首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The refolding of recombinant protein from inclusion bodies expressed in Escherichia coli can present a process bottleneck. Yields at industrially relevant concentrations are restricted by aggregation of protein upon dilution of the denatured form. This article studies the effect of five factors upon the dilution refolding of protein in a twin impeller fed-batch system using refold buffer containing only the oxidized form of the redox reagent. Such a buffer is easier to prepare and more stable than a buffer containing both reduced and oxidized forms. The five factors chosen were: bulk impeller Reynolds number, mini-impeller Reynolds number, injection rate of denatured protein, redox ratio, and guanidine hydrochloride (GdHCl) concentration. A 2(5) factorial experiment was conducted at an industrially relevant protein concentration using lysozyme as the test system. The study identified that in the system used, the guanidine hydrochloride concentration, redox ratio, and injection rate were the most important factors in determining refolding yields. Two interactions were found to be important: redox ratio/guanidine hydrochloride concentration and guanidine hydrochloride concentration/injection rate. Conditions were also found at which high refolding yields could be achieved even with rapid injection and poor mixing efficiency. Therefore, a comparative assessment was carried out with minimal mixing in a simple batch-refolding mode of operation, which revealed different behavior to that of fed-batch. A graphical (windows of operation) analysis of the batch data suggested that optimal yields and productivity are obtained at high guanidine hydrochloride concentrations (1.2 M) and redox ratios of unity or greater.  相似文献   

2.
A continuous refolding method with addition of denatured protein solution in a fed-batch manner through a ceramic membrane tube was developed. Denatured and fully reduced lysozyme was continuously refolded with high refolding efficiencies. In this method, a denatured lysozyme solution was gradually added from the outer surface of the membrane tube into a refolding buffer flowing continuously inside the tube under controlled mixing conditions. The refolding efficiencies of lysozyme in this continuous refolding were higher than those in a batch dilution method. This method has applicability to large-scale downstream processes and can attain a high efficiency and protein concentration in refolding. Refolded proteins can be supplied continuously following purification steps.  相似文献   

3.
A new kinetic scheme for lysozyme refolding and aggregation   总被引:1,自引:0,他引:1  
The competing first- and third-order reaction scheme for lysozyme is shown to not predict fed-batch lysozyme refolding when the model is parameterized using independent batch experiments, even when variations in chemical composition during the fed-batch experiment are accounted for. A new kinetic scheme is proposed that involves rapid partitioning between the alternative fates of refolding and aggregation, and which allows for aggregation via a sequential mechanism. The model assumes that monomeric lysozyme in different states, including native, is able to aggregate with intermediates, accounting for recent experimental evidence that native protein can be incorporated into aggregates and explaining why native protein in the refolding buffer reduces yield. Stopped-flow light-scattering measurements were used to measure the association rate for the sequential aggregation mechanism, and refolding rate constants were determined in a series of batch experiments designed to be "snapshots" of the composition during a fed-batch experiment. The new kinetic scheme gave a good a priori prediction of fed-batch refolding performance.  相似文献   

4.
Dong XY  Shi GQ  Li W  Sun Y 《Biotechnology progress》2004,20(4):1213-1219
The simplified kinetic model that assumes competition between first-order folding and third-order aggregation was used to model the fed-batch refolding of denatured-reduced lysozyme. It was found that the model was able to describe the process at limited concentration ranges, i.e., 1-2 and 5-7 mg mL(-)(1), respectively, at extensive guanidinium chloride (GdmCl) concentrations and controlled concentrations of oxidizing and reducing agents. The folding or aggregation rate constant was different at the two protein concentration ranges and strongly dependent on the denaturant concentration. As a result, both rate constants at the two concentration ranges were expressed as functions of GdmCl concentration. The rate constants determined by fed-batch experiments could be employed for the prediction of the fed-batch process but were not able to be extended to a batch refolding by direct dilution. Computer simulations show that the denaturant concentration and fed-batch flow rate are important factors influencing the refolding yield. Prolonged fed-batch time is beneficial to keep the transient intermediate concentration at a low level and to increase the yield of correctly folded protein. This is of importance when the denaturant concentration in refolding buffer solution is low. Thus, at a low denaturant concentration, fed-batch time should be sufficiently long, whereas at an appropriately high GdmCl concentration, a short fed-batch time or a high feed rate of the denatured protein is effective to give a high refolding yield.  相似文献   

