首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of membrane-fluidizing agents on the adhesion of CHO cells   总被引:3,自引:0,他引:3  
Treatment of CHO cells with drugs which are known to increase membrane lipid fluidity reduced the cells' ability to adhere to protein coated substrates, The concentrations of local anesthetics, nonionic detergents or aliphatic alcohols required to reduce CHO cell adhesion by 50% were similar to those reported to block nerve conduction, indicating that these drugs can affect the membrane at physiologically significant concentrations. Nonionic detergents and aliphatic alcohols, but not local anesthetics, caused increases in the fluidity of CHO plasma membranes (measured by fluorescence polarization) at concentrations which inhibited cell adhesion. The adhesion versus temperature profile had a sigmoidal shape, suggesting that a temperature dependent cooperative process such as a lipid phase transition, might be involved. However, the temperature profile for CHO membrane fluidity manifested no discontinuities, indicating the absence of any discrete phase transitions of the lipid matrix. This observation, coupled with the result that the inhibition of CHO cell adhesion produced by low temperatures was not relieved by drugs which can increase membrane fluidity, suggests that the reduced adhesion seen at low temperature is probably not due to reduced lipid fluidity.  相似文献   

2.
Over the past three decades, the Torpedo californica nicotinic acetylcholine receptor (nAChR) has been one of the most extensively studied membrane protein systems. However, the effects of detergent solubilization on nAChR stability and function are poorly understood. The use of lipid-analog detergents for nAChR solubilization has been shown to preserve receptor stability and functionality. The present study used lipid-analog detergents from phospholipid-analog and cholesterol-analog detergent families for solubilization and affinity purification of the receptor and probed nAChR ion channel function using planar lipid bilayers (PLBs) and stability using analytical size exclusion chromatography (A-SEC) in the detergent-solubilized state. We also examined receptor mobility on the lipidic cubic phase (LCP) by measuring the nAChR mobile fraction and diffusion coefficient through fluorescence recovery after photobleaching (FRAP) experiments using lipid-analog and non-lipid-analog detergents. Our results show that it is possible to isolate stable and functional nAChRs using lipid-analog detergents, with characteristic ion channel currents in PLBs and minimal aggregation as observed in A-SEC. Furthermore, fractional mobility and diffusion coefficient values observed in FRAP experiments were similar to the values observed for these parameters in the recently LCP-crystallized β(2)-adrenergic receptor. The overall results show that phospholipid-analog detergents with 16 carbon acyl-chains support nAChR stability, functionality and LCP mobility.  相似文献   

3.
High-resolution structural analysis of membrane proteins by X-ray crystallography or solution NMR spectroscopy often requires their solubilization in the membrane-mimetic environments of detergents. Yet the choice of a detergent suitable for a given study remains largely empirical. In the present work, we considered the micelle-crystallized structures of lactose permease (LacY), the sodium/galactose symporter (vSGLT), the vitamin B(12) transporter (BtuCD), and the arginine/agmatine antiporter (AdiC). Representative transmembrane (TM) segments were selected from these proteins based on their relative contact(s) with water, lipid, and/or within the protein, and were synthesized as Lys-tagged peptides. Each peptide was studied by circular dichroism and fluorescence spectroscopy in water, and in the presence of the detergents sodium dodecylsulfate (SDS, anionic); n-dodecyl phosphatidylcholine (DPC, zwitterionic); n-dodecyl-β-d-maltoside (DDM, neutral); and n-octyl-β-d-glucoside (OG, neutral, varying acyl tail length). We found that (i) the secondary structures of the TM segments were statistically indistinguishable in the four detergents studied; and (ii) a strong correlation exists between the extent of helical structure of each individual TM segment in detergents with its helicity level as it exists in the full-length protein, indicating that helix adoption is fundamentally the same in both environments. The denaturing properties of so-called 'harsh' detergents may thus largely be due to their interactions with non-membranous regions of proteins. Given the consistency of structural features observed for each TM segment in a variety of micellar media, the overall results suggest that the structure likely corresponds to its relevant biological form in the intact protein in its native lipid bilayer environment.  相似文献   

