首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impaired elastin fiber assembly is observed in the fetal ductus arteriosus (DA), associated with a reduced concentration of elastin binding protein (EBP), a 67-kDa galactolectin. It is also seen in cultured aortic (Ao) smooth muscle cells (SMC) following the release of the EBP by glycosaminoglycans rich in N-acetylgalactosamine, such as chondroitin sulfate (CS). In the DA, impaired elastin fiber assembly is observed in conjunction with intimal thickening associated with increased migration of SMC into the subendothelium, a feature we previously related to increased production of fibronectin. In this report, we determined whether SMC use the EBP to attach to an elastin substrate, whether shedding of the EBP promotes SMC migration through a three-dimensional network of pure elastic laminae prepared from sheep aorta, and whether the latter is associated with increased production of fibronectin. We observed reduced attachment to elastin-coated surfaces of DA SMC deficient in EBP compared to Ao SMC. Addition of CS but not heparan sulfate (a glycosaminoglycan which does not induce EBP shedding) decreased Ao SMC attachment to elastin, as did preincubation with VGVAPG elastin-derived peptides which saturate the EBP. The immunolocalization of cell surface EBP suggested that cells can quickly replace EBP released from their surfaces by CS treatment. The magnitude of CS-induced impaired attachment of SMC to elastin was dose dependent and could be further increased by the administration of cyclohexamide and sodium azide. Also, the reversibility of CS-induced detachment was prevented by monensin. This suggests that a process of new synthesis and intracellular transport of the EBP was necessary to replace the EBP molecules released from the cell surface by CS treatment. In the migration assay, both DA and Ao SMC attached to the top of an elastin membrane, but only DA SMC deficient in EBP migrated through the laminae. Addition of CS, which induced shedding of EBP, resulted in Ao SMC migration associated with increased synthesis of fibronectin. We postulate that CS-induced release of EBP from SMC surfaces causes cell detachment from elastin and an increase in fibronectin synthesis, processes which may be critical in promoting SMC migration associated with intimal thickening developmentally in the DA and perhaps also in vascular disease.  相似文献   

2.
We have shown previously that the 67-kDa elastin binding protein (EBP) colocalizes intracellularly and extracellularly with tropoelastin in fetal sheep aorta, suggesting that these two proteins associate along the secretory pathway. Moreover, we have established that association with EBP protects tropoelastin from serine proteinases and from intracellular coacervation, and is necessary for its proper extracellular assembly. Since the production of tropoelastin by aortic smooth muscle cells (Ao SMC) exceeds production of the EBP, we speculated that this binding protein might recycle back into the cell, associating again with newly synthesized tropoelastin. In this report we labeled cultured Ao SMC externally with the F(ab′)2 fragments of immunoglobulin which recognizes sheep EBP and followed trafficking of EBP by immunofluorescence and electron microscopy. Our results indicate that the majority of the EBP residing on the cell surface can be internalized to endocytic compartments (but not to lysosomes) and recycled back to the plasma membrane within 45-60 min. We have also determined that reagents disturbing pH of distinct endocytic compartments (chloroquine and bafilomycin A1, but not ammonium chloride) arrest recycling of the EBP and, at the same time, strongly inhibit deposition of insoluble elastin in cultures of sheep Ao SMC and in organ cultures of chicken aorta. In contrast, neither chloroquine nor bafilomycin A1 inhibit total protein synthesis or synthesis of tropoelastin. Our results suggest that the EBP serves as a reusable shuttle protein for tropoelastin and that its recycling is essential for effective deposition of insoluble elastin.  相似文献   

