首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chloroplastic inner envelope protein of 110 kD (IEP110) is part of the protein import machinery in the pea. Different hybrid proteins were constructed to assess the import and sorting pathway of IEP110. The IEP110 precursor (pIEP110) uses the general import pathway into chloroplasts, as shown by the mutual exchange of presequences with the precursor of the small subunit of ribulose-1,5-bisphosphate carboxylase (pSSU). Sorting information to the chloroplastic inner envelope is contained in an NH2-proximal part of mature IEP110 (110N). The NH2-terminus serves to anchor the protein into the membrane. Large COOH-terminal portions of this protein (80–90 kD) are exposed to the intermembrane space in situ. Successful sorting and integration of IEP110 and the derived constructs into the inner envelope are demonstrated by the inaccessability of processed mature protein to the protease thermolysin but accessibility to trypsin, i.e., the imported protein is exposed to the intermembrane space. A hybrid protein consisting of the transit sequence of SSU, the NH2-proximal part of mature IEP110, and mature SSU (tpSSU-110N-mSSU) is completely imported into the chloroplast stroma, from which it can be recovered as soluble, terminally processed 110NmSSU. The soluble 110N-mSSU then enters a reexport pathway, which results not only in the insertion of 110N-mSSU into the inner envelope membrane, but also in the extrusion of large portions of the protein into the intermembrane space. We conclude that chloroplasts possess a protein reexport machinery for IEPs in which soluble stromal components interact with a membrane-localized translocation machinery.  相似文献   

2.
3.
The chloroplastic outer envelope protein Toc34 is inserted into the membrane by a COOH-terminal membrane anchor domain in the orientation Ncyto-Cin. The insertion is independent of ATP and a cleavable transit sequence. The cytosolic domain of Toc34 does not influence the insertion process and can be replaced by a different hydrophilic reporter peptide. Inversion of the COOH-terminal, 45-residue segment, including the membrane anchor domain (Toc34Cinv), resulted in an inverted topology of the protein, i.e., Nin-Ccyto. A mutual exchange of the charged amino acid residues NH2- and COOH-proximal of the hydrophobic α-helix indicates that a double-positive charge at the cytosolic side of the transmembrane α-helix is the sole determinant for its topology. When the inverted COOH-terminal segment was fused to the chloroplastic precursor of the ribulose-1,5-bisphosphate carboxylase small subunit (pS34Cinv), it engaged the transit sequence–dependent import pathway. The inverted peptide domain of Toc34 functions as a stop transfer signal and is released out of the outer envelope protein translocation machinery into the lipid phase. Simultaneously, the NH2-terminal part of the hybrid precursor remained engaged in the inner envelope protein translocon, which could be reversed by the removal of ATP, demonstrating that only an energy-dependent force but no further ionic interactions kept the precursor in the import machinery.  相似文献   

4.
Post-translational integration of cytochrome f into thylakoid membranes was observed after import by isolated pea chloroplasts of a chimeric protein consisting of the presequence of the small subunit of ribulose 1,5-bisphosphate carboxylase fused to the cytochrome f precursor. Import of a similar chimeric protein lacking the C-terminal 33 amino acid residues resulted in a soluble cytochrome f protein in the thylakoid lumen, indicating that the C-terminal region contains a stop-transfer sequence for membrane integration. Azide inhibited the insertion of cytochrome f into the thylakoid membrane, whereas the ionophores nigericin and valinomycin had little effect on membrane insertion. The precursor of the 33 kDa protein, but not the 23 kDa protein, of the photosystem II oxygen-evolving complex inhibited the thylakoid insertion of cytochrome f , suggesting competition for a component of the transport pathway. These experiments suggest that the post-translational insertion of cytochrome f into the thylakoid membrane uses a SecA-dependent pathway.  相似文献   

