首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Immunoreactive cholecystokinin (CCK) levels in human and rat plasma are described using a radioimmunoassay specific for the biologically active sulfated end of CCK. This assay detected significant changes in plasma cholecystokinin levels during intrajejunal administration of amino acids and intravenous infusions of CCK-8 which were followed by increased pancreatic secretion. In humans, the concentration (pg/ml) of plasma cholecystokinin increased from 10.8 to 18.9 following intrajejunal amino acid instillation and from 15.4 to 31.1 during CCK infusion, while pancreatic trypsin secretion increased more than 15 fold. Ingestion of a test meal also caused a rapid and significant elevation (P less than 0.05) in both plasma CCK (14.5-21.7 pg/ml) and gastrin (50-160 pg/ml) levels. In the rat, an injection of 46 ng of CCK-8 produced a 300% increase in immunoreactive plasma CCK levels (2 min) and caused peak pancreatic protein secretion within 5 min; 4 fold lower doses (11.5 ng) elevated plasma CCK by 38% and pancreatic protein secretion to a small but significant extent. The ability of this assay to detect various forms of sulfated CCK in human plasma was also determined. Following gel chromatography on Sephadex G-50, at least three different immunoreactive peaks were found in plasma from fasted subjects and after intrajejunal amino acid stimulation. While the lower molecular weight CCK peptides (CCK-8 and CCK-12) were detected in plasma from both fasted and stimulated subjects, the larger form (CCK-33) was only present in measurable concentrations after amino acid infusion. The simultaneous measurement of increased plasma CCK levels and pancreatic secretion and the changes in the distribution of CCK peptides following amino acid infusion provides strong support that this assay detects physiologically relevant changes in biologically active CCK peptides.  相似文献   

2.
Specific binding sites for cholecystokinin (CCK) have been characterized in a particulate membrane fraction of rat cerebral cortex using a biologically active 125I-labeled derivative of the C-terminal octapeptide of CCK (CCK-8) prepared by reaction with the iodinated form of the imidoester (125IIE), methyl-p-hydroxybenzimidate. The time course of binding to cortical membranes was rapid, temperature dependent, and saturable. Half-maximal binding at 24 degrees C was reached in 30 min and full binding at 120 min. At 37 degrees C there was only a slight increase in 125IIE-CCK-8 bound after 15 min. The addition of a large excess of CCK-8 after 30 min of binding at 24 degrees C caused a prompt and rapid decline in radioligand bound showing that the interaction was reversible. There was a progressive decline in the amount of 125IIE-CCK-8 bound to membranes with increasing concentrations of CCK-8 and other structurally related peptides. CCK-8 displaced 50% of the radioligand at 4 nM, CCK-33 at 10 nM, and gastrin (desulfated CCK-8) at 60 nM. Secretin, a structurally unrelated peptide, was unable to displace the radioligand from cortical membranes at 1.0 microM. Finally, 125IIE-CCK-8 exposed to cortical membranes or to buffers that had previously contained such membranes for 60 min at 24 degrees C bound equally as well to fresh cortical membranes as control radioligand that had not been exposed to the same conditions. Thus the 125I-CCK-8 radioligand used in this study was highly resistant to degradative processes in rat brain tissue.  相似文献   

3.
Recently, we cloned a novel serine/threonine kinase termed protein kinase D2 (PKD2). PKD2 can be activated by phorbol esters both in vivo and in vitro but also by gastrin via the cholecystokinin/CCK(B) receptor in human gastric cancer cells stably transfected with the CCK(B)/gastrin receptor (AGS-B cells). Here we identify the mechanisms of gastrin-induced PKD2 activation in AGS-B cells. PKD2 phosphorylation in response to gastrin was rapid, reaching a maximum after 10 min of incubation. Our data demonstrate that gastrin-stimulated PKD2 activation involves a heterotrimeric G alpha(q) protein as well as the activation of phospholipase C. Furthermore, we show that PKD2 can be activated by classical and novel members of the protein kinase C (PKC) family such as PKC alpha, PKC epsilon, and PKC eta. These PKCs are activated by gastrin in AGS-B cells. Thus, PKD2 is likely to be a novel downstream target of specific PKCs upon the stimulation of AGS-B cells with gastrin. Our data suggest a two-step mechanism of activation of PKD2 via endogenously produced diacylglycerol and the activation of PKCs.  相似文献   