3.
"Intimal cushions" which develop in the late gestation lamb ductus arteriosus (DA) are characterized by smooth muscle cells migrating into a large subendothelial space. Our previous in vitro studies, comparing DA cells with those from the aorta (Ao), have shown, even in early gestation, a 10-fold increase in DA endothelial incorporation of hyaluronan into the subendothelial matrix, a 2-fold increase in smooth muscle fibronectin synthesis and, in response to endothelial conditioned medium, a 2-fold increase in chondroitin sulfate. To determine whether these extracellular matrix components may be playing a role in inducing DA smooth muscle migration, we seeded Da or Ao smooth muscle cells onto three-dimensional collagen (2.0 mg/ml) gels and assessed migration 2, 5, and 8 days later. After 8 days, significantly greater numbers of DA compared to Ao cells were found invading the gels (23.1 +/- 3.1% vs 16.2 +/- 2.3%, P less than 0.01). Addition of GRGDS peptides (0.5 mM) or antibodies against fibronectin significantly decreased migration in the DA cells, but had no effect on migration in the Ao. Addition of endothelial conditioned medium to induce smooth muscle chondroitin sulfate production had no effect on DA cell migration. Inclusion of hyaluronan in the gel (0.5-1.5 mg), however, further enhanced DA cell migration, being greatest (31.9 +/- 3.1%) at a concentration of 1 mg/ml. Hyaluronan was without effect on Ao smooth muscle cell migration. The ability of hyaluronan to promote migration in cultures of DA smooth muscle cells was blocked completely by the addition of antibodies (1:100 dilution, 1 micrograms/ml) to a cell surface hyaluronan binding protein (HABP). As well, addition of anti-HABP to cells on gels containing collagen only significantly reduced migration in the DA but not the Ao. Immunofluorescent staining revealed that in DA cells, HABP was more concentrated in lamellipodia and leading edges than in Ao cells. As well, DA smooth muscle cells synthesized greater amounts of HABP as determined by Western immunoblotting and immunoprecipitation using polyclonal antisera to HABP. Thus, our studies indicate that both increased fibronectin and HABP contribute to the enhanced migration of DA smooth muscle cells. These results, together with our previous studies showing a 10-fold increase in hyaluronan accumulation in the DA endothelial matrix, would suggest a mechanism for increased DA smooth muscle migration into the subendothelial matrix observed in vivo.  相似文献   

4.
5.
To explore the vascular function of the angiotensin II (ANG II) AT(2) receptor subtype (AT(2)R), we generated a vascular smooth muscle cell (SMC) line expressing the AT(2)R (SMC-vAT(2)). The involvement of AT(2)R in the motility response of SMCs was examined in SMC-vAT(2) cells and their controls (SMC-v) cultured on either laminin or fibronectin matrix proteins with the agarose drop technique. All experiments were conducted in the presence of a saturating concentration of losartan to inactivate the AT(1)R subtype. Under basal conditions, both cell lines migrated outside drops, but on laminin only. Treatment with ANG II significantly inhibited the migration of SMC-vAT(2) but not SMC-v cells, and this effect was prevented by the AT(2)R antagonist CGP-42112A. The decreased migration of SMC-vAT(2) was not associated with changes in cell growth, cytoskeleton stiffness, or smooth muscle actin, desmin, and tenascin expression. However, it was correlated with increased synthesis and binding of fibronectin. Both responses were prevented by incubation with selective AT(2)R antagonists. Addition of GRGDTP peptide, which prevents cell attachment of fibronectin, reversed the AT(2)R inhibitory effect on SMC-vAT(2) migration. These results suggest that activated ANG II AT(2)R inhibits SMC migration via cellular fibronectin synthesis and associated cell binding.  相似文献   

6.
The 67-kD elastin-binding protein (EBP) mediates cell adhesion to elastin and elastin fiber assembly, and it is similar, if not identical, to the 67-kD enzymatically inactive, alternatively spliced beta-galactosidase. The latter contains an elastin binding domain (S- GAL) homologous both to the aorta EBP and to NH2-terminal sequences of serine proteinases (Hinek, A., M. Rabinovitch, F. W. Keeley, and J. Callahan. 1993. J. Clin. Invest. 91:1198-1205). We now confirm the functional importance of this homology by showing that elastolytic activity of a representative serine elastase, porcine pancreatic elastase, was prevented by an antibody (anti-S-GAL) and by competing with purified EBP or S-GAL peptide. Immunohistochemistry of adult aorta indicates that the EBP exists as a permanent component of mature elastic fibers. This observation, together with the in vitro studies, suggests that the EBP could protect insoluble elastin from extracellular proteolysis and contribute to the extraordinary stability of this protein. Double immunolabeling of fetal lamb aorta with anti-S- GAL and antitropoelastin antibodies demonstrated, under light and electron microscopy, intracellular colocalization of the proteins in smooth muscle cells (SMC). Incubation of SMC with galactosugars to dissociate tropoelastin from EBP caused intracellular aggregation of tropoelastin. A tropoelastin/EBP complex was extracted from SMC lysates by coimmunoprecipitation and cross-linking, and its functional significance was addressed by showing that its dissociation by galactosugars caused degradation of tropoelastin by endogenous serine proteinase(s). This suggests that the EBP may also serve as a "companion" to intracellular tropoelastin, protecting this highly hydrophobic protein from self-aggregation and proteolytic degradation.  相似文献   

