首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
    
The threading approach to protein structure prediction suffers from the limited number of substantially different folds available as templates. A method is presented for the generation of artificial protein structures, amenable to threading, by modification of native ones. The artificial structures so generated are compared to the native ones and it is shown that, within the accuracy of the pseudoenergy function or force field used, these two types of structures appear equally useful for threading. Since a multitude of pseudonative artificial structures can be generated per native structure, the pool of pseudonative template structures for threading can be enormously enlarged by the inclusion of the pseudonative artificial structures. Proteins 28:522–529, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Recent advances in the measurement and theory of “hydration” interactions between biomolecules provide a basis on which to formulate mechanisms of biomolecular recognition. In this paper we have developed a mathematical formalism for analyzing specificity encoded in dynamic distributions of surface polar groups, a formalism that incorporates newly recognized properties of directly measured “hydration” forces. As expected, attraction between surfaces requires complementary patterns of surface polar groups. In contrast to usual expectations, thermal motion can create these complementary surface configurations. We have demonstrated that assembly can occur with an increase in conformational entropy of polar residues. Elevated temperature then facilitates recognition rather than hinders it. This mechanism might underlie some temperature-favored assembly reactions common in biological systems that are usually associated with the “hydrophobic effect” only. © 1994 Wiley-Liss, Inc.  相似文献   

3.
    
Residue contacts predicted from correlated positions in a multiple sequence alignment are often sparse and uncertain. To some extent, these limitations in the data can be overcome by grouping the contacts by secondary structure elements and enumerating the possible packing arrangements of these elements in a combinatorial manner. Strong interactions appear frequently but inconsistent interactions are down-weighted and missing interactions up-weighted. The resulting improved consistency in the predicted interactions has allowed the method to be successfully applied to proteins up to 200 residues in length which is larger than any structure previously predicted using sequence data alone.  相似文献   

4.
This paper evaluates the results of a protein structure prediction contest. The predictions were made using threading procedures, which employ techniques for aligning sequences with 3D structures to select the correct fold of a given sequence from a set of alternatives. Nine different teams submitted 86 predictions, on a total of 21 target proteins with little or no sequence homology to proteins of known structure. The 3D structures of these proteins were newly determined by experimental methods, but not yet published or otherwise available to the predictors. The predictions, made from the amino acid sequence alone, thus represent a genuine test of the current performance of threading methods. Only a subset of all the predictions is evaluated here. It corresponds to the 44 predictions submitted for the 11 target proteins seen to adopt known folds. The predictions for the remaining 10 proteins were not analyzed, although weak similarities with known folds may also exist in these proteins. We find that threading methods are capable of identifying the correct fold in many cases, but not reliably enough as yet. Every team predicts correctly a different set of targets, with virtually all targets predicted correctly by at least one team. Also, common folds such as TIM barrels are recognized more readily than folds with only a few known examples. However, quite surprisingly, the quality of the sequence-structure alignments, corresponding to correctly recognized folds, is generally very poor, as judged by comparison with the corresponding 3D structure alignments. Thus, threading can presently not be relied upon to derive a detailed 3D model from the amino acid sequence. This raises a very intriguing question: how is fold recognition achieved? Our analysis suggests that it may be achieved because threading procedures maximize hydrophobic interactions in the protein core, and are reasonably good at recognizing local secondary structure. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Energetic hot spots account for a significant portion of the total binding free energy and correlate with structurally conserved interface residues. Here, we map experimentally determined hot spots and structurally conserved residues to investigate their geometrical organization. Unfilled pockets are pockets that remain unfilled after protein-protein complexation, while complemented pockets are pockets that disappear upon binding, representing tightly fit regions. We find that structurally conserved residues and energetic hot spots are strongly favored to be located in complemented pockets, and are disfavored in unfilled pockets. For the three available protein-protein complexes with complemented pockets where both members of the complex were alanine-scanned, 62% of all hot spots (DeltaDeltaG>2kcal/mol) are within these pockets, and 60% of the residues in the complemented pockets are hot spots. 93% of all red-hot residues (DeltaDeltaG>/=4kcal/mol) either protrude into or are located in complemented pockets. The occurrence of hot spots and conserved residues in complemented pockets highlights the role of local tight packing in protein associations, and rationalizes their energetic contribution and conservation. Complemented pockets and their corresponding protruding residues emerge among the most important geometric features in protein-protein interactions. By screening the solvent, this organization shields backbone hydrogen bonds and charge-charge interactions. Complemented pockets often pre-exist binding. For 18 protein-protein complexes with complemented pockets whose unbound structures are available, in 16 the pockets are identified to pre-exist in the unbound structures. The root-mean-squared deviations of the atoms lining the pockets between the bound and unbound states is as small as 0.9A, suggesting that such pockets constitute features of the populated native state that may be used in docking.  相似文献   

6.
    
NMR offers the possibility of accurate secondary structure for proteins that would be too large for structure determination. In the absence of an X-ray crystal structure, this information should be useful as an adjunct to protein fold recognition methods based on low resolution force fields. The value of this information has been tested by adding varying amounts of artificial secondary structure data and threading a sequence through a library of candidate folds. Using a literature test set, the threading method alone has only a one-third chance of producing a correct answer among the top ten guesses. With realistic secondary structure information, one can expect a 60-80% chance of finding a homologous structure. The method has then been applied to examples with published estimates of secondary structure. This implementation is completely independent of sequence homology, and sequences are optimally aligned to candidate structures with gaps and insertions allowed. Unlike work using predicted secondary structure, we test the effect of differing amounts of relatively reliable data.  相似文献   