4.
The properties of detergents required to substitute the lipid environment of sarcoplasmic reticulum Ca2+-ATPase with retention of good functional properties were determined by the use of a large number of diverse detergents and delipidated enzyme. Detergents having an intermediate chain length (approximately equal to C12) and a polyoxyethylene glycol or carbohydrate polar group were optimal for Ca2+-ATPase function and stabilization, while detergents with short alkyl chain (C8) or bulky head groups and many zwitterionic detergents led to rapid inactivation. Under optimal conditions (including solubilization in the E1 state), stability of delipidated Ca2+-ATPase approximated that obtained by solubilization of Ca2+-ATPase with a layer of bound lipid. Some detergents (in particular long chain members of the Tween family) were characterized by an inadequate interaction with delipidated Ca2+-ATPase, resulting in biphasic inactivation. According to analytical ultracentrifugation and high performance liquid chromatography experiments, the rapid and slow components of biphasic inactivation were due to the formation of monomeric and oligomeric Ca2+-ATPase, respectively. It is concluded that both hydrophobic and polar interactions are important for the detergent effect and that solubilizing detergents of intermediate and short chain length may be bound as a monolayer, differently than the membrane lipid. Long chain detergents cause protein aggregation and, despite their resemblance to natural lipids, are inferior in their activity-retaining properties. The previous use of such detergents to prepare oligomeric Ca2+-ATPase with long term retention of activity (cf. M?ller, J. V., Anderson, J. P., and le Maire, M. (1988) Methods Enzymol. 157, 261-270) is shown to depend on the presence of residual lipid in these preparations.  相似文献   

5.
The relative insolubility of lipid rafts in cold non-ionic detergents is the most widely used method to purify these fascinating membrane domains from intact cells or membranes. Most of what we know about lipid raft function has been derived from experiments utilising detergent insolubility as the basis for raft purification. Recently, a wider range of detergents have been used to purify 'rafts', and rafts have been subclassified based on their differential solubility in different detergents. This minireview critically examines the use of detergents as tools for raft isolation and for the subclassification of rafts.  相似文献   

6.
Complexes of melittin with detergents and phospholipids have been characterized by fluorescence, circular dichroism, ultracentrifugation, quasi-elastic light scattering and 1H nuclear magnetic resonance (NMR) experiments. By ultracentrifugation and quasi-elastic light-scattering measurements it is shown that melittin forms stoichiometrically well-defined complexes with dodecylphosphocholine micelles consisting of one melittin molecule and approximately forty detergent molecules. Evidence from fluorescence, circular dichroism and 1H nuclear magnetic resonance experiments indicates that the conformation of melittin bound to micelles of various detergents or of diheptanoyl phosphatidylcholine is largely independent of the type of lipid and furthermore appears to be quite closely related to the conformation of melittin bound to phosphatidylcholine bilayers. 1H NMR is used to investigate the conformation of micelle-bound melittin in more detail and to compare certain aspects of the melittin conformation in the micelles with the spatial structures of monomeric and self-aggregated tetrameric melittin in aqueous solution. The experience gained with this system demonstrates that high resolution NMR of complexes of membrane proteins with micelles provides a viable method for conformational studies of membrane proteins.  相似文献   

