leukocyte histamine (RL, r = 0.94); Cdyn, r = 0.82), than with circulating levels of antigen-specific IgE (RL, r = 0.68; Cdyn, r = 0.69). We conclude that the airway response of sensitized BG dogs to AA inhalations is more dependent on factors affecting mediator release from pulmonary sources than circulating specific reaginic antibody.  相似文献   

12.
To obtain evidence in the airways that catecholamines inhibit cholinergic neurotransmission, we recorded transverse tension in the posterior wall of an upper tracheal segment in anesthetized cats and compared the inhibitory effect of stimulating cervical sympathetic nerves when segment contraction was evoked by endogenous acetylcholine (vagal tone) with the effect when contraction was evoked by exogenous acetylcholine applied directly to the mucosal surface of the tracheal segment (ACh tone). We found that sympathetic stimulation abolished all contraction evoked by vagal tone but reduced ACh tone by only one-half. In a second group of cats we compared the inhibitory effects of sympathetic stimulation and intravenous isoproterenol during vagal and ACh tone and also during tone evoked by exogenous 5-hydroxytryptamine (5-HT tone). Sympathetic stimulation or isoproterenol injection abolished all vagal and 5-HT tone but again reduced ACh tone by only one-half. Our results suggest that catecholamines released from sympathetic nerves or injected into the circulation completely inhibit vagal tone. This inhibition may be partially responsible for inducing relaxation in airway smooth muscle.  相似文献   

13.
Published in vivo experiments have not supported in vitro reports of the presence of nonadrenergic noncholinergic (NANC) inhibitory pathways in the cat trachea. We therefore examined these pathways, measuring tension in an innervated tracheal segment, flow resistance in more distal airways, and dynamic compliance, in 10 anesthetized mechanically ventilated cats. Initially, cervical vagal stimulation evoked contraction followed by relaxation of smooth muscle of trachea and lower airways; sympathetic stimulation evoked relaxation only. After muscarinic blockade and restoration of smooth muscle tone with 5-hydroxytryptamine (5-HT) applied topically to the tracheal mucosa, vagal stimulation did not affect tracheal segment tension, whereas sympathetic-evoked relaxation was preserved. Similar results were found when tone was restored with intravenous 5-HT, with vagal stimulation also decreasing resistance and increasing compliance. We conclude that NANC pathways are present in lower airways but not in the cervical trachea of the cat. We hypothesize that parasympathetic constriction of cat airway smooth muscle can occur without simultaneous NANC activation, whereas NANC activity occurs only in tandem with parasympathetic stimulation.  相似文献   

14.
We studied the effects of OKY-046 (1, 10, and 30 mg/kg iv), a selective thromboxane synthase inhibitor, and of ICI 192605 (0.5 mg/kg), a selective thromboxane A2 receptor antagonist, on airflow obstruction and airway microvascular leakage induced by inhaled platelet-activating factor (PAF). Extravasated Evans blue dye content was measured as a reflection of airway microvascular leakage. In control animals, PAF caused a significantly higher increase in extravasation of dye and significantly less increase in lung resistance (RL) than histamine. OKY-046 significantly inhibited both changes in RL and airway microvascular leakage after PAF in a dose-dependent manner, whereas it inhibited histamine-induced airway microvascular leakage only at main bronchi, without any significant effect on RL. ICI 192605 significantly inhibited both RL and airway microvascular leakage induced by PAF, but not after histamine. After both PAF and histamine, changes in RL correlated significantly with the degree of microvascular leakage. Airway microvascular leakage and airflow obstruction after PAF, but not after histamine, may be dependent on thromboxane A2 generation.  相似文献   

15.
Increasing minute ventilation of dry gas shifts the principal burden of respiratory heat and water losses from more proximal airway to airways farther into the lung. If these local thermal transfers determine the local stimulus for bronchoconstriction, then increasing minute ventilation of dry gas might also extend the zone of airway narrowing farther into the lung during hyperpnea-induced bronchoconstriction (HIB). We tested this hypothesis by comparing tantalum bronchograms in tracheostomized guinea pigs before and during bronchoconstriction induced by dry gas hyperpnea, intravenous methacholine, and intravenous capsaicin. In eight animals subjected to 5 min of dry gas isocapnic hyperpnea [tidal volume (VT) = 2-5 ml, 150 breaths/min], there was little change in the diameter of the trachea or the main stem bronchi up to 0.75 cm past the main carina (zone 1). In contrast, bronchi from 0.75 to 1.50 cm past the main carina (zone 2) narrowed progressively at all minute ventilations greater than or equal to 300 ml/min (VT = 2 ml). More distal bronchi (1.50-3.10 cm past the main carina; zone 3) did not narrow significantly until minute ventilation was raised to 450 ml/min (VT = 3 ml). The estimated VT during hyperpnea needed to elicit a 50% reduction in airway diameter was significantly higher in zone 3 bronchi [4.3 +/- 0.8 (SD) ml] than in zone 2 bronchi (3.5 +/- 1.1 ml, P less than 0.012).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effects of leukotriene D4 (LTD4) on pulmonary mechanics were investigated in anesthetized, paralyzed cats under conditions of controlled ventilation. Intravenous injections of LTD4 in doses of 3, 10, and 30 micrograms caused significant increases in transpulmonary pressure (PTP) and lung resistance (RL) while decreasing dynamic compliance (Cdyn). LTD4 also increased systemic arterial pressure (PAo). The changes in PTP, RL, and Cdyn in response to LTD4 were blocked by sodium meclofenamate, a cyclooxygenase inhibitor. However, there was no significant change in the increase in PAo following cyclooxygenase blockade. U 46619, a thromboxane mimic, was 30 to 100 times more potent than LTD4 in increasing PTP, RL and decreasing Cdyn in the cat. These data show that LTD4 has significant smooth muscle constrictor activity in central airways as well as peripheral portions of the feline lung. In addition, these data suggest that in the cat the actions of intravenously administered LTD4 on lung mechanics are mediated by release of cyclooxygenase products while the systemic pressor effects are not dependent upon the integrity of the cyclooxygenase pathway.  相似文献   

