首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
Ribulose Diphosphate Carboxylase from Autotrophic Euglena gracilis   总被引:11,自引:6,他引:5       下载免费PDF全文
Ribulose 1,5-diphosphate carboxylase (RUDPcase) from autotrophically grown Euglena gracilis was purified to homogeneity as measured by analytical ultracentrifugation, polyacrylamide gel electrophoresis, and immunoprecipitation reactions. The enzyme represented about 9% of total protein and 24% of soluble protein in the autotrophic cell. Light-grown, heterotrophic cells seemed to contain considerably less RUDPcase. Native carboxylase from autotrophic Euglena showed an s20, w at low protein concentrations of 17 to 17.5, suggesting a molecular weight of >500,000 daltons. Upon denaturation, the enzyme dissociated into two subunits having different amino acid compositions and molecular weights of 59,000 and 12,000 daltons. Based upon the amino acid mass ratios, a quaternary organization of 7 to 8 large and 8 to 10 small subunits per native enzyme molecule was indicated.  相似文献   

2.
Polyribosomes isolated from greening barley leaves were active in directing protein synthesis, using soluble components isolated from Escherichia coli. A peptide of 55,000 molecular weight was a major product of translation activity. This peptide was precipitated by antibody to ribulose 1,5-diphosphate carboxylase (RuDPCase) and comigrated with the large subunit of RuDPCase on sodium dodecyl sulfate-polyacrylamide gels. Cyanogen bromide peptides of the peptide of 55,000 molecular weight also corresponded to the peptides prepared from authentic RuDPCase large subunit. The peptides synthesized were shown by sucrose density gradient sedimentation to be largely associated with 70 S ribosomes.  相似文献   

3.
A cDNA clone for the extrinsic 30 kDa protein (OEC30) of photosystem II in Euglena gracilis Z was isolated and characterized. The open reading frame of the cDNA encoded a polypeptide of 338 amino acids, which consisted of a long presequence of 93 amino acids and a mature polypeptide of 245 amino acids. Two hydrophobic domains were identified in the presequence, in contrast to the presence of a single hydrophobic domain in the presequence of the corresponding proteins from higher plants. At the N- and C-terminal regions, respectively, of the presequence, a signal-peptide-like sequence and a thylakoid-transfer domain were identified. The presence of a long and unique presequence in the precursor to OEC30 is probably related to the complexity of the intracellular processes required for the synthesis and/or transport of the protein in Euglena.Abbreviations ER endoplasmic reticulum - cDNA complementary DNA - SSU small subunit; Rubisco, ribulose 1,5-bisphosphate carboxylase/oxygenase - Rubico, ribulose 1,5 bisphosphate carboxylase/oxygenase - LHC II light-harvesting chlorophyll protein of photosystem II - PS II photosystem II - OEC30 the extrinsic 30 kDa protein of photosystem II in Euglena - PCR polymerase chain reaction - SDS sodium dodecyl sulfate - TE a solution containing 10 mM Tris-HCl and 1 mM EDTA pH 8.0 - SSPE a solution containing 0.15 M NaCl, 10 mM NaH2PO4 and 1 mM EDTA pH 7.4 - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - PVDF poly(vinylidene difluoride)  相似文献   

4.
d-Ribulose 1,5-diphosphate carboxylase has been purified from autotrophically grown cells of the facultative chemolithotrophic hydrogen bacteriumAlcaligenes eutrophus. The enzyme was homogeneous by the criteria of polyacrylamide gel electrophoresis. The molecular weight of the enzyme was 505000 determined by gel filtration and sucrose density gradient centrifugation, and a sedimentation coefficient of 18.2 S was obtained. It was demonstrated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis that the enzyme consists of two types of subunits of molecular weight 52000 and 13000.Electron microscopy on the intact and the partially dissociated enzyme lead to the construction of a model for the quaternary structure of the enzyme which is composed of 8 large and 8 small subunits. The most probable symmetry of the enzyme molecule is 4:2:2.Michaelis constant (K m ) values for ribulose 1,5-diphosphate, Mg2-, and CO2 were 0.59 mM, 0.33 mM, and 0.066 mM measured under air. Oxygen was a competitive inhibitor with respect to CO2 suggesting that the enzyme also exhibits an oxygenase activity. The oxygenolytic cleavage of ribulose 1,5-diphosphate was shown and a 1:1 stoichiometry between oxygen consumption and 3-phosphoglycerate formation observed.Abbreviations DTE dithioerythritol - EDTA ethylenediamine tetraacetate - RuDP d-ribulose 1,5-diphosphate  相似文献   