7.
Integral membrane proteins constitute more than third of the total number of proteins present in organisms. Solubilization with mild detergents is a common technique to study the structure, dynamics, and catalytic activity of these proteins in purified form. However beneficial the use of detergents may be for protein extraction, the membrane proteins are often denatured by detergent solubilization as a result of native lipid membrane interactions having been modified. Versatile investigations of the properties of membrane-embedded and detergent-isolated proteins are, therefore, required to evaluate the consequences of the solubilization procedure. Herein, the spectroscopic and kinetic fingerprints have been established that distinguish excitons in individual detergent-solubilized LH2 light-harvesting pigment-protein complexes from them in the membrane-embedded complexes of purple photosynthetic bacteria Rhodobacter sphaeroides. A wide arsenal of spectroscopic techniques in visible optical range that include conventional broadband absorption-fluorescence, fluorescence anisotropy excitation, spectrally selective hole burning and fluorescence line-narrowing, and transient absorption-fluorescence have been applied over broad temperature range between physiological and liquid He temperatures. Significant changes in energetics and dynamics of the antenna excitons upon self-assembly of the proteins into intracytoplasmic membranes are observed, analyzed, and discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

8.
Over 50 detergents were tested to establish which would be most effective in releasing proteins from membrane-bounded compartments without denaturating them. Various concentrations of each detergent were tested for two activities: (1) solubilization of egg phospholipid liposomes as measured by reduction of turbidity and (2) effect of detergent concentration on the activities of soluble, hydrolytic enzymes. Those detergents must effective in solubilizing 0.2% lipid and least detrimental to enzymes were five pure, synthetic compounds recently introduced: CHAPS, CHAPSO, Zwittergents 310 and 312, and octylglucoside. Industrial detergents were generally much inferior, insofar as they solubilized membranes inefficiently and/or inactivated certain hydrolytic enzymes readily. The five detergents were characterized by (a) an unusually high critical micelle concentration and (b) a preference for forming mixed micelles with lipids instead of forming pure micelles, as indicated by an ability to solubilize lipid at concentrations of detergent significantly below the critical micelle concentration. This characteristic permits solubilization of high concentrations of membrane below the critical micelle concentration of the detergent so that protein denaturation is minimized. A generally applicable guideline that emerged from this study is that detergents should be used at approximately their critical micelle concentration which should not be exceeded by the concentration of membrane. Similar considerations should apply to the use of detergents in purifying and reconstituting intrinsic membrane proteins.  相似文献   

9.
The lipid raft model has evoked a new perspective on membrane biology. Understanding the structure and dynamics of lipid domains could be a key to many crucial membrane-associated processes in cells. However, one shortcoming in the field is the lack of routinely applicable techniques to measure raft association without perturbation by detergents. We show that both in cell and in domain-exhibiting model membranes, fluorescence correlation spectroscopy (FCS) can easily distinguish a raft marker (cholera toxin B subunit bound to ganglioside (GM1) and a nonraft marker (dialkylcarbocyanine dye diI)) by their decidedly different diffusional mobilities. In contrast, these markers exhibit only slightly different mobilities in a homogeneous artificial membrane. Performing cholesterol depletion with methyl-beta-cyclodextrin, which disrupts raft organization, we find an analogous effect of reduced mobility for the nonraft marker in domain-exhibiting artificial membranes and in cell membranes. In contrast, cholesterol depletion has differential effects on the raft marker, cholera toxin B subunit-GM1, rendering it more mobile in artificial domain-exhibiting membranes but leaving it immobile in cell membranes, where cytoskeleton disruption is required to achieve higher mobility. Thus, fluorescence correlation spectroscopy promises to be a valuable tool to elucidate lipid raft associations in native cells and to gain deeper insight into the correspondence between model and natural membranes.  相似文献   

