首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of aging on in vivo DNA and RNA labeling and on RNA content in various brain regions of 4-, 12-, and 24-month-old rats were investigated. No difference in [methyl-14C]thymidine incorporation into DNA of cerebral cortex and cerebelllum during aging was observed.The ratio of RNA/DNA content significantly decreased from 4 to 24 months of age in cerebral cortex, cerebellum and striatum. RNA labeling decreased by 15% in cerebral cortex of 24-month-old animals while in the other brain areas examined (cerebellum, hippocampus, hypothalamus, brainstem, striatum) did not change during aging.In the cerebral cortex, the ratio of the specific radioactivity of microsomal RNA to that of nuclear RNA, determined by in vivo experiments, was not affected by the aging process. A significant decrease of total, poly(A)+ RNA and poly(A)- RNA content was observed in the same brain area of 24-month-old rats compared to 4-month-old ones. Moreover, densitometric and radioactivity patterns obtained by gel electrophoresis of labeled RNA after in vitro experiments (tissue slices of cerebral cortex) showed a different ribosomal RNA processing during aging. In vivo chronic treatment with CDP-choline was able to increase RNA labeling in corpus striatum of 24-month-old animals.  相似文献   

2.
Effects of hypothyroidism on RNA synthesis in the adult rat brain   总被引:3,自引:0,他引:3  
In this study we investigated the effects of hypothyroidism on adult brain RNA synthesis. Our data show that in the cerebral hemispheres of hypothyroid rats there is a decrease in microsomal RNA content and microsomal [3H]uridine incorporation. Sucrose gradient analysis revealed that these changes are mainly associated with free ribosomes and subunits and reflect changes in rRNA. The above changes are accompanied by a decrease in RNA polymerase I activity. All of the above mentioned changes returned to normal after thyroxine (T4) treatment. In contrast to RNA polymerase I, RNA polymerase II activity was not affected. However, electrophoretic analysis of the in vitro poly(A)+RNA translation products revealed that hypothyroidism affects a few mRNAs. These results indicate that thyroid hormones have a role in adult brain tissue metabolism.  相似文献   

3.
DNA, RNA, and protein synthesis in mitochondria isolated from cerebral hemispheres, brain stem, and cerebellum of 10- and 30-day-old rats was measured. Synthesis of different macromolecules was affected by the respective mitochondrial specific inhibitors, showing a good level of purity of mitochondrial preparations. DNA and protein synthesis in 10-day-old rats was about 70% higher than in 30-day-old animals. In contrast, RNA synthesis did not decrease with age in all the regions examined.  相似文献   

4.
The effect of hypothyroidism on the in vitro incorporation of [3H]uridine into different RNA species in tissue slices of rat cerebral hemispheres at 5, 10, 15, and 21 days of age has been investigated. Gel electrophoresis analysis of total, nuclear and microsomal RNA was also accomplished. The results obtained indicate that RNA labeling is differently influenced by hypothyroidism at the various ages examined. RNA labeling is not significantly affected at 5 days of age while at later ages and especially at 21 days it is higher in hypothyroid rats compared to the controls. Moreover distinct differences at the various ages in the transport of newly synthesized RNA from the nucleus to the cytoplasm in the two groups of animals were found. These results are in agreement with the hypothesis that thyroid hormone deficiency causes a delay of the processes of cell proliferation and differentiation in developing rat brain.  相似文献   

5.
Protein synthesis in vivo was studied in whole brain of rat fetuses using continuous intravenous infusion of L-[U-14C]tyrosine into unrestrained pregnant rats at 19 and 21 days gestation. Protein degradation (KD) was calculated by subtracting fractional growth rate of brain protein (KG) from the fractional synthesis rate (KS). KS was high at both gestational ages (0.42 +/- 0.03 days-1 at day 19, 0.47 +/- 0.029 days-1 at 21 days), comparable to values previously reported for newborn rat cerebral hemispheres, and threefold higher than is seen in adult animals. KD was similar at both 19 and 21 days gestation (0.19-0.24) and lower than that reported in neonatal rat brain using similar techniques. Protein accretion during the most rapid phase of brain growth (fetus) is accomplished by similar rates of protein synthesis, but decreased rates of degradation when compared with a slower growth phase (newborn). KD in the brain of the rapidly growing fetus is slightly higher than in adult cerebral hemispheres.  相似文献   