4.
In rats, treated chronically with saline and nicotine, we studied the postprandial release of gastrin and cholecystokinin by specific radioimmunoassays and simultaneously measured secretory outputs of the exocrine pancreas. Rats were prepared surgically with gastric and pancreatic fistulas. Meal-stimulated release of peptides and exocrine secretory outputs were measured 24 h postoperatively in conscious rats. Infusion of food via intragastric cannula significantly stimulated plasma gastrin levels in both control and nicotine treated rats. Postprandial gastrin levels in nicotine treated rats were significantly higher compared to gastrin levels obtained after food in untreated control rats. Plasma CCK levels were increased in both groups after food. These levels remained significantly elevated from the basal values only for a transient period following infusion of the liquid meal. There were no differences in postprandial plasma CCK levels between the two groups. Outputs of exocrine pancreatic volume, protein and trypsin increased significantly after food in both control and nicotine treated groups of rats. The differences in outputs of volume and protein between the two groups of rats were not significant; however, the trypsin outputs in the nicotine rats were decreased significantly when compared to control rats. The data indicate that in rats, administration of food stimulated the release of immunoreactive gastrin and CCK with concomitant increase in exocrine pancreatic secretions of volume, protein and trypsin. Chronic nicotine treatment and its effect on food, however, appeared to have induced hyperfunction of G-cells that resulted in increased gastrin secretion and a decrease in trypsin secretion by exocrine pancreas. These data may have important implications in the etiology of the development of exocrine pancreatic dysfunction in chronic smokers.  相似文献   

5.
To elucidate the regulatory mechanism of acid secretion by cholecystokinin (CCK) in vivo, we compared the effects of CCK and gastrin on acid secretion and histidine decarboxylase (HDC) activity. We also examined the effects of MK-329, a specific antagonist for pancreatic-type CCK receptor, and L-365,260, a specific antagonist for gastrin-type CCK receptor, on the action of CCK. Graded doses of CCK or gastrin were intravenously infused into conscious rats with gastric fistula. Gastrin-17 I infusion up to 10 nmol/kg/h resulted in dose-related increases in acid secretion. CCK-8 infusion also caused an increase in acid secretion. However, it reached a peak with 0.3 nmol/kg/h CCK-8 and attenuated with higher concentrations of CCK-8. This attenuating effect of a higher dose of CCK was reversed by MK-329, but not by L-365,260. Both CCK and gastrin were potent in increasing fundic HDC activity, and the effect of CCK on HDC activity was significantly inhibited by L-365,260, but not by MK-329. Taken together, the present study suggests that CCK and gastrin stimulate histamine formation via a gastrin-type CCK receptor, and the attenuating action of CCK with higher concentrations on acid secretion in vivo is mediated by a pancreatic-type CCK receptor.  相似文献   

6.
Activation of zymogens within the pancreatic acinar cell is an early feature of acute pancreatitis. Supraphysiological concentrations of cholecystokinin (CCK) cause zymogen activation and pancreatitis. The effects of the CCK analog, caerulein, and alcohol on trypsin and chymotrypsin activation in isolated pancreatic acini were examined. Caerulein increased markers of zymogen activation in a time- and concentration-dependent manner. Notably, trypsin activity reached a peak value within 30 min, then diminished with time, whereas chymotrypsin activity increased with time. Ethanol (35 mM) sensitized the acinar cells to the effects of caerulein (10(-10) to 10(-7) M) on zymogen activation but had no effect alone. The effects of ethanol were concentration dependent. Alcohols with a chain length of >or=2 also sensitized the acinar cell to caerulein; the most potent was butanol. Branched alcohols (2-propanol and 2-butanol) were less potent than aliphatic alcohols (1-propanol and 1-butanol). The structure of an alcohol is related to its ability to sensitize acinar cells to the effects of caerulein on zymogen activation.  相似文献   