5.
The soluble proteins of C3 and C4 mesophyll chloroplasts and C4 bundle sheath extracts have been analyzed by gel electrophoresis for fraction I protein. Gel scans of soluble protein from C4 bundle sheath extracts and C3 mesophyll chloroplasts showed typical fraction I protein peaks that could be identified by ribulose diphosphate carboxylase activity. No such peak was observed for C4 mesophyll chloroplasts, which also lacked both large and small subunits of ribulose diphosphate carboxylase on sodium dodecyl sulfate gels. The absence of fraction I protein in these chloroplasts was reflected in the soluble protein to chlorophyll ratios, which were roughly 3-fold lower than the ratio obtained for C3 chloroplasts. The carboxylating enzyme in C4 mesophyll cells, phosphoenolpyruvate carboxylase, was found to be a major protein in the cytoplasm of C4 mesophyll protoplasts, and had higher mobility than fraction I protein.  相似文献   

6.
7.
Mg-chelatase catalyzes the ATP-dependent insertion of Mg2+ into protoporphyrin-IX to form Mg-protoporphyrin-IX. This is the first step unique to chlorophyll synthesis, and it lies at the branch point for porphyrin utilization; the other branch leads to heme. Using the stromal fraction of pea (Pisum sativum L. cv Spring) chloroplasts, we have prepared Mg-chelatase in a highly active (1000 pmol 30 min−1 mg−1) and stable form. The reaction had a lag in the time course, which was overcome by preincubation with ATP. The concentration curves for ATP and Mg2+ were sigmoidal, with apparent Km values for Mg2+ and ATP of 14.3 and 0.35 mm, respectively. The Km for deuteroporphyrin was 8 nm. This Km is 300 times lower than the published porphyrin Km for ferrochelatase. The soluble extract was separated into three fractions by chromatography on blue agarose, followed by size-selective centrifugal ultrafiltration of the column flow-through. All three fractions were required for activity, clearly demonstrating that the plant Mg-chelatase requires at least three protein components. Additionally, only two of the components were required for activation; both were contained in the flow-through from the blue-agarose column.  相似文献   

8.
H M Li  T Moore    K Keegstra 《The Plant cell》1991,3(7):709-717
The chloroplastic envelope is composed of two membranes, inner and outer, each with a distinct set of polypeptides. Like proteins in other chloroplastic compartments, most envelope proteins are synthesized in the cytosol and post-translationally imported into chloroplasts. Considerable knowledge has been obtained concerning protein import proteins. We isolated a cDNA clone from pea that encodes a 14-kilodalton outer envelope membrane protein. The precursor form of this protein does not possess a cleavable transit peptide and its import into isolated chloroplasts does not require either ATP or a thermolysin-sensitive component on the chloroplastic surface. These findings, together with similar observations made with a spinach chloroplastic outer membrane protein, led us to propose that proteins destined for the outer membrane of the chloroplastic envelope follow an import pathway distinct from that followed by proteins destined for other chloroplastic compartments.  相似文献   

9.
Chloroplasts from leaves of plants which had been grown in the dark, and then illuminated for 12 hours were isolated, and allowed to incorporate 14C-leucine into protein, and the products of this incorporation were studied. Lamellar and soluble proteins are the principal products, and are formed in about equal amounts. Only some of the soluble proteins become heavily labeled. Those with highest specific activity have a molecular weight of the order of 140,000, while the higher molecular weight Fraction I protein has a much lower specific activity. The soluble protein as a whole does not serve as a precursor for the lamellar protein, and vice-versa, although a precursor-product relationship between a minor component of the soluble fraction and the lamellar fraction has not been ruled out. The relative protein synthesizing capabilities of chloroplasts and mitochondria are discussed with reference to the data presented.  相似文献   

10.
Stearyl-acyl carrier protein desaturase (EC 1.14.99.6), present in the stroma fraction of spinach (Spinacia oleracea) chloroplasts, rapidly desaturated enzymatically prepared stearyl-acyl carrier protein to oleic acid. No other substrates were desaturated. In addition to stearyl-acyl carrier protein, reduced ferredoxin was an essential component of the system. The electron donor systems were either ascorbate, dichlorophenolindophenol, photosystem I and light, or NADPH and ferredoxin-NADP reductase. The desaturase was more active in extracts prepared from chloroplasts obtained from immature spinach leaves than from mature leaves. Stearyl-acyl carrier protein desaturase also occurs in soluble extracts of avocado (Persea americana Mill.) mesocarp and of developing safflower (Carthamus tinctorius) seeds.  相似文献   

