首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
研究了硫酸铈铵及原位提取对红豆杉细胞悬浮培养过程中细胞生长、紫杉醇合成及释放的影响。红豆杉细胞悬浮培养过程中培养第12d添加2mg/L硫酸铈铵能获得最大紫杉醇产量8.3mg/L,其中2.4mg/L释放到细胞外,分别为对照组的4倍及12倍。同时添加2mg/L硫酸铈铵、5%油酸(v/v)时胞外紫杉醇产量达到9mg/L,为对照组的45倍。将硫酸铈铵及原位提取与补料培养相结合,最高紫杉醇产量可达24.5mg/L,其中60%释放到胞外。  相似文献   

2.
云南红豆杉细胞的悬浮培养   总被引:4,自引:0,他引:4  
在云南红豆杉细胞悬浮培养中,适宜的培养基为B5,接种量为0.5~0.8g干重细胞/100ml培养基,2,4-D浓度为1.0mg/L;培养细胞的生长周期约30d;培养基中较高浓度的蔗糖(40g/L)可提高紫杉醇含量;添加的椰子汁(CM)、酪蛋白氨基酸(C)和水解乳蛋白(LH)3种有机添加剂均能提高培养细胞中紫杉醇的含量,但只有CM和CA能促进细胞的生长。于B5培养基中添加不同浓度的NH4NO3对培养细胞无明显影响。  相似文献   

3.
在改良的B5培养基中加入不同浓度的聚乙二醇对东北红豆杉培养细胞进行摇瓶培养,通过不同时期取样并测定细胞鲜,干重及用HPLC测定紫杉醇的含量,发现聚乙二醇对东北红豆杉培养细胞的生长及紫杉醇生产均有明显的促进作用,聚乙二醇为10g/L时,对细胞生长最为有利,细胞培养16d可达到最大生物量,其平均鲜重为28.73g/瓶,增重3.8倍,平均干重为2.14g/瓶,增重3.1倍,聚乙二醇为20g/L,对紫杉醇的生产最有利;细胞培养25d时,培养基中紫杉醇的含量达到最高水平,其含量为2350ug/L,是不加聚乙二醇的11倍。  相似文献   

4.
采用正交实验检测中国红豆杉[Taxus chinensis(Pilger)Rehd.]细胞悬浮培养中水杨酸、硝酸银、氨基酸前体、D-果糖和硫酸镧的添加时间对细胞生长和紫杉醇(taxol)积累的影响.这些促进剂的添加时间对中国红豆杉细胞悬浮培养的生长没有明显的影响,但能明显促进紫杉醇的合成,当在细胞培养的第14 d添加1.67 mg/L硝酸银,第18 d添加0.1 mg/L水杨酸,第21 d添加氨基酸前体,第21 d添加10 g/L D-果糖和2 mg/L硫酸镧时对紫杉醇的促进作用最明显,在此最优组合处理时紫杉醇含量达到10.05 mg/L,相对于最差组合处理时紫杉醇含量仅有1.77 mg/L,紫杉醇含量提高5.7倍,这些因素的添加时间对紫杉醇合成的相互作用达不到显著水平.  相似文献   

5.
云南红豆杉(Taxus yunnanensis Cheng et L.K.Fu)的一些株紫杉醇高产细胞系经过8年多的继代培养,仍保持较稳定的紫杉烷类化合物的生物合成能力。从此株紫杉醇高产细胞系的悬浮培养物中分离到8个紫杉烷类合物。经核磁共振光谱和质谱数据分析,它们的化学结构分别是2,5,10-三乙酰基-14-丙酰氧基紫杉二烯(1)、2,5,10-三酰氧基-14-(2′-甲基丙酰氧基)紫杉二烯(2),2,5,10,14-四乙酰氧基紫杉二烯(3)、2,5,10-三乙酰氧基-14-(2′-甲基-3′-羟基丁酰氧基)紫杉二烯及其差向异构体(4和5)、巴卡亭Ⅳ(6)、巴卡亭Ⅲ(7)和紫杉醇(8)。化合物3、5-7为首次从云南红豆杉细胞培养物中分离到。定性分析表明,云南红豆杉细胞悬浮培养液中的化学成分与培养细胞中的相似。另外,此株紫杉高产细胞系的紫杉醇含量可达高0.3%,可用来进行大规模培养。  相似文献   