5.
Synthesis of Proteins by Isolated Euglena gracilis Chloroplasts   总被引:3,自引:2,他引:1       下载免费PDF全文
Intact Euglena gracilis chloroplasts, which had been purified on gradients of silica sol, incorporated [35S]methionine or [3H]leucine into soluble and membrane-bound products, using light as the only source of energy. The chloroplasts were osmotically shocked, fractionated on discontinuous gradients of sucrose, and the products of protein synthesis of the different fractions characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The soluble fraction resolved into three zones of radioactivity, the major one corresponding to the large subunit or ribulose diphosphate carboxylase. The thylakoid membrane fraction contained nine labeled polypeptides, the two most prominent in the region of 31 and 42 kilodaltons. The envelope fraction contained a major radioactive peak of about 48 kilodaltons and four other minor peaks. The patterns of protein synthesis by isolated Euglena chloroplasts are broadly similar to those observed with chloroplasts of spinach and pea.  相似文献   

6.
D-Ribulose 1,5-diphosphate carboxylase has been purified from autotrophically grown cells of the facultative chemolithotrophic hydrogen bacterium Alcaligenes eutrophus. The enzyme was homogeneous by the criteria of polyacrylamide gel electrophoresis. The molecular weight of the enzyme was 505000 determined by gel filtration and sucrose density gradient centrifugation, and a sedimentation coefficient of 18.2 S was obtained. It was demonstrated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis that the enzyme consists of two types of subunits of molecular weight 52000 and 13000. Electron microscopy on the intact and the partially dissociated enzyme lead to the construction of a model for the quaternary structure of the enzyme which is composed of 8 large and 8 small subunits. The most probable symmetry of the enzyme molecule is 4:2:2. Michaelis constant (Km) values for ribulose 1,5-diphosphate, Mg2+, and CO2 were 0.59 mM, 0.33 mM, and 0.066 mM measured under air. Oxygen was a competitive inhibitor with respect to CO2 suggesting that the enzyme also exhibits an oxygenase activity. The oxygenolytic cleavage of ribulose 1,5-diphosphate was shown and a 1:1 stoichiometry between oxygen consumption and 3-phosphoglycerate formation observed.  相似文献   

7.
Protein synthesis in the leaves of green pea seedlings (Pisum sativum) is examined by short term labeling with [35S]methionine and autoradiography of the labeled proteins after fractionation by sodium dodecyl sulfate-acrylamide gel electrophoresis. The two subunits of ribulose-1,5-diphosphate carboxylase and the chloroplast lamellar proteins are identified as the major proteins being synthesized. Three protein chlorophyll complexes are characterized by sodium dodecyl sulfate-acrylamide gel electrophoresis; all three complexes are disrupted by heating to 100 degrees in sodium dodecyl sulfate solution. Studies with inhibitors of protein synthesis indicate that the large subunit of ribulos-1,5-diphosphate carboxylase is synthesized in the chloroplast, in contrast to the majority of the soluble proteins, including the small subunit of ribulose-1,5-diphosphate carboxylase, which is synthesized in the cytoplasm. PII protein, the major lamellar protein associated with photosystem II, is also synthesized on cytoplasmic ribosomes. However, many of the lamellar proteins are synthesized within the chloroplast. Integration into the lamellar system of at least one of the chloroplast-synthesized proteins is shown to be dependent on cytoplasmic protein synthesis.  相似文献   

8.
A substantial portion of the ribulose 1,5-diphosphate carboxylase activity in the endosperm of germinating castor beans (Ricinus communis var. Hale) is recovered in the proplastid fraction. The partially purified enzyme shows homology with the enzyme from spinach (Spinacia oleracea) leaves, as evidenced by its reaction against antibodies to the native spinach enzyme and to its catalytic subunit. The enzyme from the endosperm of castor beans has a molecular weight of about 500,000 and, with the exception of a higher affinity for ribulose 1,5-diphosphate, has similar kinetic properties to the spinach enzyme. The castor bean carboxylase is inhibited by oxygen and also displays ribulose 1,5-diphosphate oxygenase activity with an optimum at pH 7.5.  相似文献   

9.
There are significant differences in the large subunits of form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase isolated from Rhodopseudomonas sphaeroides. Two-dimensional peptide mapping of carboxymethylated large subunits clearly indicates that there are differences in the primary structure of the two proteins. These results are supported by limited proteolysis with three different proteases and by subsequent analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These data, in conjunction with immunological studies and investigations on the regulation of the two enzymes, support the conclusion that the large subunits of form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase may be different gene products.  相似文献   