11.
Type I signal peptidase (SPase I) is an integral membrane Ser/Lys protease with one or two transmembrane domains (TMDs), cleaving transport signals off translocated precursor proteins. The catalytic domain of SPase I folds to form a hydrophobic surface and inserts into the lipid bilayers at the trans-side of the membrane. In bacteria, SPase I is targeted co-translationally, and the catalytic domain remains unfolded until it reaches the periplasm. By contrast, SPases I in eukaryotes are targeted post-translationally, requiring an alternative strategy to prevent premature folding. Here we demonstrate that two distinct stromal components are involved in post-translational transport of plastidic SPase I 1 (Plsp1) from Arabidopsis thaliana, which contains a single TMD. During import into isolated chloroplasts, Plsp1 was targeted to the membrane via a soluble intermediate in an ATP hydrolysis-dependent manner. Insertion of Plsp1 into isolated chloroplast membranes, by contrast, was found to occur by two distinct mechanisms. The first mechanism requires ATP hydrolysis and the protein conducting channel cpSecY1 and was strongly enhanced by exogenously added cpSecA1. The second mechanism was independent of nucleoside triphosphates and proteinaceous components but with a high frequency of mis-orientation. This unassisted insertion was inhibited by urea and stroma extract. During import-chase assays using intact chloroplasts, Plsp1 was incorporated into a soluble 700-kDa complex that co-migrated with the Cpn60 complex before inserting into the membrane. The TMD within Plsp1 was required for the cpSecA1-dependent insertion but was dispensable for association with the 700-kDa complex and also for unassisted membrane insertion. These results indicate cooperation of Cpn60 and cpSecA1 for proper membrane insertion of Plsp1 by cpSecY1.  相似文献   

12.
Piazza GJ  Smith MG  Gibbs M 《Plant physiology》1982,70(6):1748-1758
Photoassimilation of 14CO2 by intact chloroplasts from the Crassulacean acid metabolism plant Sedum praealtum was investigated. The main water-soluble, photosynthetic products were dihydroxyacetone phosphate (DHAP), glycerate 3-phosphate (PGA), and a neutral saccharide fraction. Only a minor amount of glycolate was produced. A portion of neutral saccharide synthesis was shown to result from extrachloroplastic contamination, and the nature of this contamination was investigated with light and electron microscopy. The amount of photoassimilated carbon partitioned into starch increased at both very low and high concentrations of orthophosphate. High concentrations of exogenous PGA also stimulated starch synthesis.

DHAP and PGA were the preferred forms of carbon exported to the medium, although indirect evidence suported hexose monophosphate export. The export of PGA and DHAP to the medium was stimulated by high exogenous orthophosphate, but depletion of chloroplastic reductive pentose phosphate intermediates did not occur. As a result only a relatively small inhibition in the rate of CO2 assimilation occurred.

The rate of photoassimilation was stimulated by exogenous PGA, ribose 5-phosphate, fructose 1,6-bisphosphate, fructose 6-phosphate, and glucose 6-phosphate. Inhibition occurred with phosphoenolpyruvate and high concentrations of PGA and ribose 5-phosphate. PGA inhibition did not result from depletion of chloroplastic orthophosphate or from inhibition of ribulose 1,5-bisphosphate carboxylase. Exogenous PGA and phosphoenolpyruvate were shown to interact with the orthophosphate translocator.