6.
Clomazone对中国红豆杉细胞培养的影响   总被引:2,自引:0,他引:2  
以中国红豆杉(Taxus chinensis)悬浮细胞为材料,研究了Clomazone(广灭灵)对培养细胞生长及紫杉醇和糊胡萝卜素合成的影响。探讨紫杉醇生物合成途径人工调控的方法。结果表明在细胞培养第20d加终浓度为20mg/L的Clomazone,对细胞生长影响较小,紫杉醇含量最高,达4263μg/L,约为对照的3倍。Clomazone可以抑制红豆杉细胞类胡萝卜素的合成,其对紫杉醇产量的提高可能与其抑制类胡萝卜素的合成有关。Clomazone与Methyl jasmorale (MJ)及Chloroholine chloride(CCC)对紫杉醇含量的提高有协同作用。  相似文献   

7.
高山红景天细胞悬浮培养过程中,3mg·L916-BA、0.3mg·L-1NAA、60mmol·L-1氮源(其中NH_4~:NO_3~- 为1:1)、0.5~1.25mmol·L-1KH2PO4和200mg·L-1蛋白胨,较适合于细胞生长和红景天苷的积累。在适宜的接种量(3.2g·L-1)下细胞培养24d后,生物量达14.04g·L-1,干细胞中红景天苷含量为5.66mg·g-1。  相似文献   

8.
罗杰  梅兴国 《Acta Botanica Sinica》2002,44(11):1286-1290
为进一步提高红豆杉 (Taxuschinensis (Pilg.)Rehd .)细胞培养过程中紫杉醇的产量 ,采用细胞悬浮培养方法研究了补料培养与溶氧控制联合应用对紫杉醇产量的影响。 5L反应器中补料培养研究表明 ,培养过程中第 16天添加含 2 0g/L蔗糖的补料培养液有利于细胞的生长及紫杉醇的合成。 2 0L反应器中补料培养的研究结果表明 :2 0 %饱和度培养时紫杉醇含量最高 (0 .98mg/gDW) ,但 4 0 %~ 6 0 %溶氧饱和度能提高紫杉醇的产量。进一步研究表明 ,细胞在 6 0 %溶氧饱和度培养 2 0d后转入 2 0 %溶氧饱和度继续培养 12d ,能显著提高紫杉醇产量。补料培养与溶氧控制联合应用时 ,2 0L反应器中红豆杉细胞培养紫杉醇产量可达 18.7mg/L。  相似文献   

9.
对MS、67-V和FOX 3种基本基质对西洋参(Panax quinquefolium Linn.)愈伤组织悬浮培养物生长和皂苷含量的影响进行了比较。在3种基本基质中,培养物的鲜重和干重增加量差异不大,而皂苷含量和产量差异较大,其中MS较高,FOX次之,67-V最低。探讨了MS基质中,KNO3、CaCl2和MgO4对培养物生长和皂苷含量的影响。KNO3浓度在237.5mg/L时有利于培养物生长,而浓度在1900mg/L时有利于皂苷合成;CaO2浓度在55.35mg/L时有利于培养物生长,而浓度在332.1mg/L时有利于皂苷合成;MgSO4浓度为92.50mg/L时培养物生长最好,皂苷产量也最高。  相似文献   

10.
通过梯度浓度的蔗糖溶液(0-1mol/L)的筛选,分拣出7种不同物理学密度的红豆杉细胞聚集体,并对它们进行了木质素含量及紫杉醇含量测定。结果显示:不同的细胞聚集体在物理学密度、木质素含量、紫杉醇含量、生长速度等方面存在着差异,其中密度最小的细胞聚集体木质素及紫杉醇含量分别是密度最大的细胞聚集体的5倍和8倍,并且在一定密度范围内(大于0.2mol/L蔗糖溶液密度),细胞聚集体的木质素含量与紫杉醇的含量呈平行关系,表明不同聚集体紫杉醇含量一细胞分化有一定的关系,首次提出了红豆杉悬浮细胞聚集体培养中存在着异质现象,并对其可能机理及意义给予阐述。  相似文献   

11.
低密度和条件培养对红豆杉细胞生长的影响   总被引:1,自引:1,他引:0  
红豆杉种胚来源的细胞,在改良B5液体培养基中继代培养的临界接种密度为鲜重40g/L.低密度培养下,10-16d的条件培养液(CM)与新鲜培养液按57:43的比例混合时,能显著缩短细胞生长的延迟期,提高生长率,100L生物反应器中,按45.5%体积分数添加条件培养液,在鲜重27g/L低接种密度下培养5周,生物量增长9倍,达干重14.3g/L.对内源植物激素、精胺、维生素和氨基酸等的比较分析表明,吲哚  相似文献   