7.
We have demonstrated that chronic stimulation of the prostaglandin E2-cAMP-dependent protein kinase A (PKA) signal pathway plays a critical role in intimal cushion formation in perinatal ductus arteriosus (DA) through promoting synthesis of hyaluronan. We hypothesized that Epac, a newly identified effector of cAMP, may play a role in intimal cushion formation (ICF) in the DA distinct from that of PKA. In the present study, we found that the levels of Epac1 and Epac2 mRNAs were significantly up-regulated in the rat DA during the perinatal period. A specific EP4 agonist, ONO-AE1-329, increased Rap1 activity in the presence of a PKA inhibitor, PKI-(14-22)-amide, in DA smooth muscle cells. 8-pCPT-2'-O-Me-cAMP (O-Me-cAMP), a cAMP analog selective to Epac activator, promoted migration of DA smooth muscle cells (SMC) in a dose-dependent manner. Adenovirus-mediated Epac1 or Epac2 gene transfer further enhanced O-Me-cAMP-induced cell migration, although the effect of Epac1 overexpression on cell migration was stronger than that of Epac2. In addition, transfection of small interfering RNAs for Epac1, but not Epac2, significantly inhibited serum-mediated migration of DA SMCs. In the presence of O-Me-cAMP, actin stress fibers were well organized with enhanced focal adhesion, and cell shape was widely expanded. Adenovirus-mediated Epac1, but not Epac2 gene transfer, induced prominent ICF in the rat DA explants when compared with those with green fluorescent protein gene transfer. The thickness of intimal cushion became significantly greater (1.98-fold) in Epac1-overexpressed DA. O-Me-cAMP did not change hyaluronan production, although it decreased proliferation of DA SMCs. The present study demonstrated that Epac, especially Epac1, plays an important role in promoting SMC migration and thereby ICF in the rat DA.  相似文献   

8.
Summary Endothelial lesions and the subsequent migration of smooth muscle cells in the intima layer are frequently observed after vascular grafting. The expression of secretory phenotype by these cells leads to the accumulation of connective tissue and thereby provides a model for the study of elastin depositionin vivo. Rats bearing aortic grafts of auto-, iso- or homologous origin were sacrificed between 3 and 18 months after implantation. Samples were treated for routine ultrastructural observations and for post-embedding by immunoelectron microscopy using anti-human elastin and protein A-gold.Grafts showed a large intimal thickening composed of several layers of smooth muscle cells and an abundant extracellular matrix. Mature elastic fibres (amorphous elastin associated with peripheral microfibrils) were always encountered in hyperplasia, suggesting that elastin deposition may follow the classical pathway involving microfibrils, which serve as a framework for polymerization of tropoelastin molecule into the amorphous component. However, an unusual localization of elastin aggregates was observed within basement membrane-like material surrounding smooth muscle cells. When sections were stained with methanolic uranyl acetate, these areas showed small electron-dense bodies, which were also labelled with anti-elastin antibody. These structures were apparently devoid of surrounding microfibrils. These results indicate that non-microfibrillar basement membrane material might be involved in the early events of elastin deposition.  相似文献   

9.
Migration of medial smooth muscle cells (SMC) into the intima is important in intimal thickening of atherosclerotic tissues. To study the functions of three isoforms of platelet-derived growth factor (PDGF) in atherosclerosis, we investigated their effects on SMC migration by Boyden's chamber method. Although PDGF-AB and PDGF-BB enhanced SMC migration dose-dependently, PDGF-AA did not enhance SMC migration, but instead inhibited SMC migration induced by PDGF-AB or PDGF-BB. PDGF-AA also inhibited SMC migration induced by two other migration factors, fibronectin and SMC-derived migration factor. PDGF-AA is considered to be coexpressed with transforming growth factor (TGF)-beta 1 in atherosclerotic tissues. Treatment of SMC with TGF-beta 1 reduced an autocrine migration activity from SMC. Studies using anti-PDGF antibody revealed that an increased secretion of PDGF-AA by TGF-beta 1 caused the reduced migration activity. cAMP increase by forskolin and dibutyryl cAMP suppressed SMC migration, whereas cAMP decrease by pertussis toxin had no effects on PDGF-AA-suppressed migration. In contrast, staurosporine, an inhibitor of protein kinase C, enhanced SMC migration and neutralized the inhibitory effect of PDGF-AA. These findings suggest that PDGF-AA regulates SMC migration in intimal thickening in atheroma formation and that protein kinase C may play an important role in the inhibitory mechanism of PDGF-AA.  相似文献   