  相似文献   

13.
Soll  J.  Tien  R. 《Plant molecular biology》1998,38(1-2):191-207
Post-translational protein import into chloroplasts follows a common route characterised by the need for nucleoside-triphosphates at various steps and two distinct protein import machineries at the outer and inner envelope membrane, respectively. Several subunits of these complexes have been elucidated. In contrast, protein translocation into the chloroplastic outer envelope uses distinct and various but poorly characterised insertion pathways. A topological framework for single-membrane spanning proteins of the chloroplastic outer envelope is presented.  相似文献   

14.
Phylloquinol (the quinol form of vitamin K1) is synthesized from 2-phytyl-1,4-naphthoquinol and S-adenosylmethionine at the thylakoid membranes of spinach chloroplasts. The addition of soluble stroma protein (chloroplast extract) is necessary S-Adenosylhomocysteine acts as strong competitive inhibitor.  相似文献   

15.
NAD kinase activity has been found in a soluble, cytoplasmic fraction and in the chloroplasts prepared from green spinach leaves. A small amount of both the cytoplasmic and the chloroplastic NAD kinase activities was retained on a calmodulin-Sepharose affinity column. The cytoplasmic NAD kinase eluted from the affinity column was found to be enhanced by calmodulin in a Ca2+-dependent manner. The chloroplastic enzyme which is located exclusively in the stroma and not in the envelope and thylakoid fractions was not affected by Ca2+ and calmodulin. The stromal fraction of purified chloroplasts contained only a negligible amount of calmodulin, most probably due to cytoplasmic contamination. Based on these data, two different mechanisms for the light-dependent modulation of spinach NAD kinase activity are suggested.  相似文献   

16.
The in vitro membrane integration of the light-harvesting protein of photosystem II (LHCP), the Rieske FeS protein of the cytochrome (Cyt) blf-complex, and the NADPH:protochlorophyllide oxidoreductase (Pchlide reductase) into pea thylakoids with different pigment composition was studied. Pea plants (Pisum sativum L. cv. Kelvedon Wonder) with different contents of chlorophyll (Chl) and carotenoids were obtained by growing the seedlings in a greenhouse or in weak red light with or without the herbicide Norflurazon, an inhibitor of carotenoid biosynthesis. Chloroplasts from untreated and Norflurazon-treated plants grown in weak red light contained approximately 29 and 14% of Chl compared to chloroplasts from untreated plants grown in the greenhouse. The corresponding carotenoid contents were 66 and 5%. Following an integration reaction using LHCP precursor protein and chloroplast lysate, thylakoids from untreated and Norflurazon-treated plants grown in weak red light contained approximately 30 and 5% of protease-protected LHCP, respectively, compared to thylakoids of untreated plants grown in a greenhouse. In contrast to LHCP, the in vitro assembly of the Pchlide reductase was only sligthly reduced in chloroplast lysates of plants grown in weak red light compared to greenhouse-grown plants. In chloroplast lysates of Norflurazon-treated plants, however, the amount of membrane associated, protease-protected Pchlide reductase was reduced to 32% of the amount in untreated plants grown under the same light conditions. In contrast, the integration of the Rieske FeS protein occurred to almost similar levels irrespective of light conditions and herbicide treatments. Reconstitution assays where stroma from Norflurazon-treated plants was added to thylakoids from untreated plants, showed that the herbicide did not affect any stromal component(s) vital for the insertion reaction. Removal of samples during the integration reaction of LHCP showed that no degradation of the protein occurred during the assay. Neither was the assembled protein degraded up to 24 h after the termination of the assay. This indicates that growing plants in weak red light, with or without Norflurazon treatment, mainly affected the primary step in thylakoid assembly of LHCP, i.e. the insertion reaction into the membrane. The results further indicate that proteins normally bound to pigments also require pigments for membrane recognition or integration.  相似文献   

17.
The specificity of the mitochondrial and chloroplast processing enzymes for the nuclear-encoded precursor proteins was investigated. Mitochondrial precursor proteins of the Nicotiana plumbaginifolia and the Neurospora crassa subunits of F1-ATPase and the Neurospora Rieske FeS precursor protein were processed to the correct mature size by matrix extracts isolated from spinach leaves, yeast, rat liver and beef heart. The mitochondrial extracts failed to process chloroplast precursor proteins of the stromal small subunit of ribulose 1,5-bisphosphate carboxylase and the thylakoid 33 kDa protein of the oxygen-evolving complex. Both mitochondrial F1 precursors were specifically processed by a soluble stromal extract from chloroplasts. However, no processing of the Rieske FeS precursor protein was observed under the same conditions with the chloroplast extract. The cleavage of the mitochondrial F1 precursors by the chloroplast extract was shown to be sensitive to the metal chelators EDTA and ortho-phenanthroline. The cleavage site of the mitochondrial F1 precursor by the chloroplast soluble extract appears to be located at the N-terminus.Abbreviations ATPase adenosine triphosphatase - Rieske FeS non-heme iron sulphur protein of the ubiquinol cytochrome c oxidoreductase complex - Rubisco ribulose 1,5-bisphosphate carboxygenase/oxygenase - RMSF phenylmethylsulphonylfluoride - EDTA ethylenediaminetetraacetic acid  相似文献   