12.
A cell suspension culture of Taxus media was established from a stable callus line of this species. The growth rate and production of paclitaxel and baccatin III of this cell suspension were significantly increased during the shake flask culture in its respective optimum media for cell growth and product formation, which were selected after assaying 24 different culture media. The highest yields of paclitaxel (2.09 mg L(-1)) and baccatin III (2.56 mg L(-1)) in the production medium rose (factors of 7.0 and 3.0, respectively) in the presence of methyljasmonate (220 microg g(-1) FW). When the elicitor was added together with mevalonate (0.38 mM) and N-benzoylglycine (0.2 mM), the increase in the yields of paclitaxel and baccatin III was even higher (factors of 8.3 and 4.0, respectively). Thereafter, a two-stage culture for cell suspension was carried out using a 5-l stirred bioreactor running for 36 days, the first stage being in the cell growth medium until cells entered their stationary growth phase (12 days) and the second stage being in the production medium supplemented with the elicitor and two putative precursors in the concentrations indicated above. Under these conditions, 21.12 mg L(-1) of paclitaxel and 56.03 mg L(-1) of baccatin III were obtained after 8 days of culture in the production medium.  相似文献   

13.
Suspension culture of Taxus chinensis cells was carried out in aqueous-organic two-phase systems for the production and in situ solvent extraction of taxol (paclitaxel). Three organic solvents, hexadecane, decanol, and dibutylphthalate, were tested at 5-20% (v/v) in the culture liquid. All of these solvents stimulated taxol release and the yield per cell, though decanol and higher concentrations of the other two solvents depressed biomass growth significantly. Ten percent dibutylphthalate was the optimal solvent for improving taxol production and release with minimal cell growth inhibition. The time of solvent addition to the culture also affected taxol production, with the addition during the late-log growth phase being most favorable. By feeding sucrose to the culture near the stationary growth phase, the cell growth and taxol production period was extended from 27 to 42 days. The combining of the two-phase culture and sucrose feeding increased the taxol yield by about 6-fold compared with the single-phase batch culture, to 36.0 +/- 3.5 mg/L, with up to 63% taxol released. This study shows that in situ solvent extraction combined with nutrient feeding is an effective process strategy for production and recovery of secondary metabolites in plant cell suspension culture.  相似文献   

14.
Effect of temperature shift during culture period on cell growth and paclitaxel was investigated to optimize paclitaxel production in suspension culture of Taxus chinensis. Cell growth showed the optimum at 24 degrees C while paclitaxel synthesis showed the maximum at 29 degrees C. To minimize the inhibitory effect of higher temperature on cell growth, temperature was shifted after a certain period of culture time at 24 degrees C. Paclitaxel synthesis in plant cell culture increased dramatically during day 14 to day 21 regardless of treatment, reaching the maximum production of 137.5 mg paclitaxel/L. When the temperature was maintained at 29 degrees C after day 21, the specific productivity of paclitaxel was sustained for prolonged period of 42 days. The possible relationship between temperature and paclitaxel synthetic pathway was also suggested.  相似文献   

15.
中间产物对玫瑰茄培养细胞合成花青苷的影响   总被引:1,自引:0,他引:1  
用B5培养基悬浮培养产色素的玫瑰茄培养细胞,培养13天时,花青苷产量最高,为0.25g/L。培养基中添加终浓度为10^-6mol/L的外源L-Phe能够显著地增加产色素细胞花青苷的积累量。浓度为10^-7mol/L的槲皮素,可使悬浮培养的玫瑰茄细胞花青苷产量提高1.3倍,无论是L-Phe还是槲皮素均不能启动不产色素的细胞系产花青苷。  相似文献   

16.
Cyclocarya paliurus is a unique plant growing in central China with hypoglycaemic and hypolipaemia effects. To make better use of this functional food resource, cell suspension cultures and triterpenic acid accumulation were studied. Stable and uniform cell suspension cultures were established in liquid basal Murashige and Skoog medium supplemented with 2,4-dichlorophenoxy acetic acid (0.5 mg/L), naphthalene acetic acid (0.3 mg/L) and cytokinin (1.0 mg/L). According to the growth curve and triterpenic acid accumulation curve, the 8 ~ 10th day postinoculation was the optimum time for subculture, and the 14th day was the optimum time for harvest. Murashige and Skoog medium and woody plant medium were suitable for both cell growth and triterpenic acid accumulation. 3% sucrose (w/v), 60 mM total nitrogen (NO3 ?/NH4 + = 2/1), 1.25 mM KH2PO4, 2 mM CaCl2, and 2 mM MgSO4 were all found to be fit for cell growth and triterpenic acid accumulation in a cell suspension culture of Cyclocarya paliurus. Total triterpenic acid, ursolic acid and oleanolic acid content in suspended cultured cells were all significantly higher than that of leaves and calluses (P ? 0.01), with levels up to 6.24, 2.28, and 0.94% (of dry weight), respectively. The betulinic acid content of suspended cultured cells also reached 0.82%, which was significantly higher than that of calluses. These results suggest that suspended cultured cells of Cyclocarya paliurus were rich in triterpenic acids and could be used for the production of total triterpenic acid, ursolic acid, oleanolic acid and betulinic acid.  相似文献   