5.
Previous exploratory work revealed that high pressure (200 MPa), in combination with oxido-shuffling agents such as glutathione, effectively refolds covalently cross-linked aggregates of lysozyme into catalytically active native molecules, at concentrations up to 2 mg/mL (1). To understand further and optimize this process, in the current study we varied the redox conditions and levels of guanidine hydrochloride (GdnHCl) in the refolding buffer. Maximum refolding yields of 80% were seen at 1 M GdnHCl; higher concentrations did not increase refolding yields further. A maximum in refolding yield was observed at redox conditions with a 1:1 ratio of oxidized to reduced glutathione (GSSG:GSH). Yields decreased dramatically at more oxidizing conditions ([GSSG] > [GSH]). Kinetics of dissolution and refolding of covalently cross-linked aggregates of lysozyme depended strongly on redox conditions. At GSSG:GSH ratios of 4:1, 1:1, and 1:16, lysozyme dissolved and refolded with time constants of 62, 20, and 8 h, respectively. Estimates of the free energy of unfolding of lysozyme in GdnHCl solutions at 200 MPa suggested that the native state of lysozyme is strongly favored (ca.18.6 kJ/mol) under the conditions used for dissolution and refolding.  相似文献   

6.
ABSTRACT: BACKGROUND: A common trend in the research on 2nd generation bioethanol is the focus on intensifying the process and increasing the concentration of water insoluble solids (WIS) throughout the process. However, increasing the WIS content is not without problems. For example, the viscosity of pretreated lignocellulosic materials is known to increase drastically with increasing WIS content. Further, at elevated viscosities, problems arise related to poor mixing of the material, such as poor distribution of the enzymes and/or difficulties with temperature and pH control, which results in possible yield reduction. Achieving good mixing is unfortunately not without cost, since the power requirements needed to operate the impeller at high viscosities can be substantial. This highly important scale-up problem can easily be overlooked. RESULTS: In this work, we monitor the impeller torque (and hence power input) in a stirred tank reactor throughout high solid enzymatic hydrolysis (< 20% WIS) of steam-pretreated Arundo donax and spruce. Two different process modes were evaluated, where either the impeller speed or the impeller power input was kept constant. Results from hydrolysis experiments at a fixed impeller speed of 10 rpm show that a very rapid decrease in impeller torque is experienced during hydrolysis of pretreated arundo (i.e. it loses its fiber network strength), whereas the fiber strength is retained for a longer time within the spruce material. This translates into a relatively low, rather WIS independent, energy input for arundo whereas the stirring power demand for spruce is substantially larger and quite WIS dependent. By operating the impeller at a constant power input (instead of a constant impeller speed) it is shown that power input greatly affects the glucose yield of pretreated spruce whereas the hydrolysis of arundo seems unaffected. CONCLUSIONS: The results clearly highlight the large differences between the arundo and spruce materials, both in terms of needed energy input, and glucose yields. The impact of power input on glucose yield is furthermore shown to vary significantly between the materials, with spruce being very affected while arundo is not. These findings emphasize the need for substrate specific process solutions, where a short pre-hydrolysis (or viscosity reduction) might be favorable for arundo whereas fed-batch might be a better solution for spruce. RESULTS: In this work, we monitor the impeller torque (and hence power input) in a stirred tank reactor throughout high solid enzymatic hydrolysis (< 20% WIS) of steam-pretreated Arundo donax and spruce. Results from hydrolysis experiments at a stirrer speed of 10 rpm show that a very rapid decrease in impeller torque is experienced during hydrolysis of pretreated arundo (i.e. it loses its fiber network strength), whereas the fiber strength is retained for a longer time within the spruce material. This translates into a relatively low, rather WIS independent, energy input for arundo whereas the stirring power demand for spruce is substantially larger and quite WIS dependent. By operating the impeller at a constant power input (instead of a constant impeller speed) it is shown that power input greatly affects the hydrolysis yield of pretreated spruce whereas the hydrolysis of arundo seems unaffected. CONCLUSIONS: The results clearly highlight the large differences between the two materials, both in terms of needed energy input, and hydrolysis yields. The impact of power input is furthermore shown to vary significantly between the materials, with spruce being very affected while arundo is not. These findings emphasize the need for substrate specific process solutions, where a short pre-hydrolysis (or viscosity reduction) might be favorable for arundo whereas fed-batch might be a better solution for spruce.  相似文献   