6.
The effect of undernutrition on the incorporation of [methyl-3H]thymidine into DNA and of 5-[3H]uridine into RNA of cerebral hemispheres, cerebellum, and brain stem was studied in vivo and in vitro in rats. The labeling of DNA from nuclei and mitochondria and of RNA from nuclei, mitochondria, microsomes, and soluble fractions, was also measured in vitro. The results demonstrate that nucleic acid synthesis is impaired and delayed during undernutrition. Specific effects were observed for the different brain regions and subcellular fractions: at 10 days nuclear and mitochondrial DNA and RNA synthesis was impaired, whereas at 30 days only the mitochondrial nucleic acid synthesis was affected.The delay of DNA and RNA labeling, caused by undernutrition, was most evident in the cerebellum, probably due to its intense cell proliferation during postnatal development. The specific sensitivity of mitochondria as compared to other subcellular fractions, may be due to the intense biogenesis and/or turnover of nucleic acids in brain mitochondria not only during postnatal development, but also in the adult animal.  相似文献   

7.
In order to gain insight into the steroid hormone-induced differential expression of genes for several rate-limiting enzymes of various metabolic pathways during differentiation, growth, adulthood, and senescence in rats, nuclear RNA polymerase of the cerebellum and cerebral hemispheres were studied. The level of this enzyme in both the tissues was highest in the immature rats and decreased significantly thereafter with increasing age. Ovariectomy decreased, and estradiol administration increased significantly the activity of this enzyme in both cerebellum and cerebral hemispheres of immature, young-adult, adult, and late-adult rats but not of senescent rats. However, the effects of these treatments were highest in the young-adult rats.  相似文献   

8.
9.
Experiments were carried out on infant rats aged five days and on adult rats (of both sexes) to investigate vanadate inhibition of (Na+-K+)ATPase activity in various parts of the brain. Vanadate was administered in 10(-5), 10(-7), 10(-8), 10(-9) and 10(-10) mol/l concentration. The enzyme activity and the effect of vanadate were studied in the tissue of the cerebral cortex, subcortical formations and the medulla oblongata. It was demonstrated that an inhibitory effect of vanadate on ouabain-sensitive ATPase could be determined in the brain of very young rats, i.e. in the immature nervous tissue. It was further demonstrated that the inhibitory effect of vanadate (in low concentrations) was significantly more potent in the nervous tissue of adult rats than in the CNS tissue of 5-day-old animals. Lastly, attention is drawn to certain differences in the sensitivity of ouabain-sensitive ATPase to the action of vanadate indifferent parts of the CNS in both the given age groups.  相似文献   

10.
Stress-induced changes in cerebral ATP+ubiquitin-dependent proteinase activity were studied and the effect of age on it was checked. For that purpose 23,000 g supernatant prepared from whole brain of 3- and 7-month-old rats after 6h long immobilization stress were used. With azocasein as substrate, at pH 8.0 values of ATP+ubiquitin-dependent proteinase activity increased for 20% and 10% in 3- and 7-month-old animals respectively. Following 24 h long immobilization, values of cerebral ATP + ubiquitin-dependent activity in 3-month-old animals dropped by 16%. Data obtained indicate that immobilization stress affects ATP+ubiquitin-dependent proteinase activity and point to the contribution of age in the modulation of enzyme response to stress.  相似文献   