7.
In isolated dispersed pancreatic acini, we have characterized the interactions between cholecystokinin (CCK) and CCK receptors by simultaneously measuring CCK-33 immunoreactivity and CCK bioactivity. Incubation of acinar cells with CCK-33 at cell density of 0.2-0.3 mg acinar protein per ml resulted in stimulation of amylase release concomitant with significant and time-dependent decrease of the immunoreactive CCK. With L-364,718 (0.1 microM), a specific CCK receptor antagonist, immunoreactive CCK levels in the media were not significantly altered during incubation; however, CCK-stimulated amylase release was almost completely abolished (94% inhibition). Vasoactive intestinal peptide (1 nM) significantly potentiated CCK stimulated amylase release without affecting immunoreactive CCK in the media. Insulin (167 nM) did not affect the CCK stimulated amylase release or immunoreactive CCK in the media. Incubation of acinar cells with CCK-33 at 4 degrees C did not affect the levels of immunoreactive CCK; however, a significant change in levels of immunoreactive CCK were found at 37 degrees C at 90 min. Incubation of cell free medium with CCK-33 in the presence or absence of secreted enzymes revealed no changes in CCK immunoreactivity in the medium at 90 min. Addition of bacitracin in the incubation media did not affect the CCK immunoreactivity or bioactivity. These findings indicate that in isolated rat pancreatic acini, CCK-33 stimulates amylase release through a receptor that is specifically blocked by L-364,718. Specificity of the interactions of CCK-33 with acinar cells in the media appears to be receptor-mediated and time- and temperature-dependent.  相似文献   

8.
Signaling pathways mediating gastrin's growth-promoting effects.   总被引:2,自引:0,他引:2  
R R Yassin 《Peptides》1999,20(7):885-898
In addition to its fundamental role in stimulating gastric acid secretion, the peptide hormone gastrin induces growth-promoting effects on diversity of target cells. Various mechanisms, including endocrine, paracrine, and autocrine, have been proposed for gastrin's growth-promoting actions. The mitogenic effects of gastrin are mediated by specific cell surface receptors activated after gastrin binding. The functionally defined receptors for gastrin include cholecystokinin A (CCKA) receptor, which is discriminating for sulfated CCK8; cholecystokinin B (CCKB)/gastrin receptor, which binds gastrin17 sulfated, and nonsulfated CCK8 with nearly equal affinities; cholecystokinin C (CCKC), which is a low-affinity gastrin binding protein; and novel, high-affinity receptors selective for amidated gastrin, processing intermediates of gastrin, or both. The signaling pathways mediating gastrin's stimulation of the CCKB/gastrin receptor have been progressively outlined, and the pathways mediating other receptors have been slowly emerging. Engagement of the gastrin receptor initiates various biochemical and molecular events, including recruitment and activation of tyrosine kinases, activation of the phospholipase C signaling pathway leading to phosphoinositide breakdown, intracellular calcium mobilization and protein kinase C stimulation, activation of the mitogen-activated protein kinase pathway, and induction of early response genes. Current emphasis is on understanding the functional significance of processing intermediate forms of gastrin, and the receptor subtypes and pathways that promote the trophic/mitogenic effects of the different molecular forms of gastrin.  相似文献   

9.
Chiu T  Rozengurt E 《FEBS letters》2001,489(1):101-106
Addition of gastrin or cholecystokinin octapeptide (CCK-8) to cultures of Rat-1 cells stably transfected with the CCK2 (CCK(B)/gastrin) receptor induced protein kinase D (PKD) activation that was detectable within 1 min and reached a maximum ( approximately 10-fold) after 2.5 min of hormonal stimulation. Half-maximal PKD activation for both CCK-8 and gastrin was achieved at 10 nM. Treatment with various concentrations of the selective PKC inhibitors Ro 31-8220 or GF-I potently blocked PKD activation induced by subsequent addition of CCK-8 in a concentration-dependent fashion. Our results indicate that PKC-dependent PKD activation is a novel early event in the action of gastrin and CCK-8 via CCK2 receptors.  相似文献   

10.
The present study was undertaken to determine whether infusion of cholecystokinin (CCK) to plasma concentrations comparable to those found after a meal stimulates pancreatic enzyme secretion and gallbladder contraction. Plasma CCK concentrations were measured by radioimmunoassay using antibody T204, which binds to all carboxyl-terminal CCK-peptides containing the sulfated tyrosine region. Ingestion of a standardized test meal in 7 normal subjects induced significant increases in plasma CCK from 2.0 +/- 0.2 pmol/l to levels between 4.6 +/- 0.6 and 7.3 +/- 1.0 pmol/l (p less than 0.05-p less than 0.0005). Infusion of 2.5 pmol/kg X h CCK 33 resulted in significant increases in plasma CCK from 2.0 +/- 0.2 to 3.9 +/- 0.3 pmol/l (p less than 0.0005). This infusion of CCK induced significant increases in trypsin secretion from 0.5 +/- 0.1 to 1.4 +/- 0.2 KU/15 min (p less than 0.005) and in bilirubin output from 1.6 +/- 0.7 to 30.3 +/- 8.0 mumol/15 min (p less than 0.05). It is concluded that physiological plasma concentrations of CCK stimulate pancreatic enzyme secretion and gallbladder contraction in man.  相似文献   