7.
Protein refolding using a simple dilution method in a microchannel often led to the formation of protein aggregates, which bound to the microchannel wall, resulting in low refolding yields. To inhibit aggregation and improve refolding yields, an artificial chaperone-assisted (ACA) refolding, which employed detergents and β-cyclodextrin was used. Model proteins, hen egg white lysozyme and yeast α-glucosidase, were successfully refolded in a microchannel. The microscopic observation showed that the ACA method suppressed protein aggregation and facilitated the refolding of lysozyme, whereas significant aggregation was observed when a simple dilution method was employed. The ACA method increased the lysozyme refolding yield by 40% over the simple dilution approach. Similarly, for α-glucosidase, the refolding yield using the ACA method (ca. 50%) was approximately three times compared with the simple dilution method. The ACA refolding method is a suitable approach to use in the refolding of proteins using a microfluidic system.  相似文献   

8.
The effects of several variables on the refolding of hen egg white lysozyme have been studied. Lysozyme was denatured in both urea, and guanidine hydrochloride (GuHCl), and batch refolded by dilution (100 to 1000 fold) into 0.1M Tris-HCl, pH 8.2, 1 mM EDTA, 3 mM reduced glutathione and 0.3 mM oxidised glutathione. Refolding was found to be sensitive to temperature, with the highest refolding yield obtained at 50°C. The apparent activation energy for lysozyme refolding was found to be 56 kJ/mol. Refolding by dilution results in low concentrations of both denaturant and reducing agent species. It was found that the residual concentrations obtained during dilution (100-fold dilution: [GuHCl]=0.06 mM, [DTT]=0.15 mM) were significant and could inhibit lysozyme refolding. This study has also shown that the initial protein concentration (1–10 mg/mL) that is refolded is an important parameter. In the presence of residual GuHCl and DTT, higher refolding yields were obtained when starting from higher initial lysozyme concentrations. This trend was reversed when residual denaturant components were removed from the refolding buffer.  相似文献   

9.
Dependence of mycelial morphology on impeller type and agitation intensity   总被引:8,自引:0,他引:8  
The influence of the agitation conditions on the morphology of Penicillium chrysogenum (freely dispersed and aggregated forms) was examined using radial (Rushton turbines and paddles), axial (pitched blades, propeller, and Prochem Maxflow T), and counterflow impellers (Intermig). Culture broth was taken from a continuous fermentation at steady state and was agitated for 30 min in an ungassed vessel of 1.4-L working volume. The power inputs per unit volume of liquid in the tank, P/V(L), ranged from 0.6 to 6 kW/m(3). Image analysis was used to measure mycelial morphology. To characterize the intensity of the damage caused by different impellers, the mean total hyphal length (freely dispersed form) and the mean projected area (all dispersed types, i.e., also including aggregates) were used. [In this study, breakage of aggregates was taken into account quantitatively for the first time.]At 1.4-L scale and a given P/V(L), changes in the morphology depended significantly on the impeller geometry. However, the morphological data (obtained with different geometries and various P/V(L)) could be correlated on the basis of equal tip speed and two other, less simple, mixing parameters. One is based on the specific energy dissipation rate in the impeller region, which is simply related to P/V(L) and particular impeller geometrical parameters. The other which is developed in this study is based on a combination of the specific energy dissipation rate in the impeller swept volume and the frequency of mycelial circulation through that volume. For convenience, the function arising from this concept is called the "energy dissipation/circulation" function.To test the broader validity of these correlations, scale-up experiments were carried out in mixing tanks of 1.4, 20, and 180 L using a Rushton turbine and broth from a fed-batch fermentation. The energy dissipation/circulation function was a reasonable correlating parameter for hyphal damage over this range of scales, whereas tip speed, P/V(L), and specific energy dissipation rate in the impeller region were poor. Two forms of the energy dissipation/circulation function were considered, one of which additionally allowed for the numbers of vortices behind the blades of each impeller type. Although both forms were successful at correlating the data for the standard impeller designs considered here, there was preliminary evidence that allowing for the vortices would be valuable. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
Effects of macromolecular crowding on protein folding and aggregation   总被引:18,自引:0,他引:18       下载免费PDF全文
We have studied the effects of polysaccharide and protein crowding agents on the refolding of oxidized and reduced hen lysozyme in order to test the prediction that association constants of interacting macromolecules in living cells are greatly increased by macromolecular crowding relative to their values in dilute solutions. We demonstrate that whereas refolding of oxidized lysozyme is hardly affected by crowding, correct refolding of the reduced protein is essentially abolished due to aggregation at high concentrations of crowding agents. The results show that the protein folding catalyst protein disulfide isomerase is particularly effective in preventing lysozyme aggregation under crowded conditions, suggesting that crowding enhances its chaperone activity. Our findings suggest that the effects of macromolecular crowding could have major implications for our understanding of how protein folding occurs inside cells.  相似文献   