10.
Structural changes in the purified (Na+ + K+)-ATPase accompanying detergent inactivation were investigated by monitoring changes in light scattering, intrinsic protein fluorescence, and tryptophan to beta-parinaric acid fluorescence resonance energy transfer. Two phases of inactivation were observed using the non-ionic detergents, digitonin, Lubrol WX and Triton X-100. The rapid phase involves detergent monomer insertion but little change in protein structure or little displacement of closely associated lipids as judged by intrinsic protein fluorescence and fluorescence resonance energy transfer. Lubrol WX and Triton X-100 also caused membrane fragmentation during the rapid phase. The slower phase of inactivation results in a completely inactive enzyme in a particle of 400 000 daltons with 20 mol/mol of associated phospholipid. Fluorescence changes during the course of the slow phase indicate some dissociation of protein-associated lipids and an accompanying protein conformational change. It is concluded that non-parallel inhibition of (Na+ + K+)-ATPase and p-nitrophenylphosphate activity by digitonin (which occurs during the rapid phase of inactivation) is unlikey to require a change in the oligomeric state of the enzyme. It is also concluded that at least 20 mol/mol of tightly associated lipid are necessary for either (Na+ + K+)-ATPase or p-nitrophenylphosphatase activity and that the rate-limiting step in the slow inactivation phase involves dissociation of an essential lipid.  相似文献   

11.
Chromatophores isolated from cells of Rhodobacter sphaeroides exposed to hypertonic solutions were enriched in cardiolipin (CL). Because CL levels are raised by increasing the incubation time of R. sphaeroides in hypertonic solutions, it was possible to isolate chromatophores containing different CL amounts by starting from cells incubated in hypertonic solutions for different times. The functionality and stability of the photosynthetic proteins in chromatophore membranes having different CL levels were investigated. Reaction center (RC) stabilization with respect to thermal denaturation and photoxidative damage was observed by flash photolysis and fluorescence emission experiments in CL-enriched chromatophores. To gain detailed information about the structures of endogenous CLs, this lipid family was isolated and purified by preparative TLC, and characterized by high-resolution mass spectrometry. We conclude that osmotic shock can be used as a tool to modulate CL levels in isolated chromatophores and to change the composition of the RC lipid annulus, avoiding membrane artifacts introduced by the use of detergents.  相似文献   

12.
Iu G Rovin 《Biofizika》1978,23(4):638-640
Effect of water-soluble detergents, such as triton X-100, saponin and trimethyl octadecylammonium bromide on the concentration of black spots, tension and stability of black lipid membranes was studied. Changes in mechanic stability of the lipid bilayer are discovered, which are in a good correlation with the litic effect of true detergents on cell membranes.  相似文献   

13.
The complex mycobacterial cell envelope is recognized as a critical factor in our failure to control tuberculosis, leprosy and other non-tuberculous pathogens. Although its composition has been extensively determined, many details regarding the organization of the envelope remain uncertain. This is particularly so for the non-covalently bound lipids, whose natural distribution may be disrupted by conventional biochemical or cytological techniques. In order to study the native organization of lipid domains in the mycobacterial envelope, we have applied a range of fluorescent lipophilic probes to live mycobacteria, including Mycobacterium smegmatis, Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium gadium and Mycobacterium aurum, and analysed the resultant signals by fluorescence microscopy and digital image processing. Five key features were observed: (i) the presence of both envelope and intracellular lipid domains; (ii) differential localization of probes into these domains influenced predominantly by their hydrophobicity, as modelled by their calculated octanol:water partition coefficients and by their amphiphilicities; (iii) uneven distribution of lipophilic material in the envelope; (iv) selective labelling of septal regions of the envelope; and (v) modification of labelling patterns by additional treatments such as fluorescence quenching antibodies, detergents and solvents. Using this last approach, a coherent cell envelope lipid domain was demonstrated outside the cytoplasmic membrane and, for the first time, the proposed covalently linked mycolyl-arabinogalactan-peptidoglycan macromolecular complex was imaged directly. The use of fluorescent probes and high-resolution fluorescence microscopy has enabled us to obtain a coherent view of distinct lipid domains in mycobacteria. Further application of this approach will facilitate understanding of the role of lipids in the physiology of these organisms.  相似文献   