11.
The time course for inhibition of proline transport and irreversible loss of cell viability after treatment with colicin E1 was measured as a function of temperature between 13 and 33 degrees C, using a thermostatted flow dialysis system. Complete inhibition of proline transport at 33 and 13 degrees C occurred in 0.5 min and 3 to 5 min, respectively, after addition of colicin E1 at an effective multiplicity of about 4. At these times, the fractional cell survival, assayed by dilution directly from the flow dialysis vessel into trypsin, ranged from 35 to 80%, with viability always greater than 50% at the lower incubation temperatures. Further studies were carried out at 15 degrees C. Complete inhibition of proline transport, which required 2 to 3 min, occurred much more rapidly at 15 degrees C than did the decay of trypsin rescue, which required 10 to 15 min to reach a survival level of 10 to 20%. The direct addition of trypsin to the flow dialysis vessel, after an addition of colicin E1 that caused complete inhibition of proline or glutamine transport, resulted in restoration of net transport. The restored level was typically about 40% of the control rate, and was very similar to the fractional cell viability measured after incubation in trypsin in the same vessel. It is concluded that trypsin can restore active transport to a significant fraction of a cell population in which transport has been initially inhibited by colicin E1.  相似文献   

12.
Protein kinase C appears to play an important, yet complex role in the supramaximal inhibition of pancreatic acinar cell secretion observed in response to cholecystokinin (CCK). The addition of protein kinase C activation to the concentration-response curve of a partial agonist acting at the CCK receptor (a phenethyl ester analogue of CCK), transforms a curve without supramaximal inhibition to a full agonist curve typical of CCK. This effect can be elicited by low concentrations of phorbol ester (50pM to 1nM 12-0-tetradecanoyl-phorbol-13-acetate) or by hormonal agonists (0.1 microM carbamylcholine, 10pM bombesin, 1pM CCK-8) which activate protein kinase C, but not by agonists acting via alternate second messengers (VIP). Of interest, this effect is dependent on preincubation of the acinar cells with the protein kinase C activator at 37 degrees C, with the effect rapidly reversed by transient exposure of the cells to lower temperature. This is consistent with mediation by a phosphorylation event. However, the requirement for an extended (greater than 15 min) preincubation period when using minimal kinase activation suggests that this phenomenon is more complicated than a simple bimolecular phosphorylation event and likely includes a series of events such as translocation of substrates and/or enzymes involved.  相似文献   

13.
《Regulatory peptides》1987,17(5):285-293
Infusion of the neuropeptide bombesin stimulates the secretion of several gastrointestinal hormones by an unknown mechanism. We have investigated the effects of atropine (15 ng/kg as bolus followed by 2.5 ng/kg · 30 min) and somatostatin (125 μg as i.v. bolus followed by 62.5 μg/30 min) on the stimulation of 3 hormones (gastrin, cholecystokinin and pancreatic polypeptide) by 60 pmol/kg · 20 min bombesin in 6 healthy volunteers. Plasma samples for measurement of hormones by sensitive and specific radioimmunoassays were obtained at − 5, 0, 2.5, 5, 7.5, 10, 15, 20, 25 and 30 min. Bombesin induced significant increases in plasma gastrin (12 ± 2 to 34 ± 3 pM; P < 0.0005), cholecystokinin (1.2 ± 0.2 to 8.9 ± 0.7 pM; P < 0.0001) and pancreatic polypeptide (22 ± 4 to 72 ± 19 pM; P < 0.05). There were great differences between the effects of atropine and somatostatin on the hormonal responses to bombesin. Atropine slightly increased the response of gastrin by 19% and that of cholecystokinin by 15%, but strongly inhibited the bombesin-stimulated pancreatic polypeptide secretion by 97%. On the other hand, somatostatin inhibited the bombesin-induced secretion of gastrin by 48%, cholecystokinin by 82% and pancreatic polypeptide by 107%. These results point to considerable qualitative and quantitative differences in the stimulatory mechanisms of bombesin on the hormones studied.  相似文献   