10.
Ribulose-1,5-bisphosphate carboxylase (RuBPCase) was purified from the marine chromophyte Olisthodiscus luteus. This study represents the first extensive analysis of RuBPCase from a chromophytic plant species as well as from an organism where both subunits of the enzyme are encoded on the chloroplast genome. The size of the purified holoenzyme (17.9 Svedberg units, 588 kilodaltons) was determined by sedimentation analysis and the size of the subunits (55 kilodaltons, 15 kilodaltons) ascertained by analytical sodium dodecyl sulfate gel electrophoresis. This data predicts either an 8:9 or 8:8 ratio of the large to small subunits in the holoenzyme. Amino acid analyses demonstrate that the O. luteus RuBPCase large subunit is highly conserved and the small subunit much less so when compared with the chlorophytic plant peptides. The catalytic optima of pH and Mg2+ have been determined as well as the response of enzyme catalysis to temperature. The requirements of NaHCO3 and Mg2+ for enzyme activation have also been analyzed. The Michaelis constants for the substrates of the carboxylation reaction (CO2 and ribulose bisphosphate) were shown to be 45 and 48 micromolar, respectively. Competitive inhibition by oxygen of RuBPCase-catalyzed CO2 fixation was also demonstrated. These data demonstrate that a high degree of RuBPCase conservation occurs among widely divergent photoautotrophs regardless of small subunit coding site.  相似文献   

11.
Analysis of inner and outer pea (Pisum sativum var. Laxtons Progress No. 9) chloroplast envelope membranes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that, although the two membranes have distinct polypeptide compositions, there are several comigrating polypeptides in the two membrane fractions. To determine whether these comigrating polypeptides were identical by criteria other than molecular weight, the membrane proteins were analyzed by two-dimensional gel electrophoresis. The results demonstrated that an 86-kilodalton band found in both membranes represents at least two different polypeptides, one an outer membrane protein and the other an inner membrane protein. Several other polypeptide bands found in both membranes appear to be of stromal origin. Two of these polypeptides were shown to be the large and small subunits of ribulose 1,5-bisphosphate carboxylase. The large subunit was identified by two-dimensional electrophoresis of envelope membranes to which stromal proteins were added. Additionally, the large and small subunits of ribulose 1,5-bisphosphate carboxylase were immunologically identified using an electrophoretic transfer procedure coupled with an enzyme-linked immunosorbent assay. Various treatments, including sonication, resulted in no significant loss of the stromal polypeptides from the outer envelope membranes. Based on these results, it is suggested that the stromal proteins are not simply bound to the outer surface of the vesicles.  相似文献   

12.
The bacterial symbionts of many marine invertebrates contain ribulose 1,5-bisphosphate (RuBP) carboxylase but apparently no carboxysomes, polyhedral bodies containing RuBP carboxylase. In the few cases where polyhedral bodies have been observed they have not been characterised enzymatically. Polyhedral bodies, 50–90 nm in diameter, were observed in thin cell sections of Thiobacillus thyasiris the putative symbiont of Thyasira flexuosa and RuBP carboxylase activity was detected in both soluble and particulate fractions after centrifugation of cell-free extracts. RuBP carboxylase purified 90-fold from the soluble fraction was of high molecular weight and consisted of large and small subunits, with molecular weights of 53,110 and 11,100 respectively. Particulate RuBP carboxylase activity was associated with polyhedral bodies 50–100 nm in diameter, as revealed by density gradient centrifugation and electron microscopy. Therefore, the polyhedral bodies were inferred to be carboxysomes. Native electrophoresis of isolated carboxysomes demonstrated a major band which comigrated with the purified RuBP carboxylase and three minor bands of lower molecular weight. Sodium dodecyl-sulphate (SDS) gel electrophoresis of SDS-dissociated carboxysomes demonstrated nine major polypeptides two of which were the large and small subunits of RuBP carboxylase. The RuBP carboxylase subunits represented 21% of the total carboxysomal protein. The most abundant polypeptide had a molecular weight of 40,500. Knowledge of carboxysome composition is necessary to provide an understanding of carboxysome function.Abbreviations FPLC fast performance liquid chromatography - IB isolation buffer - PAGE polyacrylamide gel electrophoresis - RuBP carboxylase - ribulose 1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl-sulphate  相似文献   

