首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corticotropin-releasing factor (CRF) is an important regulator of physiological functions and behavior in stress. Analgesia is one of the characteristics of stress reaction and CRF is involved in providing stress-induced analgesia, however, the underlying mechanisms remain to be determined. Exogenous CRF mimics stress effects on pain sensitivity and causes analgesic effect. The present study was performed to investigate the participation of endogenous glucocorticoids in analgesic effects induced by central administration of CRF in anesthetized rats. The participation of glucocorticoids was studied by pharmacological suppression of the hypothalamic-pituitary-adrenocortical (HPA) axis as well as an occupation of glucocorticoid receptors by its antagonist RU 38486. Since CRF administration causes the release of β-endorphin from the pituitary, the opioid antagonist naltrexone was used to determine the contribution of opioid-dependent mechanism to CRF-induced analgesia. An electrical current threshold test was applied for measurement of somatic pain sensitivity in anesthetized rats. Intracerebroventricular administration of CRF (2 μg/rat) caused analgesic effects (an increase of pain thresholds) and an increase in plasma corticosterone levels. Pretreatment with naltrexone did not change analgesic effects of central CRF as well as corticosterone levels in blood plasma. However, pharmacological suppression of the HPA axis leading to an inability of corticosterone release in response to CRF resulted in an elimination of CRF-induced analgesic effects. Pretreatment with RU 38486 also resulted in an elimination of CRF-induced effects. The data suggest that CRF-induced analgesic effects may be mediated by nonopioid mechanism associated with endogenous glucocorticoids released in response to central CRF administration.  相似文献   

2.
The role of hypothalamic-pituitary-adrenocortical system (HPAS) in analgesic effect induced by central or systemic corticotrophin-releasing hormone (CRH) was studied on anaesthetized male rats. Blockade of the HPAS functional activity by hydrocortisone in pharmacological dose one week before the experiment was used as approach to investigate the contribution of the HPAS hormones in CRF-induced analgesia. Elimination of the hormones rise in the blood plasma by hydrocortisone resulted in decrease of analgesic effect induced by systemic CHR and complete disappearance of analgesic effect induced by central CRH. The results suggest that CRH-induced elevation of pain threshold is provided by two components: 1) depending on the HPAS hormones after central and systemic injection of CHR; 2) not depending on the HPAS hormones after systemic injection of CHR.  相似文献   

3.
P D Butler  R J Bodnar 《Peptides》1984,5(3):635-639
Thyrotropin releasing hormone (TRH) interacts with both opioid and non-opioid systems in mediating hypothermic, hypoactive, cataleptic, respiratory and analgesic effects. While TRH neither antagonizes opioid analgesia nor alters pain thresholds itself, it blocks neurotensin analgesia. Different forms of pain-inhibition in rats can be activated by selectively altering the parameters of shock: while analgesia induced by 20 inescapable tail-shocks is not reversed by naltrexone, exposure to 60 or 80 shocks does elicit naltrexone-reversible analgesia. The first experiment examined whether intracerebroventricular administration of TRH (0, 10, or 50 micrograms) would alter the elevations in tail-flick latencies in rats induced by 20 or 80 foot shocks and found that TRH significantly lengthened the duration and magnitude of analgesia induced by 20 and 80 foot shocks in a dose-dependent manner. The second experiment extended these findings to the writhing test, a visceral pain test. While the number and duration of writhes of vehicle-treated rats exposed to 80 foot shocks failed to differ from baseline values. TRH (50 micrograms)-treated rats exposed to 80 foot shocks displayed significant decreases in the number and duration of writhes. The third experiment indicated that the differential effects of naltrexone upon analgesia induced by 20 or 80 tail shocks were not apparent when foot shocks were employed, precluding a definitive statement that TRH may be involved in the modulation of both opioid and non-opioid forms of analgesia.  相似文献   