14.
Isolated rat hepatocytes were pulse-labelled with [35S]methionine at 37 degrees C and subsequently incubated (chased) for different periods of time at different temperatures (37-16 degrees C). The time courses for the secretion of [35S]methionine-labelled albumin and haptoglobin were determined by quantitative immunoprecipitation of the detergent-solubilized cells and of the chase media. Both proteins appeared in the chase medium only after a lag period, the length of which increased markedly with decreasing chase temperature: from about 10 and 20 min at 37 degrees C to about 60 and 120 min at 20 degrees C for albumin and haptoglobin respectively. The rates at which the proteins were externalized after the lag period were also strongly affected by temperature, the half-time for secretion being 20 min at 37 degrees C and 200 min at 20 degrees C for albumin; at 16 degrees C no secretion could be detected after incubation for 270 min. Analysis by subcellular fractionation showed that part of the lag occurred in the endoplasmic reticulum and that the rate of transfer to the Golgi complex was very temperature-dependent. The maximum amount of the two pulse-labelled proteins in Golgi fractions prepared from cells after different times of chase decreased with decreasing incubation temperatures, indicating that the transport from the Golgi complex to the cell surface was less affected by low temperatures than was the transport from the endoplasmic reticulum to the Golgi complex.  相似文献   

15.
The binding of cholecystokinin (CCK) to its receptors on isolated rat pancreatic acini was investigated employing high specific activity, radioiodinated CCK (125I-BH-CCK), prepared by the conjugation of 125I-Bolton-Hunter reagent (125I-BH) to CCK. Binding was specific, time-dependent, reversible, and linearly related to the acinar protein concentration. After incubation for 30 min at 37 degrees C, the 125I-BH-CCK both in the incubation medium and bound to acini remained intact, as judged by gel filtration and trichloroacetic acid precipitation studies. Scatchard analysis was compatible with two classes of binding sites on acini: a very high affinity site (Kd, 64 pM) and a lower affinity site (Kd, 21 nM). 125I-BH-CCK binding to acini was competitively inhibited by CCK and four of its analogues in proportion to their biological potencies but not by unrelated hormones. Stimulation of amylase secretion by CCK and inhibition of 125I-BH-CCK binding by the same analogues carried out under identical conditions revealed a correlation (r = 0.99) between binding potency and amylase secretion. Stimulation of amylase secretion by CCK closely paralleled the occupancy of the high affinity CCK binding sites. It is concluded that the high affinity CCK binding sites most likely are the receptors mediating the stimulation of amylase secretion by CCK.  相似文献   

16.
In the light of the strong potency of gastrin-related peptides on pancreatic exocrine secretion in dog, we analyzed the binding properties of peptides related to cholecystokinin (CCK) and gastrin on dog pancreatic acini compared to guinea-pig acini. Moreover, we determined apparent molecular masses of photoaffinity labelled CCK/gastrin receptors in the two models. Using the CCK radioligand, receptor selectivity towards CCK/gastrin agonists and antagonists was found to be lower in dog acini than in guinea-pig acini. Performing the binding with CCK and gastrin radioligands in combination with N2,O2'-dibutyryl-guanosine 3',5'-monophosphate, revealed that in dog acini there exist two different sub-classes of CCK/gastrin receptors having high and low selectivity, the latter ones being able to bind gastrin with high affinity (Kd = 2.1 nM). SDS-PAGE analysis of covalently cross-linked receptors using several photosensitive CCK and gastrin probes of different peptide chain lengths demonstrated that in guinea-pig, CCK peptides bound to a 84-kDa component whereas in dog pancreas, CCK and gastrin peptides bound to three distinct molecular species (Mr approximately equal to 78,000, 45,000, 28,000). Performing cross-linking in the presence of 1 microM CCK indicated that a 45-kDa protein is the putative CCK/gastrin receptor in dog pancreas. Our results support the concept of heterogeneity of CCK/gastrin receptors.  相似文献   