18.
The 70-kD heat shock proteins (hsp70s) are a group of ubiquitous, highly conserved molecular chaperones that have been implicated in a variety of processes, ranging from DNA replication to protein folding and transport. To learn more about the evolution and possible functions of higher plant chloroplastic hsp70s, we isolated a cDNA clone encoding the major stromal hsp70 of pea chloroplasts, which we term CSS1 (Chloroplastic Stress Seventy). This cDNA clone encodes a 75,490-D protein that is very closely related to an hsp70 from the cyanobacterium, Synechocystis. CSS1 is nuclear encoded and synthesized as a higher molecular mass precursor with a chloroplastic transit peptide approximately 65 amino acids long. CSS1 mRNA was detected in RNA samples from leaves and roots of pea (Pisum sativum) plants grown at 18°C but increased 9- and 6-fold, respectively, after brief exposure of the plants to elevated temperature. We discuss the possible role(s) of CSS1 in chloroplastic protein transport and other processes.  相似文献   

19.
Toc34 is a member of the outer membrane translocon complex that mediates the initial stage of protein import into chloroplasts. Toc34, like most outer membrane proteins, is synthesized in the cytosol at its mature size without a cleavable transit peptide. The majority of outer membrane proteins do not require thermolysin-sensitive components on the chloroplastic surface or ATP for their insertion into the outer membrane. However, different results have been obtained concerning the factors required for Toc34 insertion into the outer membrane. Using an Arabidopsis homologue of pea Toc34, atToc34, we show that the insertion of atToc34 was greatly reduced by thermolysin pretreatment of chloroplasts as assayed either by protease digestion or by alkaline extraction. The insertion was also dependent on the presence of ATP or GTP. A mutant of atToc34 with the GTP-binding domain deleted still required ATP for optimal insertion, indicating that ATP was used by other protein components in the import system. The ATP-supported insertion was observed even in thermolysin-pretreated chloroplasts, suggesting that the protein component responsible for ATP-stimulated insertion is a different protein from the thermolysin-sensitive component that assists atToc34 insertion.  相似文献   

20.
We have investigated the specificity of a chloroplast soluble processing enzyme that cleaves the precursor of the major light-harvesting chlorophyll a/b binding protein (LHCP). The precursor of LHCP (preLHCP) was synthesized in Escherichia coli and recovered from inclusion-like bodies. It was found to be a substrate for proteolytic cleavage by the soluble enzyme in an organelle-free reaction, yielding a 25 kilodalton peptide. This peptide co-migrated during sodium dodecyl sulfate-polyacrylamide gel electrophoresis with the smaller of the forms (25 and 26 kilodalton) produced when either the E. coli-synthesized precursor, or preLHCP made in a reticulocyte lysate, was imported into chloroplasts. N-Terminal sequence analysis of the E. coli-generated precursor showed that it lacked an N-terminal methionine. N-Terminal sequencing of the 25 kilodalton peptide produced in the organelle-free reaction indicated that processing occurred between residues 40 and 41, removing a basic domain (RKTAAK) thought to be at the N-terminus of all LHCP molecules of type I associated with photosystem II. To determine if the soluble enzyme involved also cleaves other precursor polypeptides, or is specific to preLHCP, it was partially purified, and the precursors for Rubisco small subunit, plastocyanin, Rubisco activase, heat shock protein 21, and acyl carrier protein were tested as substrates. All of these precursors were cleaved by the same chromatographic peak of activity that processes preLHCP in the organelle-free reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号