首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prior to gastrulation, the microtubules in the presumptive primary mesenchyme cells appear to diverge from points (satellites) in close association with the basal body of the cilium; from here most of the microtubules extend basally down the lateral margins of the cell. As these cells begin their migration into the blastocoel, they lose their cilia and adopt a spherical form. At the center of these newly formed mesenchyme cells is a centriole on which the microtubules directly converge and from which they radiate in all directions. Later these same cells develop slender pseudopodia containing large numbers of microtubules; the pseudopodia come into contact and fuse to form a "cable" of cytoplasm. Microtubules are now distributed parallel to the long axis of the cable and parallel to the stalks which connect the cell bodies of the mesenchyme cells to the cable. Microtubules are no longer connected to the centrioles in the cell bodies. On the basis of these observations we suggest that microtubules are a morphological expression of a framework which opeartes to shape cells. Since at each stage in the developmental sequence microtubules appear to originate (or insert) on different sites in the cytoplasm, the possibility is discussed that these sites may ultimately control the distribution of the microtubules and thus the developmental sequence of form changes.  相似文献   

2.
Microtubule-based centrioles in the centrosome mediate accurate bipolar cell division, spindle orientation, and primary cilia formation. Cellular checkpoints ensure that the centrioles duplicate only once in every cell cycle and achieve precise dimensions, dysregulation of which results in genetic instability and neuro- and ciliopathies. The normal cellular level of centrosomal protein 4.1-associated protein (CPAP), achieved by its degradation at mitosis, is considered as one of the major mechanisms that limits centriole growth at a predetermined length. Here we show that CPAP levels and centriole elongation are regulated by centrobin. Exogenous expression of centrobin causes abnormal elongation of centrioles due to massive accumulation of CPAP in the cell. Conversely, CPAP was undetectable in centrobin-depleted cells, suggesting that it undergoes degradation in the absence of centrobin. Only the reintroduction of full-length centrobin, but not its mutant form that lacks the CPAP binding site, could restore cellular CPAP levels in centrobin-depleted cells, indicating that persistence of CPAP requires its interaction with centrobin. Interestingly, inhibition of the proteasome in centrobin-depleted cells restored the cellular and centriolar CPAP expression, suggesting its ubiquitination and proteasome-mediated degradation when centrobin is absent. Intriguingly, however, centrobin-overexpressing cells also showed proteasome-independent accumulation of ubiquitinated CPAP and abnormal, ubiquitin-positive, elongated centrioles. Overall, our results show that centrobin interacts with ubiquitinated CPAP and prevents its degradation for normal centriole elongation function. Therefore, it appears that loss of centrobin expression destabilizes CPAP and triggers its degradation to restrict the centriole length during biogenesis.  相似文献   

3.
Basal bodies are freed from cilia and transition into?centrioles to organize centrosomes in dividing cells. A mutually exclusive centriole/basal body existence during cell-cycle progression has become a widely accepted principle. Contrary to this view, we?show here that cilia assemble and persist through?two meiotic divisions in Drosophila spermatocytes. Remarkably, all four centrioles assemble primary cilia-centriole complexes that transit from the plasma membrane encased in a packet of membrane, recruit centrosomal material into microtubule-organizing centers, and persist at the spindle poles through division. Thus, spermatocyte centrioles organize centrosomes and cilia simultaneously at cell division. These findings challenge the prevailing view that cilia antagonize cell-cycle progression and raise the possibility that cilium retention at cell division may occur in diverse organisms and cell types.  相似文献   

4.
Newly formed centrioles in cycling cells undergo a maturation process that is almost two cell cycles long before they become competent to function as microtubule-organizing centers and basal bodies. As a result, each cell contains three generations of centrioles, only one of which is able to form cilia. It is not known how this long and complex process is regulated. We show that controlled Plk1 activity is required for gradual biochemical and structural maturation of the centrioles and timely appendage assembly. Inhibition of Plk1 impeded accumulation of appendage proteins and appendage formation. Unscheduled Plk1 activity, either in cycling or interphase-arrested cells, accelerated centriole maturation and appendage and cilia formation on the nascent centrioles, erasing the age difference between centrioles in one cell. These findings provide a new understanding of how the centriole cycle is regulated and how proper cilia and centrosome numbers are maintained in the cells.  相似文献   