17.
Thromboxane A2 (TxA2) has been implicated in airway responses to allergen and in the bronchial hyperresponsiveness observed in asthma. Furthermore a TxA2 receptor antagonist and a TxA2 synthase inhibitor inhibit plasma exudation in airways induced by inhaled platelet-activating factor. To evaluate whether TxA2 has any direct effect on plasma exudation in the airways, we studied the effect of a stable TxA2 mimetic (U-46619; 2, 20, and 200 nmol/kg iv) on lung resistance (RL) and Evans blue dye extravasation (marker of plasma albumin; 20 mg/kg iv) at the airway levels of trachea, main bronchi, and proximal and distal intrapulmonary airways in anesthetized, tracheostomized, and mechanically ventilated guinea pigs. Injection of U-46619 produced an immediate and marked dose-dependent increase in RL, which peaked at approximately 30 s. At the highest dose of U-46619, we also observed a later increase in RL, starting at approximately 3 min and reaching a second peak at approximately 8 min. Mean systemic blood pressure increased in a dose-dependent manner [maximum 82 +/- 8 (SE) mmHg]. U-46619 also produces dose-dependent plasma exudation, measured as Evans blue dye extravasation, at all airway levels as well as into the tracheal lumen. Airway responses to U-46619 (200 nmol/kg iv) were abolished in animals pretreated with the TxA2 receptor antagonist ICI-192605 (0.5 mg/kg iv). We conclude that U-46619, despite being a vasoconstrictor, is potent in inducing plasma exudation in airways and that this effect is mediated via a TxA2 receptor.  相似文献   

18.
The role of endogenous nitric oxide (NO) in modulating the excitatory response of distal airways to vagal stimulation is unknown. In decerebrate, ventilated, open-chest piglets aged 3-10 days, lung resistance (RL) was partitioned into tissue resistance (Rti) and airway resistance (Raw) by using alveolar capsules. Changes in RL, Rti, and Raw were evaluated during vagal stimulation at increasing frequency before and after NO synthase blockade with N(omega)-nitro-L-arginine methyl ester (L-NAME). Vagal stimulation increased RL by elevating both Rti and Raw. NO synthase blockade significantly increased baseline Rti, but not Raw, and significantly augmented the effects of vagal stimulation on both Rti and Raw. Vagal stimulation also resulted in a significant increase in cGMP levels in lung tissue before, but not after, L-NAME infusion. In seven additional piglets after RL was elevated by histamine infusion in the presence of cholinergic blockade with atropine, vagal stimulation failed to elicit any change in RL, Rti, or Raw. Therefore, endogenous NO not only plays a role in modulating baseline Rti, but it opposes the excitatory cholinergic effects on both the tissue and airway components of RL. We speculate that activation of the NO/cGMP pathway during cholinergic stimulation plays an important role in modulating peripheral as well as central contractile elements in the developing lung.  相似文献   

19.
Effects of atropine in ponies with recurrent airway obstruction   总被引:2,自引:0,他引:2  
The effects of atropine on lung function and airway reactivity in two groups of ponies were measured. Principal ponies had a history of recurrent airway obstruction when housed in a barn and fed hay; control ponies had no history of airway obstruction. Principal and control ponies were paired, and measurements were made when principal ponies were in clinical remission (period A) and during an acute attack of airway obstruction (period B). Atropine did not alter pulmonary resistance (RL), dynamic compliance (Cdyn), or airway responsiveness in either group of ponies at period A or in the controls at period B. In principal ponies at period B, atropine did not alter Cdyn or the concentration of aerosol histamine required to decrease Cdyn to 65% of base line (ED65Cdyn) but reduced RL and the change in RL induced by 0.1 mg/ml histamine (delta RL0.1). It is likely that the latter observation was due to geometric changes in the airways, because the change in RL and in delta RL0.1 were significantly correlated. The results of this study show little resting bronchomotor tone in normal ponies, but a major portion of the increase in RL in principals at period B is mediated via muscarinic receptors. Little evidence exists for muscarinic receptor involvement in the response to aerosol histamine in either principal or control ponies.  相似文献   

20.
Summary The occurrence and origin of substance P (SP)-immunoreactive (IR) nerves in the lower respiratory tract was studied by means of immunohistochemistry in the guinea-pig, rat, cat and man. In addition, biopsies from human material were also analysed by radioimmunoassay. SP-IR nerves were seen in four principal locations: 1) under or within the lining epithelium, 2) around blood vessels, 3) within the bronchial smooth muscle layer, and 4) around local tracheobronchial ganglion cells. Ligation experiments combined with capsaicin pretreatments indicated that all SP-IR nerves in the respiratory tract are sensory. The trachea seems to be mainly supplied by the vagal nerves, while intrapulmonary bronchi and blood vessels receive SP-IR nerves of both vagal and non-vagal (spinal) origin. SP-IR nerves were also found in the human bronchi with principally similar location as in the guinea-pig. The levels of SP-IR in the trachea and peripheral bronchi of man were about 3–4 pmol/g, which is in the same range as the content of corresponding tissues from the guinea-pig.In conclusion, the present experimental findings of SP-IR nerves in the lower respiratory tract in both experimental animals and man support the functional evidence for the importance of SP in the vagal and non-vagal (spinal) control of bronchial smooth muscle tone and vascular permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号