11.
Refolding of reduced and denatured protein in vitro has been an important issue for both basic research and applied biotechnology. Refolding at low protein concentration requires large volumes of refolding buffer. Among various refolding methods, diafiltration is very useful to control the denaturant and red/ox reagents in a refolding solution. We constructed a refolding procedure of high lysozyme concentration (0.5-10 mg/ml) based on the linear reduction of the urea concentration during diafiltration under oxygen pressure. When the urea concentration in the refolding vessel was decreased from 4 M with a rate of 0.167 M/h, the refolding yields were 85% and 63% at protein concentrations, 5 mg/ml and 10 mg/ml, respectively, after 11 h. This method gave a high productivity of 40.1,microM/h of the refolding lysozyme. The change in refolding yields during the diafiltration could be simulated using the model of Hevehan and Clark.  相似文献   

12.
Protein refolding from bacterial inclusion bodies is a crucial step for the production of recombinant proteins, but the refolding step often results in significantly lower yields due to aggregation. To prevent aggregation, chemical additives are often used. However, the ability of additives to effectively increase refolding yields are protein dependent, and therefore, it is important to understand the manner in which the substructures of additives confer suitable properties on protein refolding. We focused attention on nonionic detergents, the polyethylene glycol monooleyl ether (PGME) series, and systematically studied the influence of two to 90 polyethylene glycol (PEG) lengths of PGMEs on the refolding of pig muscle lactate dehydrogenase (LDH), hen egg white lysozyme, and yeast α‐glucosidase. PGMEs with longer PEG lengths such as PGME20, 50, and 90 suppressed aggregation, and increased refolding yields. Notably, PGME20 increased the LDH yield to 56.7% from 2.5% without additives. According to the refolding kinetic analysis of LDH, compared with PGME50 and 90, the refolding rate constant in PGME20 solutions remained relatively high at a broad range of concentrations because of its weaker steric hindrance of intramolecular interactions involved in folding, leading to a preference for refolding over aggregation. These findings should provide basic guidelines to identify appropriate PEG‐based nonionic detergents for protein refolding.  相似文献   

13.
Misfolding poses a serious problem in the biotechnological field in obtaining the active protein from inclusion bodies. Here we show that high temperature increases the refolding yield of reduced lyosyzme by a simple dilution method. The refolding yields at 98 degrees C were three times higher than those at 20 degrees C in the solutions tested, which is related to the fact that the thermally unfolded state of lysozyme is a more productive form for folding than the denaturant-induced fully unfolded state. The thermal-assisted refolding could be used for various reduced and denatured proteins as a result of its simplicity and low cost.  相似文献   