10.
We previously demonstrated an immune-inflammatory response associated with increased expression of interleukin (IL)-β and fibronectin in graft coronary arteriopathy in piglets following heterotopic heart transplant. Further studies showed that increased endogenously produced IL-β was upregulating fibronectin production by donor coronary artery (CA) smooth muscle cells (SMC). Since co-induction of IL-β and tumor necrosis factor (TNF)-α has been shown in other systems, we investigated the possible interaction between these cytokines in regulating fibronectin production in CA SMC. First, we documented increased TNF-α expression in vivo in donor compared to host CA. Next, synthesis of fibronectin was measured in host and donor CA SMC following [35S]-methionine radiolabeling and gelatin-sepharose extraction. As previously shown with IL-β, increased donor CA SMC fibronectin synthesis was reduced to host levels in the presence of TNF-α antibodies, and exogenous TNF-α upregulated fibronectin synthesis in host CA SMC to levels in donor cells. In normal CA SMC, TNF-α-stimulated fibronectin production was downregulated to or below control levels in the presence of IL-β antibodies. Likewise, IL-β-stimulated fibronectin synthesis was downregulated to control levels when TNF-α neutralizing antibodies were added. Combining TNF-α and IL-β enhanced fibronectin production over that observed with either cytokine alone, but was not additive. Thus, our studies suggest that vascular SMC fibronectin synthesis is regulated by reciprocal induction of IL-β and TNF-α activity and provide the first demonstration of a ‘cytokine loop’ modulating matrix production. © 1995 Wiley-Liss, Inc.  相似文献   

11.
12.
We previously reported infiltration of immune-inflammatory cells in coronary arteries from cardiac allografts, associated with increased endothelial and smooth muscle cell fibronectin synthesis regulated by interleukin (IL)-1b?. We now investigate, using a porcine endothelial-smooth muscle cell co-culture system, whether IL-1b?-stimulated fibronectin production is functionally important in lymphocyte transendothelial migration. Lymphocytes were harvested from porcine peripheral blood and, in the unactivated state or following activation with phorbol myristic acetate (PMA) and IL-2, were characterized by fluorescence-activated cell sorter (FACS) analysis and added to a confluent endothelial monolayer on the upper chamber of a transwell system. Endothelial cells, as well as smooth muscle cells (in the bottom of the chamber), were stimulated with IL-1b?. Then transendothelial lymphocyte migration was determined in the presence of CS1 and RGD (fibronectin) peptides, blocking α4b?1 and α5b?1 integrin receptors on lymphocyte surfaces, respectively. A 55-70% inhibition of lymphocyte migration was observed when compared to control peptides. The combination of CS1 and RGD peptides did not significantly enhance the inhibitory effect of either peptide alone. A similar decrease in lymphocyte transendothelial migration toward smooth muscle cells was documented using a monoclonal antibody to cellular fibronectin. Furthermore, using smooth muscle cell conditioned medium; we reproduced the enhanced transendothelial lymphocyte migration as well as the inhibition with blocking peptides or fibronectin antibodies. Our data suggest that cytokine-mediated fibronectin synthesis in vascular cells recruits inflammatory cells through interactions of specific peptides with cell surface α4b?1 α5b?1 integrins. © 1995 Wiley-Liss, Inc.  相似文献   

13.
14.
《The Journal of cell biology》1984,98(5):1813-1816
We studied chemotaxis to elastin peptides by bovine ligamentum nuchae fibroblasts to determine whether there is a developmental association between chemotactic responsiveness to elastin and expression of the elastin phenotype. Undifferentiated ligament cells demonstrate chemotactic responsiveness to platelet-derived growth factor and fibronectin, known chemoattractants for fibroblasts, but do not show chemotaxis to elastin peptides. After matrix-induced differentiation, however, young cells display a positive chemotactic response to elastin that persists even after the cells are removed from the matrix substratum. Matrix-induced chemotaxis to elastin could be inhibited selectively by incorporation of bromodeoxyuridine into DNA of undifferentiated cells before (but not after) contact with inducing matrix. These results show that the appearance of chemotaxis to elastin peptides parallels the onset of elastin synthesis and suggests that the acquisition of chemotactic responsiveness to elastin and expression of the elastin phenotype are affected by the same inducing elements or processes and may be closely coupled in development.  相似文献   