17.
A chemically defined, protein-free, and animal-component-free medium, designated RITM01, has been developed for NS0 myeloma cells. The basal medium used was a commercial serum-free and protein-free hybridoma medium, which was supplemented with phosphatidylcholine, cholesterol, beta-cyclodextrin, and ferric citrate. Increasing the amino acid concentration significantly improved cell growth. An NS0 cell line, constitutively producing a human IgG1 antibody, reached a peak cell density of 3 x 10(6) cells mL(-1) in this medium. The antibody yield was 195 mg L(-1) in batch culture, which is a 3-fold increase compared to that of a standard serum-supplemented medium, even though the cell yield was the same. The increase in antibody yield was a consequence of a longer growth phase and a slight increase in specific antibody production rate at low specific proliferation rates. Adaptation of the NS0 myeloma cell line to the protein-free conditions required about 3 weeks before viability and cell densities were stabilized. Most probably, changes in gene expression and phenotypic behavior necessary for cell survival and proliferation occurred. We hypothesize that mitogenic factors produced by the cells themselves are involved in autocrine control of proliferation. To investigate the presence of such factors, the effect of conditioned (spent) medium (CM) on cell growth and proliferation was studied. Ten-fold concentrated CM, harvested at a cell density of 2 x 10(6) cells mL(-1), had a clear positive effect on proliferation even if supplied at only 2.5% (v/v). CM was found to contain significant amounts of extracellular proteins other than the antibody. Fractionation of CM on a gel filtration column and subsequent supplementation of new NS0 cultures with the individual fractions showed that factors eluting at 20-25 kDa decreased the lag phase and increased the peak cell density as compared to control cultures. Identification of autocrine factors involved in regulation of proliferation may lead to completely new strategies for control of growth and product formation in animal cell processes.  相似文献   

18.
This work aims to detect the two signal events in the elicitation of plant defense responses and secondary metabolism in plant cell cultures by low-energy ultrasound (US), transient production of reactive oxygen species (ROS) or the oxidative burst and jasmonic acid (JA) biosynthesis, and examine their influence on secondary metabolism. Experiments were carried out in Taxus chinensis cell suspension culture which produces the anticancer diterpenoid Taxol (paclitaxel). The culture was exposed to low-frequency US for a short period of time (2 min). At sufficiently high US power levels the US exposure significantly enhanced the Taxol production and slightly depressed cell growth and viability. The US exposure induced transient production of O(2)*- and H(2)O(2) and an increase in the intracellular JA level as well as the activities of enzymes for JA synthesis, lipoxygenase (LOX), and allene oxide synthase (AOS). Inhibition of the ROS production by putative ROS scavengers or the JA accumulation by LOX inhibitors effectively suppressed the US-stimulated Taxol production. Inhibition of the ROS production also suppressed the US-induced JA accumulation. These results suggest that oxidative burst is an upstream event to JA accumulation, and both ROS from the oxidative burst and JA from the LOX pathway are key signal elements in the elicitation of Taxol production of T. chinensis cells by low-energy US.  相似文献   

19.
Gymnema sylvestre is an important medicinal plant that bears bioactive compound namely gymnemic acids. The present work deals with the optimization of a cell suspension culture system of Gymnema sylvestre for the production of biomass and gymnemic acid, which has anti‐diabetic properties. We investigated the effect of inoculum densities (2.5–20.0 g/L), the strength of the Murashige and Skoog (MS) medium (0.25–2.0), carbon source (sucrose, glucose, fructose, maltose), and the concentration of the sucrose (1–8% w/v) to determine their effects on biomass accumulation and production of gymnemic acid. Overall, 10 g/L of inoculum density, full‐strength MS medium supplemented with 2,4‐dichlorophenoxy acetic acid (2.0 mg/L) and Kinetin (0.1 mg/L), and 3% w/v sucrose was found best for the accumulation of biomass and gymnemic acid content (9.95 mg/g dry weight). The results of the current study will be useful for bioprocess and biochemical engineers for large‐scale production of gymnemic acid in cell culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号