11.
In vivo and in vitro (tissue slices) incorporation of labeled precursors into DNA, RNA, and proteins was measured in mitochondria obtained from cerebral hemispheres, cerebellum, and brain stem of rats at different days of postnatal development. To compare the synthesis of macromolecules in mitochondria with that in other subcellular fractions, the incorporation of labeled precursors into DNA, RNA, and proteins extracted from nuclei and into RNA and proteins extracted from microsomes and cytoplasmic soluble fractions was also measured.The results obtained showed that the incorporation of [3H]thymidine into DNA and of [14C]leucine into proteins of nuclei and mitochondria from the various brain regions examined decreased during postnatal development, however, at 30 days of age the specific radioactivity of mitochondrial DNA was higher than that of nuclear DNA. [3H]Uridine incorporation into RNA decreased from 10 to 30 days of age in nuclei while in mitochondria it was quite similar at both ages. This result may be due to a faster turnover of mitochondrial RNA compared to that of mitochondrial DNA and proteins. The results obtained suggest an active biosynthesis of macromolecules in brain mitochondria and might indicate an intense biogenesis of these organelles in rat brain during postnatal development.Preliminary reports of these results were presented at the XI FEBS Meeting, Copenhagen, August 14–19, 1977, Poster number A2-2-155-3, and at III Meeting of Italian Biochem. Soc., Siena, October 3–5, 1977, Abstract C6.  相似文献   

12.
The 5 alpha-reductase, the enzyme which converts testosterone into dihydrotestosterone (DHT), is present in several CNS structures of the rat. Recent reports from this laboratory indicate that the subcortical white matter and the myelin possess a 5 alpha-reductase activity several times higher than that present in the cerebral cortex. Moreover, previous ontogenetic observations indicate that in all cerebral tissues examined (including the myelin) the 5 alpha-reductase has a higher activity in immature animals. This study was performed in order to verify whether the differences in the 5 alpha-reductase activity on the various brain components might be due to the presence of different concentrations of the same enzyme or to different isoenzymes. To this purpose, the kinetic properties Km and Vmax were measured in the purified myelin as well as in homogenates of the subcortical white matter and of the cerebral cortex, obtained from the brain of adult (60-90-day-old), immature (23-day-old), and aged (greater than 20-month-old) male rats. The results indicate that the enzymes present in the myelin, in the subcortical white matter and in the cerebral cortex of adult male rats possess a very similar apparent Km (1.93 +/- 0.2, 2.72 +/- 0.73 and 3.83 +/- 0.49 microM respectively). On the contrary, the Vmax values obtained in the myelin (34.40 +/- 5.54), in the white matter (19.57 +/- 2.36) and in the cerebral cortex (6.47 +/- 1.03 ng/h/mg protein) of adult animals have been found to be consistently different. Very similar Km values were found in the myelin obtained from the brain of immature and very old rats (2.14 +/- 0.11 and 3.39 +/- 0.75 microM respectively). The Vmax measured in the myelin purified from the immature rat brain (62.25 +/- 4.52) showed a value which was much higher than that found in the myelin of adult animals (34.40 +/- 5.54); a Vmax (34.31 +/- 9.41) almost identical to that of adult animals was found in the myelin prepared from the brain of aged rats.  相似文献   

13.
14.
Neonatal undernutrition and RNA synthesis in developing rat brain   总被引:1,自引:1,他引:0  
—Underfeeding of newborn rats results in a decreased body and brain weight at 10, 20 and 30 days of age. The DNA and RNA content of the brain in these animals are similar to those of normal controls. The in vivo and in vitro synthesis of RNA in brain is significantly decreased in undernourished rats at 10 days of age when compared with controls. The metabolic transformation of 3H-orotic acid to nucleotides is also diminished. A short period of food rehabilitation produces -an improvement in the above mentioned alterations. However, a reduced incorporation of label into microsomal RNA persists even in the last condition. The results suggest that malnutrition, during the first days of life, alters the metabolism of cerebral RNA.  相似文献   