4.
The review focuses on the role of hypothalamic-pituitary-adrenocortical system (HPAS) in regulation of pain sensitivity and discusses the mechanisms involved in this process. Analgesic effects of exogenous hormones of HPAS (corticotropin-releasing hormone (CRH), ACTH, glucocorticoids) have been shown in rats. It is mediated by both opioid and non-opioid mechanisms. Endogenous glucocorticoids produce development of analgesia mediated by non-opioid mechanisms. Analgesic effect of ACTH is mediated by both non-glucocorticoids mechanisms associated with endogenous glucocorticoids and opioid mechanisms. In contrast to ACTH, analgesic effect of CRH is mediated only by non-opioid mechanisms associated or dissociated with endogenous glucocorticoids. The neurons of midbrain periaqueductal gray matter may be involved in the analgesia induced by glucocorticoids.  相似文献   

5.
R J Hamm  J S Knisely 《Life sciences》1986,39(17):1509-1515
The analgesia produced by 24 hr of food deprivation was examined in 4-mo, 14-mo, and 24-mo old rats. To assess opioid and hormonal involvement in food deprivation induced analgesia, different groups of rats from each age group were injected with naltrexone (7 mg/kg), dexamethasone (0.4 mg/kg), or equivolume saline. Results revealed that food deprivation produced an equivalent analgesic response in each saline-treated age group. Also, naltrexone and dexamethasone were equally potent in blocking food deprivation induced analgesia in each age group. These results demonstrated that food deprivation activates an endogenous opioid-mediated analgesic system that involves hormonal factors and that this system does not change in function with increasing age.  相似文献   

6.
Intramuscular (i.m.) administration of the central analgesics fentanyl and dipyrone, and also mediators of pain such as L-glutamate, CCK, ATP, phenylephine and analgesic mediator adenosine, slightly penetrating in CNS, in the minimum effective dose (MED) cause the maximal analgesic effect in the tail flick test in rats. MED of dipyrone and fentanyl are decreased 50-220-fold after combined i.m. administration of each analgesic with L-glutamate, CCK, adenosine, ATP and phenylephrine in threshold, independently noneffective doses. The intragastric administration of lidocaine and also subdiaphragmatic vagotomy completely eliminate analgesic effects of the above mentioned combinations. Conclusion: the peripherically acting mediators of pain and analgesia after systemic administration potentiate central analgesic action of fentanyl and dipyrone as a result of the stimulation of vagal afferents of gastric mucosa.  相似文献   

7.
目的通过观察褪黑色素对缰核痛神经元单位放电的影响,进一步证明褪黑色素的中枢镇痛作用及可能机制。方法:应用细胞外神经元单位放电记录方法,记录缰核神经元痛相关神经元放电,并观察外侧缰核痛神经元在褪黑色素作用下电活动的改变,及对伤害性刺激痛敏感性的改变,在此基础上观察纳洛酮的翻转作用。结果:褪黑色素影响外侧缰核痛神经元的电活动,并使外侧缰核痛神经元对伤害性刺激敏感性降低,此种作用可被纳洛酮翻转。结论:褪黑色素可通过作用于外侧缰核的阿片受体而影响其痛相关神经元对痛刺激的反应,这可能是褪黑色素中枢镇痛机制之一。  相似文献   

8.
P D Butler  R J Bodnar 《Peptides》1987,8(2):299-307
In addition to short-acting analgesic actions by itself and modulation of analgesic responses induced by endogenous opioids and neurotensin, central administration of thyrotropin-releasing hormone (TRH) potentiates footshock analgesia. The present study evaluated the effects of TRH upon the neurohormonally-mediated though nonopioid analgesia induced by swims in rats. Intracerebroventricular TRH (10 and 50 micrograms) dose-dependently potentiated swim (21, 15, 2 degrees C baths) analgesia on the tail-flick test, an effect which was not due to the hypothermic or basal pain threshold changes. Intravenous (8 mg/kg) TRH potentiated swim (21 degrees C) analgesia; the 600:1 difference in potency between routes strongly suggests central sites of neuromodulatory action. Intracerebroventricular diketopiperazine (50 micrograms), a TRH metabolite, and RX77368 (50 micrograms), a TRH analogue, also potentiated swim (21 degrees C) analgesia, effects also independent of hypothermia and basal reactivity to pain. Finally, given the excitatory interaction between TRH and acetylcholine as well as the cholinergic involvement in swim analgesia, intracerebroventricular TRH potentiated pilocarpine (10 mg/kg, IP) analgesia.  相似文献   