5.
Primary cilium development along with other components of the centrosome in mammalian cells was analysed ultrastructurally and by immunofluorescent staining with anti-acetylated tubulin antibodies. We categorized two types of primary cilia, nascent cilia that are about 1microm long located inside the cytoplasm, and true primary cilia that are several microm long and protrude from the plasma membrane. The primary cilium is invariably associated with the older centriole of each diplosome, having appendages at the distal end and pericentriolar satellites with cytoplasmic microtubules emanating from them. Only one cilium per cell is formed normally through G(0), S and G(2)phases. However, in some mouse embryo fibroblasts with two mature centrioles, bicilates were seen. Primary cilia were not observed in cultured cells where the mature centriole had no satellites and appendages (Chinese hamster kidney cells, line 237, some clones of l-fibroblasts). In contrast to primary cilia, striated rootlets were found around active and non-active centrioles with the same frequency. In proliferating cultured cells, a primary cilium can be formed several hours after mitosis, in fibroblasts 2-4 h after cell division and in PK cells only during the S-phase. In interphase cells, formation of the primary cilium can be stimulated by the action of metabolic inhibitors and by reversed depolymerization of cytoplasmic microtubules with cold or colcemid treatments. In mouse renal epithelial cells in situ, the centrosome was located near the cell surface and mature centrioles in 80% of the cells had primary cilium protruding into the duct lumen. After cells were explanted and subcultured, the centrosome comes closer to the nucleus and the primary cilium was depolymerized or reduced. Later primary cilia appeared in cells that form islets on the coverslip. However, the centrosome in cultured ciliated cells was always located near the cell nucleus and primary cilium never formed a characteristic distal bulb. A sequence of the developmental stages of the primary cilium is proposed and discussed. We also conclude that functioning primary cilium does not necessarily operate in culture cells, which might explain some of the contradictory data on cell ciliation in vitro reported in the literature.  相似文献   

6.
Primary cilia are antenna-like sensory microtubule structures that extend from basal bodies, plasma membrane–docked mother centrioles. Cellular quiescence potentiates ciliogenesis, but the regulation of basal body formation is not fully understood. We used reverse genetics to test the role of the small calcium-binding protein, centrin2, in ciliogenesis. Primary cilia arise in most cell types but have not been described in lymphocytes. We show here that serum starvation of transformed, cultured B and T cells caused primary ciliogenesis. Efficient ciliogenesis in chicken DT40 B lymphocytes required centrin2. We disrupted CETN2 in human retinal pigmented epithelial cells, and despite having intact centrioles, they were unable to make cilia upon serum starvation, showing abnormal localization of distal appendage proteins and failing to remove the ciliation inhibitor CP110. Knockdown of CP110 rescued ciliation in CETN2-deficient cells. Thus, centrin2 regulates primary ciliogenesis through controlling CP110 levels.  相似文献   

7.
Outer dense fibre 2 (Odf2; also known as cenexin) was initially identified as a main component of the sperm tail cytoskeleton, but was later shown to be a general scaffold protein that is specifically localized at the distal/subdistal appendages of mother centrioles. Here we show that Odf2 expression is suppressed in mouse F9 cells when both alleles of Odf2 genes are deleted. Unexpectedly, the cell cycle of Odf2(-/-) cells does not seem to be affected. Immunofluorescence and ultrathin-section electron microscopy reveals that in Odf2(-/-) cells, distal/subdistal appendages disappear from mother centrioles, making it difficult to distinguish mother from daughter centrioles. In Odf2(-/-) cells, however, the formation of primary cilia is completely suppressed, although approximately 25% of wild-type F9 cells are ciliated under the steady-state cell cycle. The loss of primary cilia in Odf2(-/-) F9 cells can be rescued by exogenous Odf2 expression. These findings indicate that Odf2 is indispensable for the formation of distal/subdistal appendages and the generation of primary cilia, but not for other cell-cycle-related centriolar functions.  相似文献   

