共查询到20条相似文献,搜索用时 15 毫秒
1.
The genomes of phage I3 and its host Mycobacterium smegmatis have been compared. From thermal melting studies the GC contents of DNA from mycobacteriophage I3 and its host M. smegmatis were found to be 66%. A new method, based only on the initial rates of reassociation, has been developed for calculating the DNA homology. Analysis of DNA reassociation kinetics suggested the presence of one equivalent of the phage I3 genome within the M. smegmatis genome. Southern analysis revealed the presence of almost all of the phage I3 specific sequences within the host genome. 相似文献
2.
The GC content of mycobacteriophage I3 DNA is 67% as determined from thermal melting analysis, buoyant density in CsCl gradient, and 5-deoxymononucleotide analysis. High-resolution melting of I3 DNA revealed that the base distribution is random. Studies with methylation-specific restriction enzymes and high voltage electrophoretic analysis of 5-deoxymononucleotides did not indicate the presence of any unusual or methylated bases in I3 DNA. The molecular size of I3 DNA is estimated to be about 135 Kbp, based on the restriction fragment size distributions and sedimentation in sucrose gradients. The restriction cleavage pattern by a variety of restriction endonucleases has been determined. The circularly permuted nature of I3 DNA, indicated from the restriction patterns, has been confirmed by Southern blot hybridizations and 5 end group analysis. 相似文献
3.
The association of nucleoside triphosphate molecules and calcium ions with purified particles of mycobacteriophage I3 has been documented. The content of nucleoside triphosphate has been determined to be 118 molecules per phage particle by equilibrium dialysis against labelled ATP or 148 molecules per phage particle by the direct determination of labelled nucleoside triphosphate. The concentration of bound Ca2+ exhibited a high degree of variation between different batches, which may be due to the nonspecific binding of Ca2+ by the virus particles. However, the tightly bound Ca2+ not removable by dialysis against calciumspecific chelating agent, showed a constant value of 2985 atoms/phage particle.Abbreviations EGTA
Ethylene glycol-bis (-aminoethylether)-N,N1 tetraacetic acid
- PFU
plaque forming unit
- NTP
nucleoside triphosphate 相似文献
4.
5.
Mycobacterium smegmatis SN2 does not exhibit natural competence for the uptake of phage I3 DNA. Competence can artificially be induced by treatment with glycine or CaCl2, and the combination of both is even more effective. The efficiency of transfection can be improved by inclusion of protamine sulphate and heterologous RNA in the system. From 32P DNA uptake studies the major barrier for the entry of DNA has been found to be the complex cell wall. The efficiency of transfection calculated on the basis of fraction of DNA which has entered the cell is comparable to that of other bacterial systems. The phage development takes a longer time (7 h for one cycle) after transfection, as compared to infection (4 h). 相似文献
6.
Ca2+ ions are absolutely necessary for the propagation of mycobacteriophage I3 in synthetic medium. These ions are required for successful infection of the host and during the entire span of the intracellular development of the phage. A direct assay of the phage DNA injection using 32[P] labelled phage, showns that Ca2+ ions are necessary for the injection process. The injection itself is a slow process and takes 15 min to complete at 37°C. The bacteria infected in presence of Ca2+ tend to abort if the ions are subsequently withdrawn from the growth medium. The effect of calcium withdrawal is maximally felt during the early part of the latent period; however, later supplementation of Ca2+ ions salvage phage production and the mature phage progeny appear after a delayed interval, proportional to the time of addition of Ca2+.Abbreviations moi
multiplicity of infection
- PFU
plaque forming units
- EGTA
ethylene-glycol-bis (-aminoethyl ether) N,N-tetraacetic acid 相似文献
7.
DNA-, RNA- and protein synthesis have been studied inMycobacterium smegmatis cells infected with phage 13. The macromolecular synthesis continued until the end of latent period. Early RNA and protein synthesis were necessary prior to the commencement of DNA replication. The infecting phage DNA sedimented as larger than unit length of genome, after initiation of DNA synthesis. Although the host DNA was not degraded, 90 percent of the RNA synthesized after phage infection hybridized to phage DNA. 相似文献
8.
9.
10.
Chanchal Sadhu Mohan lal Gope Krishna Sadhu K. P. Gopinathan 《Journal of biosciences》1985,7(1):39-47
Eighteen temperature-sensitive mutants of mycobacteriophage I3 have been isolated and partially characterized. All the mutants were defective in vegetative replication. Based on temperature shift experiments with the temperature sensitive mutants, the thermosensitive phase of the phage development period has been characterized for each mutant. The genes have been mapped by recombination analysis. The early, continuous and middle genes seem to cluster on the genetic map 相似文献
11.
Kowalska-Loth B. Bubko I. Komorowska B. Szumiel I. Staron K. 《Molecular biology reports》1998,25(1):21-26
An in vitro system composed of nicked pBR322 DNA and purified topoisomerase I was employed to study the efficiency of the topoisomerase I-driven single-strand to double-strand DNA breaks conversion. At 1.4 × 105 topoisomerase I activity units per mg DNA about 20% single-strand nicks were converted into double-strand breaks during 30 min due to topoisomerase I action. Camptothecin inhibited the conversion. The conversion was also inhibited when the relaxing activity of the used topoisomerase I was increased by phosphorylation of the enzyme with casein kinase 2. The presented data suggest that topoisomerase I may be involved in production of double-stranded breaks in irradiated cells and that this process positively depends on the amount of topoisomerase I but not on its phosphorylation state. 相似文献
12.