9.
Increasing evidence suggests there is a sex difference in opioid analgesia of pain arising from somatic tissue. However, the existence of a sex difference in visceral pain and opioid analgesia is unclear. This was examined in the colorectal distention (CRD) model of visceral pain in the current study. The visceromotor response (vmr) to noxious CRD was recorded in gonadally intact male and female rats. Subcutaneous injection of morphine dose-dependently decreased the vmr in both groups without affecting colonic compliance. However, morphine was significantly more potent in male rats than females. Because systemic morphine can act at peripheral tissue and in the central nervous system (CNS), the source of the sex difference in morphine analgesia was determined. The peripherally restricted mu-opioid receptor (MOR) antagonist naloxone methiodide dose-dependently attenuated the effects of systemic morphine. Systemic administration of the peripherally restricted MOR agonist loperamide confirmed peripherally mediated morphine analgesia and revealed greater potency in males compared with females. Spinal administration of morphine dose-dependently attenuated the vmr, but there was no sex difference. Intracerebroventricular administration of morphine also dose-dependently attenuated the vmr with significantly greater potency in male rats. The present study documents a sex difference in morphine analgesia of visceral pain that is both peripherally and supraspinally mediated.  相似文献   

10.
The efferent mechanisms by which central administration of corticotropin-releasing factor (CRF) elevates mean arterial pressure and heart rate were assessed in unanesthetized, unrestrained rats. CRF increased blood pressure and heart rate by stimulating noradrenergic sympathetic nervous outflow. CRF-induced cardiovascular changes were not dependent on anterior pituitary hormone release, adrenomedullary epinephrine secretion, the renin-angiotensin system or circulating vasopressin.  相似文献   

11.
The opioid nature of kentsin (Thr-Pro-Arg-Lys) and its ability to alter pain perception and intestinal transit were examined. Kentsin (30,000 nM) did not inhibit electrically stimulated contractions of the guinea pig ileum (GPI) or mouse vas deferens (MVD), nor did it cause a rightward displacement of the inhibitory concentration-response curves of the mu-selective opioid agonist PL017 in the GPI or the delta-selective agonist DPDPE in the MVD. Kentsin (10,000 nM) did not displace [3H] naloxone from rat brain homogenates. These results indicate that kentsin lacks opioid agonist and mu and delta opioid antagonist properties and does not bind to opioid receptors. In vivo, kentsin produced dose-dependent analgesia in both the hotplate and abdominal stretch tests when administered intracerebroventricularly (ICV) and intrathecally but not intravenously. The central analgesic effect of kentsin was partially antagonized by the opioid antagonist naloxone. Kentsin inhibited intestinal transit in a dose-dependent manner after ICV administration only. The intestinal antitransit effect of kentsin was not blocked by pretreatment with naloxone. These results suggest that kentsin acts centrally to produce both opioid and non-opioid effects. Further, the opioid-mediated analgesic effects of kentsin involve mechanisms other than direct interaction with opioid receptors.  相似文献   

12.
The activation of endogenous opioid mechanisms and their subsequent effects on rodent behavior and physiology has usually been characterized following artificial stress. In this study the more naturalistic stress arising from social conflict between male mice was used to investigate the involvement of opioid systems in post-conflict analgesic and ingestive behaviors. Both the aggressive encounters and the subsequent defeat experience resulted in marked analgesia and the induction of ingestive behaviors. Feeding and drinking responses were analogous to those observed after administrations of either the endogenous opioid peptide, β-endorphin, or the exogenous opioid agonist morphine. The ingestive behaviors following defeat or central opiate administration were blocked by the opiate antagonist naloxone. The present results support the hypothesis of a direct activation of the endogenous opiate system following social conflict.  相似文献   