13.
Wheat ribulose-1,5-diphosphate carboxylase purified to homogeneity had a MW of 540 000, sedimentation coefficient (S20, W) of 18.5 S, apparent diffusion constant (Dapp) of 3.07 × 10?7 cm2/sec, Stoke's radius 5.44 nm, and fractional ratio of 1.17. Electron microscopy revealed particles of 10–12 nm diameter. The enzyme was dissociated by sodium dodecyl sulphate into two subunits of MW 53 000 (S20, W = 3.0 S) and 13 500 (S20, W = 1.7 S). The total amino acid residues in the large and small subunits were 481 and 117, respectively. Tryptic peptide maps of the two subunits confirmed the estimated numbers of Arg and Lys residues. Although the amino acid pattern of the large subunit closely resembled that from barley, rather than that for spinach, beet or tobacco, the pattern of the small subunit was markedly different from those of all the other species.  相似文献   

14.
Extracts prepared from floral meristematic tissue of alfalfa (Medicago sativa L.) were investigated for expression of the enzyme transglutaminase in order to identify the major protein substrate for transglutaminase-directed modifications among plant proteins. The large polymorphic subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase in alfalfa, with molecular weights of 52,700 and 57,600, are major substrates for transglutaminase in these extracts. This was established by: (a) covalent conjugation of monodansylcadaverine to the large subunit followed by fluorescent detection in SDS-polyacrylamide gels; (b) covalent conjugation of [14C]putrescine to the large subunit with detection by autoradiography; (c) covalent conjugation of monodansylcadaverine to the large subunit and demonstration of immunocross-reactivity on nitrocellulose transblot of the modified large subunit with antibody prepared in rabbits against dansylated-ovalbumin; (d) demonstration of a direct dependence of the rate of transglutaminase-mediated, [14C]putrescine incorporation upon the concentration of ribulose, 1,5-bisphosphate carboxylase/oxygenase from alfalfa or spinach; and (e) presumptive evidence from size exclusion chromatography that transglutaminase may cofractionate with native molecules of ribulose 1,5-bisphosphate carboxylase/oxygenase in crude extracts. Analysis of the primary structure of plant large subunit has revealed numerous potential glutaminyl and lysyl sites for transglutaminase-directed modifications of ribulose 1,5-bisphosphate carboxylase/oxygenase.  相似文献   

15.
Latzko E  Gibbs M 《Plant physiology》1969,44(2):295-300
Profile analyses of the enzymes comprising the photosynthetic carbon reduction cycle have been performed in extracts of dark grown and greening Euglena gracilis var. bacillaris. Chlorella pyrenoidosa grown photoautotrophically, in the light with glucose or in the dark with glucose, Tolypothrix tenuis, Chromatium and leaves of spinach. Amounts of activity are compared with the level of photosynthetic CO2 fixation. Only in Chromatium were all enzyme activities sufficient to support the in vivo rate of CO2 fixation. In organisms other than Chromatium, some enzymes and particularly fructose 1,6-phosphatase and ribulose 1.5-diphosphate carboxylase appeared to be present in insufficient amounts to support the photosynthetic rate of the intact cell. Developmental studies with Euglena and growth studies with Chlorella led to the conclusion that these enzymes were associated with the cycle. Suppression of CO2 fixation in heterotrophically grown Chlorella was accompanied by a striking decrease in the same enzymes whose activities increased in greening Euglena.  相似文献   

16.
The soluble and particulate (carboxysomal) forms of ribulose 1,5-bisphosphate (RuBP) carboxylase from the cyanobacterium Chlorogloeopsis fritschii have been purified separately. A molecular weight of 520,000 was found in each case. Large (L, 53,000) and small (S, 13,000) subunits were obtained after dissociation, indicating a L8S8 quaternary structure for the enzyme from both sources. The L and S subunits are identical in molecular weight to the major polypeptides present in isolated dissociated C. fritschii polyhedral bodies (carboxysomes). Occasionally an additional polypeptide (mol. wt. 45,000) was found after dissociation of the soluble enzyme only, although the possibility that this may be due to proteolysis is not discounted. Immunochemical identity between the purified soluble and carboxysomal RuBP carboxylases was indicated by tandem-crossed and rocket immunoelectrophoresis.Abbreviations PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl-sulphate - RuBP D-ribulose 1,5-bisphosphate - TCA trichloroacetic acid - LTIB low Tris isolation buffer - HTIB high Tris isolation buffer - CIE crossed immunoelectrophoresis - TCIE tandem-crossed immunoelectrophoresis - RIE rocket immunoelectrophoresis  相似文献   

