首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The activities of phosphofructokinase, aldolase and pyruvate kinase were diminished in extracts from skeletal muscle of streptozotocin diabetic rats, whereas the activities of glucose phosphate isomerase and phosphoglucomutase were not changed. Treatment of diabetic rats with insulin restored the activity of phosphofructokinase to normal. A kinetic study of the partially purified enzyme from normal and diabetic rats showed identical Michaelis constants for ATP and equal sensitivity to inhibition by excess of this substrate. Extracts of quick frozen muscle from diabetic rats had higher levels of citrate (an inhibitor of phosphofructokinase) and lower levels of D-fructose-1,6-bisphosphate and D-glucose-1,6-bisphosphate (activators of this enzyme). The levels of D-fructose-6-phosphate, D-glucose-6-phosphate, ATP, ADP and AMP were the same for the two groups. Our data suggest that the in vivo decrease of phosphofructokinase activity in skeletal muscle of diabetic rats is due to a decrease in the level of the enzymatically active protein as well as to an unfavorable change in the level of several of its allosteric modulators.  相似文献   

3.
Exposure to vibration is suggested as a risk factor for developing neck and shoulder disorders in working life. Mechanical vibration applied to a muscle belly or a tendon can elicit a reflex muscle contraction, also called tonic vibration reflex, but the mechanisms behind how vibration could cause musculoskeletal disorders has not yet been described. One suggestion has been that the vibration causes muscular fatigue. This study investigates whether vibration exposure changes the development of muscular fatigue in the trapezius muscle. Thirty-seven volunteers (men and women) performed a sub-maximal isometric shoulder elevation for 3 min. This was repeated four times, two times with induced vibration and two times without. Muscle activity was measured before and after each 3-min period to look at changes in the electromyography parameters. The result showed a significantly smaller mean frequency decrease when performing the shoulder elevation with vibration (?2.51 Hz) compared to without vibration (?4.04 Hz). There was also a slightly higher increase in the root mean square when exposed to vibration (5.7% of maximal voluntary contraction) compared to without (3.8% of maximal voluntary contraction); however, this was not statistically significant. The results of the present study indicate that short-time exposure to vibration has no negative acute effects on the fatiguing of upper trapezius muscle.  相似文献   

4.
A histochemical multi-step technique for the demonstration of phosphofructokinase activity in tissue sections is described. With this technique a semipermeable membrane is interposed between the incubating solution and the tissue sections preventing diffusion of the non-structurally bound enzyme into the medium during incubation. In the histochemical system the enzyme converts the substrate D-fructose-6-phosphate to D-fructose-1,6-diphosphate, which in turn is hydrolyzed by exogenous and endogenous fructose diphosphate aldolase to dihydroxyacetone phosphate and D-glyceral-dehyde-3-phosphate. The dihydroxyacetone phosphate is reversibly converted into D-glyceraldehyde-3-phosphate by exogenous and endogenous triosephosphate isomerase. Next the D-glyceraldehyde-3-phosphate is oxidized by exogenous and endogenous glyceraldehyde-3-phosphate dehydrogenase into 1,3-diphospho-D-glycerate. Concomitantly the electrons are transported via NAD+, phenazine methosulphate and menadione to nitro-BT. Sodium azide and amytal are incorporated to block electron transfer to the cytochromes.  相似文献   

5.
Summary A histochemical multi-step technique for the demonstration of phosphofructokinase activity in tissue sections is described. With this technique a semipermeable membrane is interposed between the incubating solution and the tissue sections preventing diffusion of the non-structurally bound enzyme into the medium during incubation. In the histochemical system the enzyme converts the substrate d-fructose-6-phosphate to d-fructose-1,6-diphosphate, which in turn is hydrolyzed by exogenous and endogenous fructose diphosphate aldolase to dihydroxyacetone phosphate and d-glyceraldehyde-3-phosphate. The dihydroxyacetone phosphate is reversibly converted into d-glyceraldehyde-3-phosphate by exogenous and endogenous triosephosphate isomerase. Next the d-glyceraldehyde-3-phosphate is oxidized by exogenous and endogenous glyceraldehyde-3-phosphate dehydrogenase into 1,3-diphospho-d-glycerate. Concomitantly the electrons are transported via NAD+, phenazine methosulphate and menadione to nitro-BT. Sodium azide and amytal are incorporated to block electron transfer to the cytochromes.  相似文献   

6.
Linked oscillations of the glycolytic pathway and the purine nucleotide cycle were studied in particle-free extracts of rat skeletal muscle. Under the conditions used, an accumulation of about 1 muM fructose diphosphate can trigger a sudden increase in phosphofructokinase activity. The activation by fructose diphosphate depends on the presence of AMP. When the AMP concentration drops, phosphofructokinase becomes inhibited, even though the fructose disphosphate concentration remains high. It is concluded that the oscillatory behavior can be of advantage for maintaining a high average [ATP]/[ADP] ratio.  相似文献   

7.
8.
Binding of hexose bisphosphates to muscle phosphofructokinase   总被引:3,自引:0,他引:3  
L G Foe  S P Latshaw  R G Kemp 《Biochemistry》1983,22(19):4601-4606
On the basis of kinetic activation assays, the apparent affinity of muscle phosphofructokinase for fructose 2,6-bisphosphate was about 9-fold greater than that for fructose 1,6-bisphosphate, which in turn was about 10 times higher than that for glucose 1,6-bisphosphate. Equilibrium binding experiments showed that both fructose bisphosphates bind to phosphofructokinase with negative cooperativity; the affinity for fructose 2,6-bisphosphate was about 1 order of magnitude greater than the affinity for fructose 1,6-bisphosphate. Binding of fructose 2,6-bisphosphate to phosphofructokinase was antagonized by fructose 1,6-bisphosphate and glucose 1,6-bisphosphate and vice versa. Both fructose bisphosphates promoted aggregation of the enzyme to higher polymers as indicated by sucrose density gradient centrifugation. Other indicators of phosphofructokinase conformation such as thiol reactivity and maximum activation of in vitro phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase gave identical results in the presence of fructose 2,6-bisphosphate, fructose 1,6-bisphosphate, or glucose 1,6-bisphosphate, indicating a common conformation is produced by all three ligands. It is concluded that the sugar bisphosphates bind to a single site on the enzyme.  相似文献   