17.
Porcine vasoactive intestinal peptide stimulated adenosine 3':5'-monophosphate (cyclic AMP) production in rat intestinal epithelial cells. The stimulation was dependent on time and temperature and was potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. Under optimal conditions (at 15 degrees C, with 0.2 mM 3-isobutyl-1-methylaxanthine, at a cell concentration up to 18 microgram DNA/ml), the cyclic AMP production produced by vasoactive intestinal peptide was constant for 10 min and stopped after 15 min incubation, at either low (1 nM) or high (30 nM) concentration of the peptide. This plateau effect was demonstrated not to be due to an inactivation of vasoactive intestinal peptide in the medium nor to an alteration of receptors for the peptide. Cyclic AMP production was sensitive to a concentration as low as 0.1 nM vasoactive intestinal peptide. Maximal stimulation of cyclic AMP levels by vasoactive intestinal peptide was observed with 30 nM vasoactive intestinal peptide and represented an 11-fold increased above basal. The dorse-response curve was monophasic with a Km of 2.3 x 10(-9) M. No cooperative effects were detected by Hill analysis. The positive non-linear relationship observed between stimulation of cyclic AMP production and occupancy of binding site was not time-dependent as indicated by experiments performed after 15, 45 and 120 min incubation. Maximal and half-maximal responses were obtained at about 70% and 7% occupation of binding sites, respectively. Chicken vasoactive intestinal peptide and porcine secretin were agonists of porcine vasoactive intestinal peptide with a 6-times and a 120-times lower potency, respectively. Among secretin analogs that were found to have low affinity for vasoactive intestinal peptide binding sites, [4-alanine, 5-valine]secretin, that resembles vasoactive intestinal peptide at the first seven amino acids at the N-terminal end, was a partial agonist of vasoactive peptide at the first seven amino acids at the N-terminal end, was a partial agonist of vasoactive intestinal peptide and others failed to stimulate cyclic AMP production. Glucagon (10microM), gastric inhibitory peptide (0.1 microM), substance, P, neurotensin, octapeptide of cholecystokinin, bovine pancreatic polypeptide, human gastrin I with leucine at residue 15, Leu-enkephalinand somatostatin (1 microM) did not alter cyclicAMP levels. Non-peptide mediators such as dopamine, serotonin, acetylcholine and histamine, tested at 10 microM, were also ineffective. Prostaglandins E2, E1 and isoproterenol, tested at 10 microM, induced an increase of cyclic AMP levels above basal but were 9.5, 13.7 and 17.5 times less efficient than vasoactive intestinal peptide, respectively. Thus vasoactive intestinal peptide is a unique stimulus of cyclic AMP production in rat intestinal epithelial cells.  相似文献   

18.
Antibodies directed against the C-terminus of cholecystokinin octapeptide (CCK8) and caerulein were used to study immunoreactive peptides in pig brain. One antibody, a mouse monoclonal raised to caerulein (c.MAb), reacts equally with heptadecapeptide gastrin (G17), CCK8 and caerulein, the other raised to CCK8 (L48) shows 10 times lower immunoreactivity with caerulein compared with G17 and CCK8. Extracts were purified by adsorption to alginic acid, gel filtration chromatography and reversed phase HPLC. In addition to material with the expected properties of CCK33, 39 and 58 a novel peptide was identified that reacted 10 times better with c.MAb compared with L48. This material emerged in a similar position to CCK58 on Sephadex G50 but had a greater retention time on reversed phase HPLC. It had CCK-like bioactivity and digestion with trypsin gave a fragment showing a pattern of immunoreactivity similar to that of the parent compound. This pattern of activity is distinct from other known mammalian CCKs; the material may represent an addition to the gastrin-CCK family in mammals.  相似文献   

19.
20.
We examined receptor occupation, calcium mobilization and amylase release for cholecystokinin octapeptide (CCK-8) within a 3-min incubation period at 37 degrees C using dispersed acini from rat pancreas. Analysis of competitive binding inhibition data obtained after a 3-min incubation revealed the presence of only a single class of CCK receptors, while two classes of CCK receptor, i.e., high-affinity and low-affinity CCK receptors, were detected when binding reached a steady-state after a 60-min incubation. The IC50 of CCK receptors calculated from the 3-min binding data was 19.0 +/- 0.5 nM (mean +/- S.D.), close to the Kd of the low-affinity CCK receptors determined by equilibrium binding studies. Exposure of fura-2-loaded acini to 10-1000 pM CCK-8 caused an immediate and dose-dependent increase in [Ca2+]i followed by a gradual decrease in [Ca2+]i. The CCK-stimulated amylase release after 3 min of incubation was biphasic; amylase release increased over the dose range of 3-300 pM CCK-8, peaked at 300 pM CCK-8 and decreased with supramaximal concentrations of CCK-8. Our data suggest that occupation of the low-affinity, but not the high-affinity, CCK receptors is more directly associated with calcium mobilization and subsequent stimulation of amylase release in rat pancreatic acini.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号