15.
Amiodarone is a Class III antiarrhythmic agent that has been implicated as a cause of human pulmonary fibrosis. Pulmonary fibrosis is associated with increased levels of connective tissue proteins such as collagen and elastin. The purpose of this investigation was to determine whether elastin synthesis would be altered by in vitro amiodarone administration. Primary hamster lung cell cultures were utilized. Cultures were treated with 2, 10, and 20 micrograms/ml amiodarone. Following treatment, elastin synthesis was monitored by a biochemical tracer assay based on the presence of the cross-linking amino acids: desmosine/isodesmosine. These cross-links are found only in elastin. Addition of [14C] lysine to cultures results in uptake of the radiolabel into the cross-links. Cross-links were isolated and identified using chromatography and electrophoresis. At all doses of amiodarone, elastin synthesis was seen to increase above control levels. Light and electron microscopy confirmed the presence of an extracellular matrix. The morphologic studies also revealed the presence of cytoplasmic inclusion bodies and vacuoles that are often associated with cationic, amphiphilic drugs such as amiodarone.  相似文献   

16.
Extracellular matrix receptors on ductus arteriosus smooth muscle cells (SMC) must enable the cells to migrate through both interstitial and basement membrane matrices to form intimal mounds during postnatal ductus closure. We examined the role of beta 1 and beta 3 integrin receptors on SMC adhesion and migration. Using a new assay to measure cell migration, we found that lamb ductus arteriosus SMC attach to and migrate over surfaces coated with fibronectin (FN), laminin (LN), vitronectin (VN), and collagens I (I) and IV (IV). Blocking antibodies, specific to different integrin complexes, showed that SMC adhesion to FN, LN, I, and IV depended exclusively on functioning beta 1 integrins with little, if any, contribution by the alpha V beta 3 integrin; on the other hand, cell migration over these substrates depended to a large extent on the alpha V beta 3 receptor. Immunofluorescent staining demonstrated that during the early phase of SMC migration, the beta 1 integrins organized rapidly into focal plaques that, with time, gradually covered the cell's basal surface; on the other hand, the beta 3 receptor remained concentrated at all times at the cell's margins. Ligand affinity chromatography and immunoprecipitation techniques identified a unique series of beta 1 integrins binding to each matrix component: FN (alpha 5 beta 1, alpha 3 beta 1, alpha V beta 1), LN (alpha 1 beta 1, alpha 7 beta 1), VN (alpha V beta 1), I (alpha 1 beta 1, alpha 2 beta 1), and IV (alpha 1 beta 1). In contrast, the beta 3 integrin, alpha V beta 3, bound to all the substrates tested: FN, LN, VN, I, and IV. The results indicate that beta 1 and beta 3 integrins may play different roles in attachment and migration as SMC move through the vascular extracellular matrix to produce obliteration of the ductus arteriosus lumen.  相似文献   

17.
Ductus arteriosus (DA) closure follows constriction and remodeling of the entire vessel wall. Patent ductus arteriosus occurs when the DA does not close after birth, and this condition is currently treated using cyclooxygenase inhibitors. However, the efficacy of cyclooxygenase inhibitors is often limited. Our previous study demonstrated that low-dose thromboxane A2 receptor (TP) stimulation constricted the DA with minimal adverse effects in rat neonates. However, its effect on DA remodeling remains unknown. In this study, we focused on the impact of the exogenous TP stimulation on the DA remodeling, especially intimal thickening. Using DA explants from rat fetuses at embryonic day 19 as a ex vivo model and primary cultured rat DA smooth muscle cells from embryonic day 21 as a in vitro model, we evaluated the effect of TP stimulation on the DA remodeling. The selective TP agonists U46619 and I-BOP promoted neointima formation in the ex vivo DA explants, and TP stimulation increased DA SMC migration in a dose-dependent manner. Both effects were inhibited by the selective TP antagonist SQ29548 or the siRNA against TP. TP stimulation also increased DA SMC proliferation in the presence of 10% fetal bovine serum. LC/MS/MS analysis revealed that TP stimulation increased secretion of several extracellular matrix proteins that may contribute to an increase in neointima formation. In conclusion, we uncovered that exogenous administration of TP agonist promotes neointima formation through the induction of migration and proliferation of DA SMC, which could contribute to DA closure and also to its vasoconstrictive action.  相似文献   