14.
For production of active proteins using heterologous expression systems, refolding of proteins from inclusion bodies often creates a bottleneck due to its poor yield. In this study, we show that molecularly imprinted polymer (MIP) toward native lysozyme promotes the folding of chemically denatured lysozyme. The MIP, which was prepared with 1 M acrylamide, 1 M methacrylic acid, 1 M 2-(dimethylamino)ethyl methacrylate, and 5 mg/mL lysozyme, successfully promoted the refolding of lysozyme, whereas the non-imprinted polymer did not. The refolding yield of 90% was achieved when 15 mg of the MIP was added to 0.3 mg of the unfolded lysozyme. The parallel relationship between the refolding yield and the binding capacity of the MIP suggests that MIP promotes refolding through shifting the folding equilibrium toward the native form by binding the refolded protein.  相似文献   

15.
Steps for the refolding of proteins from solubilized inclusion bodies or misfolded product often represent bottlenecks in process development, where optimal conditions are typically derived empirically. To expedite refolding optimization, microwell screening may be used to test multiple conditions in parallel. Fast, accurate, and reproducible assays are required for such screening processes, and the results derived must be representative of the process at full scale. This article demonstrates the use of these microscale techniques to evaluate the effects of a number of additives on the refolding of IGF‐1 from denatured inclusion bodies, using an established HPLC assay for this protein. Prior to this, microwell refolding was calibrated for scale‐up using hen egg‐white lysozyme (HEWL) as an initial model protein, allowing us to implement and compare several assays for protein refolding, including turbidity, enzyme activity, and chromatographic methods, and assess their use for microwell‐based experimentation. The impact of various microplate types upon protein binding and loss is also assessed. Solution mixing is a key factor in protein refolding, therefore we have characterized the effects of different methods of mixing in microwells in terms of their impact on protein refolding. Our results confirm the applicability and scalability of microwell screening for the development of protein refolding processes, and its potential for application to new inclusion body‐derived protein products. Biotechnol. Bioeng. 2009;103: 329–340. © 2008 Wiley Periodicals, Inc.  相似文献   

16.
In laboratories and manufacturing settings, a rapid and inexpensive method for the preparation of a target protein is crucial for promoting resesrach in protein science and engineering. Inclusion-body-based protein production is a promising method because high yields are achieved in the upstream process, although the refolding of solubilized, unfolded proteins in downstream processes often leads to significantly lower yields. The most challenging problem is that the effective condition for refolding is protein dependent and is therefore difficult to select in a rational manner. Accordingly, considerable time and expense using trial-and-error approaches are often needed to increase the final protein yield. Furthermore, for certain target proteins, finding suitable conditions to achieve an adequate yield cannot be obtained by existing methods. Therefore, to convert such a troublesome refolding process into a routine one, a wide array of methods based on novel technologies and materials have been developed. These methods select refolding conditions where productive refolding dominates over unproductive aggregation in competitive refolding reactions. This review focuses on synthetic refolding additives and describes the concepts underlying the development of reported chemical additives or chemical-additive-b  相似文献   

17.
Refolding of proteins at high concentrations often results in non‐productive aggregation. This study, through a unique combination of spectroscopic and chromatographic analyzes, provides biomolecular evidence to demonstrate the ability of Eudragit S‐100, a pH‐responsive polymer, to enhance refolding of denatured‐reduced lysozyme at high concentrations. The addition of Eudragit in the refolding buffer significantly increases lysozyme refolding yield to 75%, when dilution refolding was conducted at 1 mg/mL lysozyme. This study shows evidence of an electrostatic interaction between oppositely charged lysozyme and the Eudragit polymer during refolding. This ionic complexing of Eudragit and lysozyme appears to shield exposed hydrophobic residues of the lysozyme refolding intermediates, thus minimizing hydrophobic‐driven aggregation of the molecules. Importantly, results from this study show that the Eudragit‐lysozyme bioconjugation does not compromise refolded protein structure, and that the polymer can be readily dissociated from the protein by ion exchange chromatography. The strategy was also applied to refolding of TGF‐β1 and KGF‐2. © 2009 American Institute of Chemical Engineers Biotechnol. Prog. 2009  相似文献   