8.
Cilia are found on most human cells and exist as motile cilia or non-motile primary cilia. Primary cilia play sensory roles in transducing various extracellular signals, and defective ciliary functions are involved in a wide range of human diseases. Centrosomes are the principal microtubule-organizing centers of animal cells and contain two centrioles. We observed that DNA damage causes centriole splitting in non-transformed human cells, with isolated centrioles carrying the mother centriole markers CEP170 and ninein but not kizuna or cenexin. Loss of centriole cohesion through siRNA depletion of C-NAP1 or rootletin increased radiation-induced centriole splitting, with C-NAP1-depleted isolated centrioles losing mother markers. As the mother centriole forms the basal body in primary cilia, we tested whether centriole splitting affected ciliogenesis. While irradiated cells formed apparently normal primary cilia, most cilia arose from centriolar clusters, not from isolated centrioles. Furthermore, C-NAP1 or rootletin knockdown reduced primary cilium formation. Therefore, the centriole cohesion apparatus at the proximal end of centrioles may provide a target that can affect primary cilium formation as part of the DNA damage response.  相似文献   

9.
Vertebrates have an elaborate and functionally segmented body. It evolves from a single cell by systematic cell proliferation but attains a complex body structure with exquisite precision. This development requires two cellular events: cell cycle and ciliogenesis. For these events, the dynamic molecular signaling is converged at the centriole. The cell cycle helps in cell proliferation and growth of the body and is a highly regulated and integrated process. Its errors cause malignancies and developmental disorders. The cells newly proliferated are organized during organogenesis. For a cellular organization, dedicated signaling hubs are developed in the cells, and most often cilia are utilized. The cilium is generated from one of the centrioles involved in cell proliferation. The developmental signaling pathways hosted in cilia are essential for the elaboration of the body plan. The cilium's compartmental seclusion is ideal for noise-free molecular signaling and is essential for the precision of the body layout. The dysfunctional centrioles and primary cilia distort the development of body layout that manifest as serious developmental disorders. Thus, centriole has a dual role in the growth and cellular organization. It organizes dynamically expressed molecules of cell cycle and ciliogenesis and plays a balancing act to generate new cells and organize them during development. A putative master molecule may regulate and co-ordinate the dynamic gene expression at the centrioles. The convergence of many critical signaling components at the centriole reiterates the idea that centriole is a major molecular workstation involved in elaborating the structural design and complexity in vertebrates.  相似文献   

10.
Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL−/− mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL−/− cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL−/− cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.  相似文献   

11.
Adenylate cyclase regulates elongation of mammalian primary cilia   总被引:2,自引:0,他引:2  
The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3β by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1–2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII–cAMP signaling pathway.  相似文献   

12.
Cilia are found on most human cells and exist as motile cilia or non-motile primary cilia. Primary cilia play sensory roles in transducing various extracellular signals, and defective ciliary functions are involved in a wide range of human diseases. Centrosomes are the principal microtubule-organizing centers of animal cells and contain two centrioles. We observed that DNA damage causes centriole splitting in non-transformed human cells, with isolated centrioles carrying the mother centriole markers CEP170 and ninein but not kizuna or cenexin. Loss of centriole cohesion through siRNA depletion of C-NAP1 or rootletin increased radiation-induced centriole splitting, with C-NAP1-depleted isolated centrioles losing mother markers. As the mother centriole forms the basal body in primary cilia, we tested whether centriole splitting affected ciliogenesis. While irradiated cells formed apparently normal primary cilia, most cilia arose from centriolar clusters, not from isolated centrioles. Furthermore, C-NAP1 or rootletin knockdown reduced primary cilium formation. Therefore, the centriole cohesion apparatus at the proximal end of centrioles may provide a target that can affect primary cilium formation as part of the DNA damage response.  相似文献   

13.
Centriole and basal body formation during ciliogenesis revisited.   总被引:8,自引:0,他引:8  
This review is concerned with the formation during ciliogenesis of centrioles and basal bodies, primarily in epithelial multi-ciliated cells from the developing vertebrate respiratory and reproductive tracts. During ciliated cell differentiation, in these as well as in other cell types, cilium formation is preceded by the formation of centrioles assembled from precursor structures having little resemblance to the mature organelle. The origin, composition and function of the centriole precursor structures in generating large numbers of centrioles in a short period of time during ciliogenesis is discussed. This review also focuses on the biochemistry of centrioles and basal bodies and on recent experimental evidence that DNA might be associated with these structures.  相似文献   