13.
L W Rogers  J Giordano 《Life sciences》1990,47(11):961-969
We have recently shown the serotonin 5-HT1A receptor agonist buspirone to produce analgesia in several pain tests in rats. As a 5-HT1A agonist, buspirone may change serotonergic (5-HT) tone to alter the balance of central monoaminergic (MA) systems that function in analgesia. MA-reuptake blocking drugs have been shown to produce analgesia, both when given alone and in combination with a variety of other agents, presumably via their action upon MA neurochemistry. The present study was undertaken to examine the effect of systemic administration of the 5-HT-reuptake blocker amitriptyline (AMI: 10 mg/kg), NE-reuptake blocker desipramine (DMI: 10 mg/kg) or DA-reuptake blocker GBR-12909 (7.5 mg/kg) on patterns of analgesia produced by buspirone (1-5 mg/kg) in thermal and mechanical pain tests in rats. Neither reuptake blocking agents or buspirone, when administered alone or in combination, produced overt changes in motor activity at the doses tested. AMI alone was not analgesic in either thermal or mechanical pain tests. In both assays, AMI reduced the analgesic action of buspirone, with greater effects seen in the thermal test. When administered alone, DMI produced significant analgesia against thermal and mechanical pain. DMI significantly attenuated the analgesic action of all doses of buspirone in both pain tests. Alone, GBR-12909 did not affect nociception in thermal or mechanical tests. GBR-12909 decreased buspirone-induced analgesia at all doses in the thermal test, while having no effect on buspirone-induced analgesia against mechanical pain. These results demonstrate that facilitation of 5-HT, NE and DA function with reuptake blocking drugs did not enhance the analgesic action of buspirone. These data indicate against the adjuvant use of reuptake blocking compounds and buspirone as analgesics. Furthermore, such findings may suggest other possible non-MA substrates of buspirone-induced analgesia.  相似文献   

14.
Since past studies concerning the effects of naloxone on nociception have yielded inconclusive findings, the variables of pain test, baseline sensitivity, and stress condition were examined. Within a pure-bred strain of rats, consistent individual differences did not occur. All three measures of pain responsiveness demonstrated hyperalgesic effects of naloxone, but they differed in their capacity to reflect the effects of analgesia produced by continuous or intermittent electrical shock. By some measures, naloxone reversed the stress-induced analgesia due to intermittent shock; it did not influence the analgesia produced by continuous stress. The data support a model of pain inhibition involving both opioid and non-opioid systems and suggest that the hyperalgesic effects of naloxone can sometime gives rise to erroneous conclusions concerning apparent naloxone-reversability of putative analgesic procedures.  相似文献   

15.

Background

Surgical treatment and its consequences expose patients to stress, and here we investigated the importance of the psychological component of postoperative pain based on reports in the clinical literature.

Discussion

Postoperative pain remains a significant clinical problem. Increased pain intensity with increased demand for opioid medication, and/or a relative unresponsiveness to pain treatment was reported both when the analgesia was administered by means of conventional nurse injection regimes and patient-controlled analgesia (PCA). Both the quality of the analgesia, and the sensitivity of postoperative models for assessing analgesic efficacy could be significantly influenced. The findings could be explained by increased penetration of an algesic anxiety-related nocebo influence (which we chose to call "anxiebo") relative to its analgesic placebo counterpart. To counteract this influence, the importance of psychological effects must be acknowledged, and doctors and attending nurses should focus on maintaining trustful therapist-patient relationships throughout the treatment period. The physical mechanism of anxiebo should be further explored, and those at risk for anxiebo better characterized. In addition, future systemic analgesic therapies should be directed towards being prophylactic and continuous to eliminate surgical pain as it appears in order to prevent the anxiebo effect. Addressing anxiebo is the key to developing reproducible models for measuring pain in the postoperative setting, and to improving the accuracy of measurements of the minimum effective analgesic concentration.

Summary

Anxiebo and placebo act as counterparts postoperatively. The anxiebo state may impair clinical analgesia and reduce the sensitivity of analgesic trials. Ways to minimize anxiebo are discussed.  相似文献   

16.
目的:理论上联合使用不同机制镇痛药较镇痛药单独使用镇痛效果更完善,在妇科、骨科等手术中已有结论;笔者观察比较腹腔镜结肠手术术使用单一止痛药及联合使用不同机制镇痛药在术后镇痛的效果以及各自不良反应的发生率。方法:择期腹腔镜结肠手术患者90例,随机分为3组,每组30例。A组使用地佐辛+氟比洛酚酯行术后镇痛为多模式镇痛组;B组使用地佐辛行术后镇痛;C组使用氟比洛酚酯行术后镇痛。记录每组术后4、8、12、24 h视觉模糊评分(VAS)及术后不良反应包括嗜睡、躁动、恶心呕吐的发生率。结果:A组术后4 h、8 h的VAS评分低于B、C两组,差异有显著性,A组无嗜睡及躁动发生,发生呕吐1例,不良反应发生率A组低于B、C两组,差异有显著性。结论:地佐辛+氟比洛酚酯联合用药可安全有效应用于腹腔镜结肠手术术后镇痛,是一种有效的多模式术后镇痛方式,在减弱疼痛的放大效应及对中枢神经的作用两方面起效,因而较单独使用地佐辛及氟比洛酚酯有更好的镇痛效果,且不良反应低于单独使用地佐辛及氟比洛酚酯。  相似文献   