18.
Ye C  Ilghari D  Niu J  Xie Y  Wang Y  Wang C  Li X  Liu B  Huang Z 《Journal of biotechnology》2012,160(3-4):169-175
An in-depth understanding of molecular basis by which smart polymers assist protein refolding can lead us to develop a more effective polymer for protein refolding. In this report, to investigate structure-function relationship of pH-sensitive smart polymers, a series of poly(methylacrylic acid (MAc)-acrylic acid (AA))s with different MAc/AA ratios and molecular weights were synthesized and then their abilities in refolding of denatured lysozyme were compared by measuring the lytic activity of the refolded lysozyme. Based on our analysis, there were optimal MAc/AA ratio (44% MAc), M(w) (1700 Da), and copolymer concentration (0.1%, w/v) at which the highest yield of protein refolding was achieved. Fluorescence, circular dichroism, and RP-HPLC analysis reported in this study demonstrated that the presence of P(MAc-AA)s in the refolding buffer significantly improved the refolding yield of denatured lysozyme without affecting the overall structure of the enzyme. Importantly, our bioseparation analysis, together with the analysis of zeta potential and particle size of the copolymer in refolding buffers with different copolymer concentrations, suggested that the polymer provided a negatively charged surface for an electrostatic interaction with the denatured lysozyme molecules and thereby minimized the hydrophobic-prone aggregation of unfolded proteins during the process of refolding.  相似文献   

19.
Oxidative renaturation of lysozyme at high concentrations   总被引:18,自引:0,他引:18  
Newly synthesized cloned gene proteins expressed in bacteria frequently accumulate in insoluble aggregates or inclusion bodies. Active protein can be recovered by solubilization of inclusion bodies followed by renaturation of the solubilized (unfolded) protein. The recovery of active protein is highly dependent on the renaturation conditions chosen. The renaturation process is generally conducted at low protein concentrations (0.01-0.2 mg/mL) to avoid aggregation. We have investigated the potential of successfully refolding reduced and denatured hen egg white lysozyme at high concentrations (1 and 5 mg/mL). By varying the composition of the renaturation media, optimum conditions which kinetically favor proper folding over inactivation were found. Solubilizing agents such as guanidinium chloride (GdmCl) and folding aids such as L-arginine present in low concentrations during refolding effectively enhanced renaturation yields by suppressing aggregation resulting in reactivation yields as high as 95%. Quantitatively the kinetic competition between lysozyme folding and aggregation can be described using first-order kinetics for the renaturation reaction and third-order kinetics for the overall aggregation pathway. The rate constants for both reactions have been found to be strongly dependent on denaturant and thiol concentration. This strategy supercedes the necessity to reactivate proteins at low concentrations using large renaturation volumes. The marked increase in volumetric productivity makes this a viable option for recovering biologically active protein efficiently and in high yield in vitro from proteins produced as inclusion bodies within microbial cells. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 221-230, 1997.  相似文献   

20.
The oxidative refolding of reduced, denatured hen egg white lysozyme in the presence of a mixed macromolecular crowding agent containing both bovine serum albumin (BSA) and polysaccharide has been studied from a physiological point of view. When the total concentration of the mixed crowding agent is 100 g/liter, in which the weight ratio of BSA to dextran 70 is 1:9, the refolding yield of lysozyme after refolding for 4 h under this condition increases 24% compared with that in the presence of BSA and 16% compared with dextran 70. A remarkable increase in the refolding yield of lysozyme by a mixed crowding agent containing BSA and Ficoll 70 is also observed. Further folding kinetics analyses show that these two mixed crowding agents accelerate the oxidative refolding of lysozyme remarkably, compared with single crowding agents. These results suggest that the stabilization effects of mixed macromolecular crowding agents are stronger than those of single polysaccharide crowding agents such as dextran 70 and Ficoll 70, whereas the excluded volume effects of mixed macromolecular crowding agents are weaker than those of single protein crowding agents such as BSA. Both the refolding yield and the rate of the oxidative refolding of lysozyme in these two mixed crowded solutions with suitable weight ratios are higher than those in single crowded solutions, indicating that mixed macromolecular crowding agents are more favorable to lysozyme folding and can be used to simulate the intracellular environments more accurately than single crowding agents do.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号