14.
The effects of colcemid (0.16-1.0 microM) and taxol (10 microM) on the primary cilia cycle in PtK1 cells were studied by antitubulin immunofluorescence microscopy and by high-voltage electron microscopy of serial 0.25-micron sections. Although these drugs induce a fully characteristic rearrangement (taxol) or disassembly (colcemid) of cytoplasmic microtubules, neither affects the structure of primary cilia formed prior to the treatment or the resorption of primary cilia during the initial stages of mitosis. Cells arrested in mitosis by taxol or colcemid remain in mitosis for 5-7 h at 37 degrees C and then form 4N "micronucleated" restitution nuclei. Formation of primary cilia in these micronucleated cells is blocked by colcemid in a concentration-dependent fashion: normal cilia with expanded (ie, bulbed) distal ends form at the lower (0.16-0.25 microM) concentrations, while both cilia formation and centriole replication are inhibited at the higher (greater than or equal to 1.0 microM) concentrations. However, even in the presence of 1.0 microM colcemid, existing centrioles acquire the appendages characteristically associated with ciliating centrioles and attach to the dorsal cell surface. Continuous treatment with colcemid thus produces a population of cells enriched for the early stages of primary cilia formation. Micronucleated cells formed from a continuous taxol treatment contain two normal centriole pairs, and one or both parenting centrioles possess a primary cilium. Taxol, which has been reported to stabilize microtubules in vitro, does not inhibit the cell-cycle-dependent assembly and disassembly of axonemal microtubules in vivo.  相似文献   

15.
The structure of centrioles in endothelial cells of embryonic (22-24 weeks old) and definitive (2, 14-17, and 30-40 years) human aorta in situ and also in aortic endothelial cells dividing in organ and cell cultures (donor age 30-40 years) was studied. It was found that in the endothelial cells from definitive aorta the lengths of mother centrioles vary from 0.5 to 2 microns, whereas the length of daughter centrioles remains constant (0.4-0.5 microns). The distal part of the cylinder of long mother centrioles consists of microtubule doublets. In aorta of donors 30-40 years old in multinucleated cells and in one of 30 single-nucleated cells analyzed, C-shaped long centrioles were seen. These centrioles exhibit a doublet organization along all their length. Mitotic cells in organ and cell culture had a nonequal structure of spindle poles: at one pole, the long mother centriole was seen, while at the other a mother centriole of standard size was found. In such cells of organ culture long centrioles make contact with the remnant of primary cilia until the end of anaphase. In cell culture mitotic cells are also observed containing C-shaped centrioles. In these cells the number of mother centrioles is odd and their number is not equal to the number of daughter centrioles. The possible mechanism for transformation of endothelial centrioles and its role in the control of cell-cycle progression are discussed.  相似文献   

16.
Summary— The behavior of the primary cilia of 3Y1 cells in the interphase was investigated by indirect immunofluorescence microscopy and transmission electron microscopy, using an antibody for tubulin. At 4.5 h after scraping a part of a confluent cell sheet, the primary cilia of cells facing the wound were located predominantly forward of the nucleus on the wounded side, and were oriented in the direction of the leading lamellae. Cytoplasmic microtubules (MTs), emanating from around the base of the cilia, were well developed in the leading lamellae on the wounded side. On the other hand, in the cells of an unperturbed area away from the wounded edge, the primary cilia remained randomly distributed near the nucleus. The position and a certain well-defined orientation of a pair of centrioles seem to play an important role for the development of cytoplasmic MTs, and consequently the orientation of the centrioles is controlled by the primary cilia.  相似文献   

17.
Kobayashi T  Tsang WY  Li J  Lane W  Dynlacht BD 《Cell》2011,145(6):914-925
We have identified a protein, Kif24, that shares homology with the kinesin-13 subfamily of motor proteins and specifically interacts with CP110 and Cep97, centrosomal proteins that play a role in regulating centriolar length and ciliogenesis. Kif24 preferentially localizes to mother centrioles. Loss of Kif24 from cycling cells resulted in aberrant cilia assembly but did not promote growth of abnormally long centrioles, unlike CP110 and Cep97 depletion. We found that loss of Kif24 leads to the disappearance of CP110 from mother centrioles, specifically in cycling cells able to form cilia. Kif24 is able to bind and depolymerize microtubules in vitro. Remarkably, ectopically expressed Kif24 specifically remodels centriolar microtubules without significantly altering cytoplasmic microtubules. Thus, our studies have identified a centriolar kinesin that specifically remodels a subset of microtubules, thereby regulating cilia assembly. These studies also suggest mechanistic differences between the regulation of microtubule elongation associated with centrioles and cilia.  相似文献   