14.
The reconstitution of Na+/K+-ATPase from outer medulla of rabbit kidney into large unilamellar liposomes was achieved through detergent removal by dialysis of mixed micellar solutions of synthetic dioleoyl phosphatidylcholine/octyl glucoside and Na+/K+-ATPase/decyl maltoside or decenyl maltoside. Tight, transport-active liposomes were formed when the lipid and the enzyme were solubilized separately in the nonionic detergents and mixed immediately before starting the dialysis. The two maltoside detergents with different structures of the hydrophobic part of the molecule proved to be well suited for the solubilization of Na+/K+-ATPase with high retention of enzyme activity; the inactivation of enzyme being evidently slower with the unsaturated decenyl maltoside. The diameters of the proteoliposomes, 110 and 170 nm, respectively, were also dependent on the structure of the maltoside detergent, the saturated decyl maltoside producing the bigger liposomes. After freeze-fracture, both preparations exhibited intramembranous particles as structural indicators of successful reconstitution. The electrogenic activity of the reconstituted enzyme was determined by fluorescence measurements with Oxonol VI and by tracer-flux measurements with 22Na+.  相似文献   

15.
The nicotinic acetylcholine receptor (nAChR) of Torpedo electric rays has been extensively characterized over the last three decades. However, high-resolution structural studies have been hampered by the lack of mechanistic molecular models that describe how detergents influence membrane protein stability and function. Furthermore, elucidation of the dynamic detergent-lipid-protein interactions of solubilized membrane proteins is a largely unexplored research field. This study examines the effects of nine detergents on: (1) nAChR-lipid composition (gas chromatography with flame ionization; GC-FID and/or mass selective detectors; GC-MSD), (2) stability and aggregation state (analytical size exclusion chromatography; A-SEC and electron microscopy; EM) and (3) ion channel function (planar lipid bilayers). Detergent solubilization of nAChR-enriched membranes did not result in significant native lipid depletion or destabilization. Upon purification, native lipid depletion occurred in all detergents, with lipid-analogue detergents CHAPS {(3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate}, FC-12 (n-dodecylphosphocholine) and sodium cholate (3alpha,7alpha,12alpha-trihydroxy-5beta-cholan-24-oic acid) maintaining stability and supporting ion channel function, and non-lipid-analogue detergents Cymal-6 (6-cyclohexyl-1-hexyl-beta-D-maltoside), DDM (n-dodecyl-beta-D-maltopyranoside), LDAO (lauryldimethylamine-N-oxide) and OG (n-octyl-beta-d-glucopyranoside) decreasing stability and significantly reducing or completely suppressing ion channel function. Anapoe-C(12)E(9 )(polyoxyethylene-[9]-dodecyl ether) and BigCHAP (N,N'-bis-[3-d-gluconamidopropyl] cholamide) retained residual amounts of native lipid, maintaining moderate stability and ion channel function compared to lipid-analogue detergents. Therefore, the nAChR can be stable and functional in lipid-analogue detergents or in detergents that retain moderate amounts of residual native lipids, but not in non-lipid-analogue detergents.  相似文献   

16.
This study was undertaken to examine GLUT1 quaternary structure. Independent but complementary methodologies were used to investigate the influence of membrane-solubilizing detergents on GLUT1/lipid/detergent micelle hydrodynamic radii. Hydrodynamic size analysis and electron microscopy of GLUT1/lipid/detergent micelles and freeze-fracture electron microscopy of GLUT1 proteoliposomes support the hypothesis that the glucose transporter is a multimeric (probably tetrameric) complex of GLUT1 proteins. GLUT1 forms a multimeric complex in octyl glucoside that dissociates upon addition of reductant. Some detergents (e.g., CHAPS and dodecyl maltoside) promote the dissociation of GLUT1 oligomers into smaller aggregation states (dimers or monomers). These complexes do not reassemble as larger oligomers when dissociating detergents are subsequently replaced with nondissociating detergents such as octyl glucoside or cholic acid. When dissociating detergents are replaced with lipids, the resulting proteoliposomes catalyze protein-mediated sugar transport, and the subsequent addition of solubilizing, nondissociating detergents generates higher (tetrameric) GLUT1 aggregation states. These findings suggest that some detergents stabilize while others destabilize GLUT1 quaternary structure. GLUT1 does not appear to exchange rapidly between protein/lipid/detergent micelles but is able to self-associate in the plane of the lipid bilayer.  相似文献   