9.
10.
Malate- and isocytratedehydrogenase activity in mitochondrial and cytoplasmic fractions and lactate dehydrogenase activity in hindlimb muscles have been studied at different stages after 18.5-day flight on a biosatellite "Cosmos-1129" and after 20-day hypokinesia. A decrease in dehydrogenase activity has been found on the first postflight day. The enzyme activities returned to the control values in mitochondria, and in the cytoplasm they were greater by day 6 postflight. It was concluded that hypokinesia did not reveal all the effects of microgravity on the whole system but some enzyme alterations in the muscle resembled those observed during the flight. The effects may be caused by the inhibition of both aerobic and anaerobic metabolic pathways under the effect of microgravity.  相似文献   

11.
12.
13.
Phosphofructokinase from muscle has been shown to be a calmodulin-binding protein [Mayr, G.W. and Heilmeyer, L.M.G., Jr (1983) FEBS Lett. 159, 51-57]. Details of the influence of calmodulin on the aggregation state, the conformation and the catalytic properties of phosphofructokinase have been studied by enzymatic and light-scattering analyses. Calmodulin acts as a Ca2+-dependent hysteretic inhibitor of the highly active enzyme. At least one mole of calmodulin binds to each protomer of the enzyme, induces a shift from the highly active tetrameric towards an inactive dimeric state and slowly changes the conformation of the dimers. Dissociation of calmodulin from conformationally changed dimers by removal of Ca2+ stops the inactivation. Without a significant regain of catalytic activity large polymers are rapidly formed. For a reactivation of the inactivated enzyme, calmodulin has to remain associated and the incubation conditions must be changed in a way to allow for a back isomerization and reassociation of dimers. The isomerization reaction is promoted by Mg . ATP, the reassociation reaction most effectively by fructose bisphosphate. A model for the calmodulin-phosphofructokinase interaction is proposed.  相似文献   

14.
15.
A possibility of hexokinase binding with actomyosin in skeletal muscles of Rana temporaria L., and the effect of thermal alteration (15 min at 36, 37, 38, 40 and 42 degrees C) on the binding were studied. Solutions of KCl (0.075 M and 0.15 M) extract more hexokinase from intact and altered muscles than does an non-electrolyte medium. Hexokinase freely dissolved in hyaloplasm is extracted in non-electrolyte medium. Hexokinase bound with structural components of the muscle cell is extracted upon the increase in ionic force of the extractant. The solubilizing effect of electrolytes on hexokinase is higher in alterated muscles than in the intact muscles indicating the increase in hexokinase binding under thermal alteration. Actomysin isolated from muscles reveals hexokinase activity. In reprecipitated actomyosin, the larger part of its hexokinase remains in actomyosin gel, the level of hexokinase activity not depending on the number of reprecipitation procedures or on the volume of washing solution. Hexokinase in actomyosin gel is less stable to the thermal action than in water supernatant of muscle extract. This may be due to the increase in hexokinase binding with actomiosin whose sorption activity increases under the thermal denaturation.  相似文献   

16.
17.
18.
19.
A study was made of lactate dehydrogenase (LDH) extractability from intact and thermally injured muscles of Rana temporaria L. in the 0.15 M KCl solution and in the non-electrolyte medium. A 15 minute incubation of intact muscles and those treated with heat at 38, 42, 44 and 46 degrees C in the 0.15 M KCl solution led to a much higher extraction of LDH than in the non-electrolyte medium. Following heating at 38 degrees C, causing irreversible injury of muscles, the LDH extractability in the non-electrolyte medium is seen to fall, whereas in the 0.15 M KCl solution it remained at the same level as after LDH extraction from intact muscles. The decrease in LDH extractability in non-electrolyte medium from thermally injured muscles may be due to the increase in LDH binding with thermolabile structural components of muscle. One of the components of muscle cell, known to bind LDH, is actomyosin, since it is isolated from muscles together with LDH, which cannot be removed by actomyosin reprecipitation or by increasing the volume of washing solution.  相似文献   

20.
The regulation of phosphofructokinase during development of C2C12 myoblasts to myotubes was investigated. Enzyme activity was markedly increased during myogenic development. The increase was observed when enzyme activity was measured under optimal conditions and was not due to changes in the allosteric kinetic properties of the enzyme. Immunoprecipitation of phosphofructokinase from [35S]methionine-labeled myogenic cells revealed that equal amounts of liver and muscle isozymes are present in myoblasts, while in myotubes there was a much higher level of the muscle isozyme. These results were confirmed using an immunoblotting technique. The increase in the level of muscle isozyme in myotubes is due to an increase in the rate of synthesis of the muscle isozyme and occurs in spite of a measurably small increase in its degradation rate. Northern blot analysis using a synthetic oligonucleotide probe showed a 25-fold increase in the level of muscle phosphofructokinase mRNA in myotubes. The conclusion is drawn that the increase in muscle isozyme in myotubes during myogenesis is due to an increase in its mRNA level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号