13.
14.
The DNA single-strand break repair (SSBR) protein XRCC1 is required for genetic stability and for embryonic viability. XRCC1 possesses two BRCA1 carboxyl-terminal (BRCT) protein interaction domains, denoted BRCT I and II. BRCT II is required for SSBR during G(1) but is dispensable for this process during S/G(2) and consequently for cell survival following DNA alkylation. Little is known about BRCT I, but this domain has attracted considerable interest because it is the site of a genetic polymorphism that epidemiological studies have associated with altered cancer risk. We report that the BRCT I domain comprises the evolutionarily conserved core of XRCC1 and that this domain is required for efficient SSBR during both G(1) and S/G(2) cell cycle phases and for cell survival following treatment with methyl methanesulfonate. However, the naturally occurring human polymorphism in BRCT I supported XRCC1-dependent SSBR and cell survival after DNA alkylation equally well. We conclude that while the BRCT I domain is critical for XRCC1 to maintain genetic integrity and cell survival, the polymorphism does not impact significantly on this function and therefore is unlikely to impact significantly on susceptibility to cancer. 相似文献
15.
A suppressor-containing strain of Mycobacterium smegmatis SN2 was isolated by transferring an amber suppressor carried on the plasmid of Pseudomonas pseudoalcaligenes ERA through transformation. Amber mutants of mycobacteriophage I3 were isolated.Non-Common Abbreviations NTG
N-methyl-N-nitro-N-nitrosoguanidine
- moi
Multiplicity of infection
An abstract of this communication was presented at the IV International Congress of Genetics, Moscow, U.S.S.R., August 21–30, 1978 相似文献
16.
Control of DNA cross-overs is necessary for meiotic recombination and genome integrity. The frequency of cross-overs is dependent on homology length and the conversion tract, but the mechanisms underlying the regulation of cross-overs remain unknown. We propose that 5'-end resection, a key intermediate in double-strand break repair, could determine the formation of cross-overs. Extensive DNA resection might favor gene conversion without cross-over by channeling recombination events through synthesis-dependent strand-annealing. In reactions with short regions of homology, resection beyond the homologous sequence would impede Holliday junction formation and, consequently, cross-over. Extensive DNA resection could be an effective mechanism to prevent reciprocal exchanges between dispersed DNA sequences, and thus contribute to the genome stability. 相似文献
17.
18.
S S?derh?ll 《European journal of biochemistry》1975,51(1):129-136
The major DNA ligase from calf thymus (mammalian DNA ligase I) forms a covalent enzyme-AMP complex on incubation with ATP [S?derh?ll & Lindahl, J. Biol. Chem. 248, 672-675, (1973)]. The reaction of this complex with DNA has now been studied. When the ligase-adenylate complex is incubated at 0 degrees C for short time periods with DNA containing single-strand breaks, a DNA-AMP complex can be isolated from the reaction mixture by isopycnic centrifugation in CsCl. Incubation at pH 6.5 increased the amount of DNA-AMP complex that could be isolated 10-20-fold relative to that obtained at pH 7.4. Under the same conditions, incubation of the ligase-AMP complex with DNA free from single-strand breaks did not lead to detectable DNA-AMP formation. The DNA-AMP complex was resistant to treatment with dilute acid and alkali indicating the presence of a covalent linkage. Further, this complex was sensitive to DNase but resistant to pronase and RNase. Free AMP was released on further incubation of the isolated DNA-AMP complex with thymus DNA ligase I and Mg2+, suggesting that the complex is a reaction intermediate. Degradation of the DNA-AMP complex with several reagent enzymes indicated that the AMP residues were bound at the 5' ends of the single-strand breaks in DNA by pyrophosphate bonds. 相似文献
19.
DNA single-strand breaks containing 3′-8-oxoguanine (3′-8-oxoG) ends can arise as a consequence of ionizing radiation and as a result of DNA polymerase infidelity by misincorporation of 8-oxodGMP. In this study we examined the mechanism of repair of 3′-8-oxoG within a single-strand break using purified base excision repair enzymes and human whole cell extracts. We find that 3′-8-oxoG inhibits ligation by DNA ligase IIIα or DNA ligase I, inhibits extension by DNA polymerase β and that the lesion is resistant to excision by DNA glycosylases involved in the repair of oxidative lesions in human cells. However, we find that purified human AP-endonuclease 1 (APE1) is able to remove 3′-8-oxoG lesions. By fractionation of human whole cell extracts and immunoprecipitation of fractions containing 3′-8-oxoG excision activity, we further demonstrate that APE1 is the major activity involved in the repair of 3′-8-oxoG lesions in human cells and finally we reconstituted repair of the 3′-8-oxoG-containing oligonucleotide duplex with purified human enzymes including APE1, DNA polymerase β and DNA ligase IIIα. 相似文献