17.
A crude chloroplast preparation of primary leaves of Phaseolus vulgaris was allowed to incorporate 14C-leucine into protein. A chloroplast extract was prepared and purified for ribulose 1,5-diphosphate carboxylase by ammonium sulfate precipitation, chromatography on Sephadex G-200, and chromatography on Sepharose 4B. The distribution of radioactive protein and enzyme in fractions eluted from Sepharose 4B was nearly the same. The radioactivity in the product was in peptide linkage, since it was digested to a trichloroacetic acid-soluble product by Pronase. Whole cells in the plastid preparation were not involved in the incorporation of amino acid into the fraction containing ribulose 1,5-diphosphate carboxylase, since incorporation still occurred after removal of cells. The incorporation into the fraction containing ribulose 1,5-diphosphate carboxylase occurs on ribosomes of plastids, since this incorporation is inhibited by chloramphenicol. These plastid preparations may be incorporating amino acid into ribulose 1,5-diphosphate carboxylase, but the results are not conclusive on this point.  相似文献   

18.
Enzyme levels in relation to obligate phototrophy in chlamydobotrys   总被引:3,自引:3,他引:0       下载免费PDF全文
During the transition from photoheterotrophic growth on acetate to phototrophic growth on carbon dioxide, there is a decrease in isocitrate lyase and increase in ribulose-1,5-diphosphate carboxylase activity in Chlamydobotrys stellata cultures. The increase in ribulose-1,5-diphosphate carboxylase activity is the result of protein synthesis, there being a close correlation between increase in enzyme activity and protein precipitated by antibody to ribulose-1,5-diphosphate carboxylase. The purified ribulose-1,5-diphosphate carboxylase was similar to the constitutive enzyme from other green algae having a molecular weight of 530,000 and composed of two types of subunit of molecular weight 53,000 and 14,000.  相似文献   

19.
For purifying carboxysomes of Thiobacillus neapolitanus an isolation procedure was developed which resulted in carboxysomes free from whole cells, protoplasts and cell fragments. These purified carboxysomes are composed of 8 proteins and at the most of 13 polypeptides. The two most abundant proteins which make up more than 60% of the carboxysomes, are ribulose-1,5-bisphosphate carboxylase and a glycoprotein with a molecular weight of 54,000. The shell of the carboxysomes consists of four glycoproteins, one also with a molecular weight of 54,000. The other proteins are present in minor quantities. Ribulose-1,5-bisphosphate carboxylase is the only enzyme which could be detected in the carboxysomes and 3-phosphoglycerate was the only product formed during incubation with ribulose-1,5-diphosphate and bicarbonate. The supernatant of a broken and centrifuged carboxysome suspension contained the large subunit of ribulose-1,5-bisphosphate carboxylase. The small subunit of ribulose-1,5-bisphosphate carboxylase was found in the pellet together with the shell proteins which indicates that the small subunit of ribulose-1,5-bisphosphate carboxylase is connected to the shell.Abbreviations RuBisCO ribulose-1,5-bisphosphate carboxylase - PMSF phenylmethylsulfonyl fluoride - PAA gelectrophoresis, polyacrylamide gelelectrophoresis - SDS sodium dodecyl sulphate - CIE crossed immunoelectrophoresis - IEF isoelectric focusing  相似文献   

20.
D-Ribulose 1,5-bisphosphate (RuBP) carboxylase has been purified from the photosynthetic extreme halophile Ectothiorhodospira halophila. Despite a growth requirement for almost saturating sodium chloride in the medium, both crude and homogeneous preparations of RuBP carboxylase obtained from this organism were inhibited by salts. Sedimentation equilibrium analyses showed the enzyme to be large (molecular weight: 601,000). The protein was composed of two types of polypeptide chains of 56,000 and of 18,000 daltons. The small subunit appeared to be considerably larger than the small subunit obtained from the RuBP carboxylase isolated from Chromatium, an organism related to E. halophila. Amino acid analyses of hydrolysates of both E. halophilia and Chromatium RuBP carboxylases were very similar. Initial velocity experiments showed that the E. halophila RuBP carboxylase had a Km for ribulose diphosphate of 0.07 mM and a Km for HCO3- of 10 mM. Moreover, 6-phospho-D-gluconate was found to markedly inhibit the E. halophila carboxylase; a Ki for phosphogluconate of 0.14 mM was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号