15.
The paper describes the results of measurement of the total RNA content of single cells of the frontal pole of the cerebral cortex, the septum, the dorsal hippocampus and the medial hypothalamus of 35-day-old male laboratory (Wistar strain) rats. Two groups of ten animals each, reared in different ways, are compared: 1) young which lived from the age of 15 days with their mother, their siblings, other adult animals of both sexes and the young of other litters in a large, complex space, and 2) young which lived only with their mother and siblings in a small, simple space, as is usual under laboratory conditions. Nutrition and other environmental factors in the two groups were the same. The RNA content of cells from all the given parts of the brain was higher in community-reared rats, but the relative difference (related to the mean values for community-reared animals) in the various parts was not the same. It was smallest in the cerebral cortex and greatest in the dorsal hippocampus. Differences in the ventromedial hypothalamus and the septum were moderately large, with the hypothalamus rather resembling the cerebral cortex, while the septum differed statistically significantly from both the cortex and the hippocampus. The effect of social stimulation was thus strongest in the hippocampus.  相似文献   

16.
MAO, COMT, and GABA-T Activities in Primary Astroglial Cultures   总被引:3,自引:3,他引:0  
Cultures from cerebral hemispheres of newborn rats contain the enzymes monoamine oxidase (MAO), catechol-O-methyltransferase (COMT), and gamma-aminobutyric acid alpha-ketoglutarate transaminase (GABA-T). The COMT activity was higher in the cultures than in adult rat cerebral hemispheres. The MAO activity was comparable in the cultures and in the rat cerebral hemispheres. The activities of both these enzymes increased with age in the cultures and in the rat brain hemispheres. In the culture the activities were further potentiated by removal of fetal calf serum and addition of 0.1 mM dibutyryl-cyclic AMP (dB-cAMP). GABA-T activity was, however, lower in the cultures than in the adult rat brain hemispheres. The activity increased in brain during postnatal maturation. No changes in the enzyme activity were observed in the cultures, either during growth or after removal of fetal calf serum and addition of dB-cAMP.  相似文献   

17.
18.
The changes in blood flow through selected brain structures and the changes in the total RNA content of cells of these structures were examined after a single administration of yeast RNA to 6-month-old male rats. The total content of ribosomal RNA in cells of the limbic system (septum, hippocampus, hypothalamus) increased 48 hrs after the administration of 100 mg i.p. yeast RNA , dropped after 7 days (in hypothalamus), 21 and 30 days (in hippocampus), 30 days (in septum). In cells of the limbic system as a whole there is a higher total RNA content in experimental rats. No changes were observed in the cells of parietal brain cortex. Blood flow increased in limbic structures 21 and 30 days after RNA administration and in septum and in hippocampus also 90 days after application. No changes were observed in parietal brain cortex, bulbi olfactorii, cerebellum and brain stem. Histochemical changes correlated positively with blood flow changes in the limbic system 14, 21, 30 and 90 days after RNA application. The body weight of experimental rats did not differ from that of control animals. The changes in haemodynamic parameters were transient and were demonstrated as fluctuations in heart rate, cardiac output, and peripheral resistance. Blood pressure experienced no changes.  相似文献   

19.
In this work, activities of hexokinase isoenzymes Type I and Type II were measured in the soluble and particulate fractions from the brain regions (cerebral hemispheres (cerebrum), cerebellum and brain stem) of the thyroidectomized adult rats as well as of the thyroidectomized rats administered with triiodothyronine. Thyroidectomy generally decreased the hexokinase activity associated with particulate and soluble fractions. Hexokinase Type II isoenzyme was more affected than the Type I isoenzyme. Administration of triiodothyronine to the hypothyroid rats abolished the effect of thyroidectomy. Adult brain enzymes have been generally considered not be affected by thyroid hormones. The data obtained in this work are suggestive of an effect of thyroid hormones on hexokinase in the adult brain. Since the effects of thyroidectomy on the energy metabolism of the heart tissue are well known, the heart tissue was also studied for comparison.  相似文献   

20.
The ultrastructure of capillary walls of the mamillary bodies was studied in rats distributed in two age groups: adult (6-8-month-old) and old (28-30-month-old) animals under hypoxic hypoxia. It was found that age-related differences in the response of brain capillary walls to the injuring agent were reduced to a rapid increase in dystrophic phenomena and less conspicuous compensatory processes seen in the old animals. More profound injuries to other brain tissues adjacent to the vessels were also indicative of less efficacy of the adaptive reactions in the old animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号