18.
Elastic lamina growth during development and the ultimate stability of elastin in the mouse aortic media was investigated by light and electron microscopic radioautography. Following a single subcutaneous injection of l-[3,4-3H]valine at 3 days of age, animals were killed at 9 subsequent time intervals up to 4 months of age. One day after injection, radioautographic silver grains were primarily observed over the elastic laminae; however, silver grains were also seen over the smooth muscle cells and extracellular matrix. By 21 to 28 days of age, the silver grains were almost exclusively located over the elastic laminae. From 28 days to 4 months of age, the distribution of silver grains appeared relatively unchanged. Quantitation of silver grain number/m2 of elastin showed a steady decrease in the concentration of silver grains associated with the elastic laminae from 4 to 21 days of age. After this time, no significant difference in silver grain concentration was observed. Since the initial decrease in grains/m2 of elastin corresponds to a period of rapid post-natal growth, the decrease is likely to be a result of dilution of the radiolabel due to new elastin synthesis. With the assumption that little or no significant turnover occurs during this time, a constant growth rate of 4.3% per day was predicted by linear regression analysis. Since no significant difference in the concentration of silver grains was observed from 28 to 118 days of age, no new growth or turnover of elastin can be said to occur during this time period. This is supported by the observation that animals injected with radiolabeled valine at 28 days and 8 months of age showed no significant incorporation of radiolabel into the elastic laminae. The results from this study present the first long-term radioautographic evidence of the stability of aortic elastin and emphasize that initial deposition of elastin and proper assembly of elastic laminae is a critical event in vessel development.  相似文献   

19.
Obesity instigates various health problems such as atherosclerosis, diabetes, and cancer. Resistin, an adipose tissue‐specific secretory adipokine, operates endocrine functions through increasing insulin resistance. Vascular smooth muscle cells (SMC) migrate into the subendothelial space and proliferate, thereby contributing to neointimal formation in atherosclerosis and restenosis. The aim of this study was to elucidate whether celastrol obtained from Tripterygium wilfordii Hook, inhibited human aortic SMC migration. Celastrol capable of antagonizing inflammatory responses attenuated the resistin secretion from THP‐1‐derived macrophages. The macrophage‐conditioned media promoted SMC proliferation and MMP‐2 production, which was dampened by 10–100 nM celastrol. Celastrol encumbered the SMC migration in response to 50 ng/ml resistin, concomitant with the inhibition of induction of connective tissue growth factor and collagen I/IV. In addition, celastrol disabled human aortic SMC exposed to resistin from migrating. The resistin‐induced shedding of integrin β2/β3 expression was demoted by celastrol, thereby contributing to the inhibition of collagen matrix‐SMC interaction. Next, resistin‐induced Toll‐like receptor‐4 (TLR‐4) expression was abrogated by celastrol, indicating that TLR‐4 was the resistin signaling receptor that was blocked by celastrol. Collectively, these results demonstrate that anti‐inflammatory celastrol blunted the macrophage secretion of the adipokine resistin, and suppressed the SMC migration by disturbing the interaction between SMC and intimal collagen matrix. Therefore, celastrol may inhibit atherogenic migration of vascular SMC upon resistin loading by intimal macrophages within atherosclerotic lesions. J. Cell. Biochem. 114: 398–408, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Monocyte chemoattractant protein (MCP)-1 is abundant in smooth muscle cells (SMC) and macrophages of atherosclerotic plaques and in the injured arterial wall. MCP-1 and its receptor, CCR2, are important mediators of macrophage accumulation and atherosclerotic plaque progression. We have recently reported that CCR2(-/-) mice have a approximately 60% decrease in intimal hyperplasia and medial DNA synthesis in response to femoral arterial injury. We have now examined the response to femoral arterial injury in MCP-1(-/-) mice. MCP-1 deficiency was associated with a approximately 30% reduction in intimal hyperplasia at 4 weeks and was not associated with diminished medial DNA synthesis. Despite inducing tissue factor in SMC culture, MCP-1 deficiency was not associated with a decrease in neointimal tissue factor after injury. These data suggest that MCP-1 and CCR2 deficiencies have distinct effects on arterial injury. The effects of MCP-1 on intimal hyperplasia may be mediated largely through SMC migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号