18.
The primary cilium is an antenna-like organelle that modulates differentiation, sensory functions, and signal transduction. After cilia are disassembled at the G0/G1 transition, formation of cilia is strictly inhibited in proliferating cells. However, the mechanisms of this inhibition are unknown. In this paper, we show that trichoplein disappeared from the basal body in quiescent cells, whereas it localized to mother and daughter centrioles in proliferating cells. Exogenous expression of trichoplein inhibited primary cilia assembly in serum-starved cells, whereas ribonucleic acid interference-mediated depletion induced primary cilia assembly upon cultivation with serum. Trichoplein controlled Aurora A (AurA) activation at the centrioles predominantly in G1 phase. In vitro analyses confirmed that trichoplein bound and activated AurA directly. Using trichoplein mutants, we demonstrate that the suppression of primary cilia assembly by trichoplein required its ability not only to localize to centrioles but also to bind and activate AurA. Trichoplein or AurA knockdown also induced G0/G1 arrest, but this phenotype was reversed when cilia formation was prevented by simultaneous knockdown of IFT-20. These data suggest that the trichoplein-AurA pathway is required for G1 progression through a key role in the continuous suppression of primary cilia assembly.  相似文献   

19.
In vertebrates, a variety of cell types generate a primary cilium. Cilia are implicated in determination and differentiation of a wide variety of organs and during embryonic development. However, there is little information on the presence or function of primary cilia in the mammalian testis. Therefore, the objective of this study was to characterize expression of primary cilia in the developing pig testis. Testicular tissue from pigs at 2–10 weeks of age was analyzed for primary cilia by immunocytochemistry. Expression of primary cilia was also analyzed in testicular tissue formed de novo from a single cell suspension ectopically grafted into a mouse host. Functionality of primary cilia was monitored based on cilia elongation after exposure to lithium. Analysis showed that the primary cilium is present in testis cords as well as in the interstitium of the developing pig testis. Germ cells did not express primary cilia. However, we identified Sertoli cells as one of the somatic cell types that produce a primary cilium within the developing testis. Primary cilium expression was reduced from the second to the third week of pig testis development in situ and during de novo morphogenesis of testis tissue from a single cell suspension after xenotransplantation. In vitro, primary cilia were elongated in response to lithium treatment. These results indicate that primary cilia on Sertoli cells may function during testicular development. De novo morphogenesis of testis tissue from single cell suspensions may provide an accessible platform to study and manipulate expression and function of primary cilia.  相似文献   

20.
Centrin-2 is required for centriole duplication in mammalian cells   总被引:2,自引:0,他引:2  
BACKGROUND: Centrosomes are the favored microtubule-organizing framework of eukaryotic cells. Centrosomes contain a pair of centrioles that normally duplicate once during the cell cycle to give rise to two mitotic spindle poles, each containing one old and one new centriole. However, aside from their role as an anchor point for pericentriolar material and as basal bodies of flagella and cilia, the functional attributes of centrioles remain enigmatic. RESULTS: Here, using RNA interference, we demonstrate that "knockdown" of centrin-2, a protein of centrioles, results in failure of centriole duplication during the cell cycle in HeLa cells. Following inhibition of centrin-2 synthesis, the preexisting pair of centrioles separate, and functional bipolar spindles form with only one centriole at each spindle pole. Centriole dilution results from the ensuing cell division, and daughter cells are "born" with only a single centriole. Remarkably, these unicentriolar daughter cells may complete a second and even third bipolar mitosis in which spindle microtubules converge onto unusually broad spindle poles and in which cell division results in daughter cells containing either one or no centrioles at all. Cells thus denuded of the mature or both centrioles fail to undergo cytokinesis in subsequent cell cycles, give rise to multinucleate products, and finally die. CONCLUSIONS: These results demonstrate a requirement for centrin in centriole duplication and demonstrate that centrioles play a role in organizing spindle pole morphology and in the completion of cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号