17.
The experiments conducted on tonoplast of Beta vulgaris L. roots were performed to identify detergent-resistant lipid–protein microdomains (DRMs, interpreted as lipid rafts).The presence of DRMs can be found when dynamic clustering of sphingolipids, sterols, saturated fatty acids is registered, and the insolubility of these microdomains in nonionic detergents at low temperatures is proven. The elucidation of tonoplast microdomains has been based on results obtained with the aid of high-speed centrifuging in the sucrose gradient. The experiments have shown that tonoplast microdomains are rich in sphingolipids, free sterols and saturated fatty acids (such a lipid content is also typical of lipid–protein microdomains of other membranes), while only few phospholipids are present in tonoplast microdomains. The presence of microdomains has been confirmed by fluorescence and confocal microscopy using filipin and Laurdan as fluorescent probes. The experiments with Laurdan have shown that tonoplast microdomains are characterized by a high order compared to characteristics of the rest of the tonoplast. Thus, the presence of detergent-resistant lipid–protein microdomains in the tonoplast has been demonstrated.  相似文献   

18.
Seed lipid bodies constitute natural emulsions stabilized by specialized integral membrane proteins, among which the most abundant are oleosins, followed by the calcium binding caleosin. These proteins exhibit a triblock structure, with a highly hydrophobic central region comprising up to 71 residues. Little is known on their three-dimensional structure. Here we report the solubilization of caleosin and of two oleosins in aqueous solution, using various detergents or original amphiphilic polymers, amphipols. All three proteins, insoluble in water buffers, were maintained soluble either by anionic detergents or amphipols. Neutral detergents were ineffective. In complex with amphipols the oleosins and caleosin contain more beta and less alpha secondary structures than in the SDS detergent, as evaluated by synchrotron radiation circular dichroism. These are the first reported structural results on lipid bodies proteins maintained in solution with amphipols, a promising alternative to notoriously denaturing detergents.  相似文献   

19.
A method for determining the critical micelle concentration (CMC) of various detergents based on fluorescence polarization (anisotropy) of the lipophilic probe 5-dodecanoylaminofluorescein is presented. Nonionic, cationic, anionic, and steroid-based detergents can all be evaluated by this method and the determined CMC values of selected detergents agree well with those reported in the literature. In addition, we report the CMC of domiphen bromide, whose CMC value has not previously been described. In the case of ionic detergents, the method described is particularly sensitive at discerning changes in the CMC with increasing ionic strength of the medium and can discriminate detergent CMCs in 5 mM versus 25 mM buffering components. The described fluorescence polarization technique allows very low (submicromolar) concentrations of probe to be employed, thus minimizing the perturbation of micelle formation by 5-dodecanoylaminofluorescein insertion.  相似文献   

20.
Cytolysin A (ClyA) is an α-pore forming toxin from pathogenic Escherichia coli (E. coli) and Salmonella enterica. Here, we report that E. coli ClyA assembles into an oligomeric structure in solution in the absence of either bilayer membranes or detergents at physiological temperature. These oligomers can rearrange to create transmembrane pores when in contact with detergents or biological membranes. Intrinsic fluorescence measurements revealed that oligomers adopted an intermediate state found during the transition between monomer and transmembrane pore. These results indicate that the water-soluble oligomer represents a prepore intermediate state. Furthermore, we show that ClyA does not form transmembrane pores on E. coli lipid membranes. Because ClyA is delivered to the target host cell in an oligomeric conformation within outer membrane vesicles (OMVs), our findings suggest ClyA forms a prepore oligomeric structure independently of the lipid membrane within the OMV. The proposed model for ClyA represents a non-classical pathway to attack eukaryotic host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号