17.
The experiments on alert rats have shown that dissociation in opioid regulation of behavioural and hemodynamic pain manifestations is determined at a spinal opiate receptor level. Opiates and opioids suppress blood pressure nociceptive reactions to mu-opiate receptors, while sigma-opiate receptors are involved into the generation of autonomic activating effect in opiate analgesia.  相似文献   

18.
The involvement of opioid peptides in the mechanism of action of vouacapan, a new experimental compound extracted from seeds of Pterodon poligalaeflorus Benth, was investigated both in mice utilizing acetic acid writhing response and in rats utilizing inflammatory hyperalgesia induced by carrageenan and modified Randall-Selitto method. Vouacapan, in both models, caused a dose-dependent analgesia when injected p.o., s.c. and i.p. The analgesic effect was partially blocked by naloxone, nalorphine and n-methyl-nalorphine. Significant tolerance to analgesic effect was observed following repeated administration of vouacapan or morphine. On the last day of treatment, cross administration revealed symmetrical and asymmetrical cross-tolerance between vouacapan and morphine, in rats and mice, respectively. We conclude that a release of endorphins could be involved in the analgesic mechanism of vouacapan in both models tudied.  相似文献   

19.
Posterior spinal fusion for adolescent idiopathic scoliosis is one of the most invasive surgical procedures performed in children and adolescents. Because of the extensive surgical incision and massive tissue trauma, posterior spinal fusion causes severe postoperative pain. Intravenous patient-controlled analgesia with opioids has been the mainstay of postoperative pain management in these patients. However, the use of systemic opioids is sometimes limited by opioid-related side effects, resulting in poor analgesia. To improve pain management while reducing opioid consumption and opioid-related complications, concurrent use of analgesics and analgesic modalities with different mechanisms of action seems to be rational. The efficacy of intrathecal opioids and nonsteroidal anti-inflammatory drugs as components of multimodal analgesia in scoliosis surgery has been well established. However, there is either controversy or insufficient evidence regarding the use of other analgesic methods, such as continuous ketamine infusion, perioperative oral gabapentin, acetaminophen, continuous wound infiltration of local anesthetics, a single dose of systemic dexamethasone, and lidocaine infusion in this patient population. Moreover, appropriate combinations of analgesics have not been established. The aim of this literature review is to provide detailed information of each analgesic technique so that clinicians can make appropriate choices regarding pain management in patients with adolescent idiopathic scoliosis undergoing posterior spinal fusion.  相似文献   

20.
The effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on pain sensitivity, on morphine analgesia, on morphine tolerance and withdrawal were investigated in mice. The heat-radiant tail-flick test was used to assess antinociceptive threshold. Intracerebroventricular (i.c.v.) administration of PACAP alone had no effect on pain sensitivity but in a dose of 500 ng, it significantly diminished the analgesic effect of a single dose of morphine (2.25 mg/kg, s.c.). PACAP (500 ng, i.c.v.) significantly increased the chronic tolerance to morphine and enhanced the naloxone (1 mg/kg, s.c.)-precipitated withdrawal jumping. Theophylline (1 mg/kg, i.p.) pretreatment significantly enhanced the effect of PACAP on morphine analgesia but the effects of PACAP on tolerance and withdrawal were unaffected upon theophylline administration. On the grounds of our previous studies with vasoactive intestinal polypeptide (VIP), it appears that different receptors are involved in the effects of PACAP in acute and chronic morphine actions. Our results indicate that PACAP-induced actions likely participate in acute and chronic effects of morphine and suggest a potential role of PACAP in opioid analgesia, tolerance and withdrawal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号