7.
8.
The essential features of the in vitro refolding of myoglobin are expressed in a solvable physical model. Alpha helices are taken as the fundamental collective coordinates of the system, while the refolding is assumed to be mainly driven by solvent-induced hydrophobic forces. A quantitative model of these forces is developed and compared with experimental and theoretical results. The model is then tested by being employed in a simulation scheme designed to mimic solvent effects. Realistic dynamic trajectories of myoglobin are shown as it folds from an extended conformation to a close approximation of the native state. Various suggestive features of the process are discussed. The tenets of the model are further tested by folding the single-chain plant protein leghemoglobin. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Since December 2001, we have been conducting a project to isolateand determine entire sequences of mouse KIAA cDNA clones, whichencode polypeptides corresponding to human KIAA proteins. Theultimate goal of this project has been elucidation of the functionsof KIAA proteins. To address this issue, we have been generating‘libraries’ of antibodies against mKIAA proteins.We have, to date, already generated >800 antibodies. Usingour ‘libraries’ of antibodies, we are now identifyingendogenous mKIAA protein–protein interactions. In thepresent study, novel interactions were identified by MS/MS analysisfollowing immunoprecipitation with anti-mKIAA antibodies. Theinteractions with biologically known molecules should enableus to predict the function of mKIAA/KIAA proteins, includinghypothetical proteins identified in our cDNA project. Theseinteractions are subsequently used for construction of an intracellularpathway related to the mKIAA protein, and the pathway is distributedthrough the InCeP (IntraCellular Pathway based on mKIAA protein–proteininteractions) database. Users can freely access the InCeP throughthe internet and download the graphical display as well as thecurated information.  相似文献   

10.
    
Chen H  Kihara D 《Proteins》2011,79(1):315-334
Computational protein structure prediction remains a challenging task in protein bioinformatics. In the recent years, the importance of template-based structure prediction is increasing because of the growing number of protein structures solved by the structural genomics projects. To capitalize the significant efforts and investments paid on the structural genomics projects, it is urgent to establish effective ways to use the solved structures as templates by developing methods for exploiting remotely related proteins that cannot be simply identified by homology. In this work, we examine the effect of using suboptimal alignments in template-based protein structure prediction. We showed that suboptimal alignments are often more accurate than the optimal one, and such accurate suboptimal alignments can occur even at a very low rank of the alignment score. Suboptimal alignments contain a significant number of correct amino acid residue contacts. Moreover, suboptimal alignments can improve template-based models when used as input to Modeller. Finally, we use suboptimal alignments for handling a contact potential in a probabilistic way in a threading program, SUPRB. The probabilistic contacts strategy outperforms the partly thawed approach, which only uses the optimal alignment in defining residue contacts, and also the re-ranking strategy, which uses the contact potential in re-ranking alignments. The comparison with existing methods in the template-recognition test shows that SUPRB is very competitive and outperforms existing methods.  相似文献   

11.
The detection of remote homolog pairs of proteins using computational methods is a pivotal problem in structural bioinformatics, aiming to compute protein folds on the basis of information in the database of known structures. In the last 25 years, several methods have been developed to tackle this problem, based on different approaches including sequence-sequence alignments and/or structure comparison. In this article, we will briefly discuss When, Why, Where and How (WWWH) to perform remote homology search, reviewing some of the most widely adopted computational approaches. The specific aim is highlighting the basic criteria implemented by different research groups and commenting on the status of the art as well as on still-open questions.  相似文献   

12.
When a protein sequence does not share any significant sequence similarity with a protein of known structure, homology modeling cannot be applied. However, many novel and interesting methods, such as secondary structure prediction, fold recognition, and prediction of long-range interactions, are being developed and have been shown to be reasonably successful in predicting protein structures from sequence data and evolutionary information. The a priori evaluation of the correctness of a prediction obtained by one of these methods is however often problematic. Consequently, it is important to use all available information provided by as many different methods as possible and all the available experimental data about the protein of interest, since the consistency of the results is indicative of the reliability of the prediction. Hence the need has arisen for suitable tools able to compare results provided by different methods and evaluate their consistency. We have therefore constructed GLASS, a general platform to read, visualize, compare, and evaluate prediction results from many different sources and to project these prediction results into three dimensions. In addition, GLASS allows the comparison of selected parameters calculated for a model with the distribution observed in real protein structures, thus providing an easy way to test new methods for evaluating the likelihood of different structural models. GLASS can be considered as a “workbench” for structural predictions useful to both experimentalists and theoreticians. Proteins 30:339–351, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
The dimeric yeast protein Ure2 shows prion-like behaviour in vivo and forms amyloid fibrils in vitro. A dimeric intermediate is populated transiently during refolding and is apparently stabilized at lower pH, conditions suggested to favour Ure2 fibril formation. Here we present a quantitative analysis of the effect of pH on the thermodynamic stability of Ure2 in Tris and phosphate buffers over a 100-fold protein concentration range. We find that equilibrium denaturation is best described by a three-state model via a dimeric intermediate, even under conditions where the transition appears two-state by multiple structural probes. The free energy for complete unfolding and dissociation of Ure2 is up to 50 kcal mol(-1). Of this, at least 20 kcal mol(-1) is contributed by inter-subunit interactions. Hence the native dimer and dimeric intermediate are significantly more stable than either of their monomeric counterparts. The previously observed kinetic unfolding intermediate is suggested to represent the dissociated native-like monomer. The native state is stabilized with respect to the dimeric intermediate at higher pH and in Tris buffer, without significantly affecting the dissociation equilibrium. The effects of pH, buffer, protein concentration and temperature on the kinetics of amyloid formation were quantified by monitoring thioflavin T fluorescence. The lag time decreases with increasing protein concentration and fibril formation shows pseudo-first order kinetics, consistent with a nucleated assembly mechanism. In Tris buffer the lag time is increased, suggesting that stabilization of the native state disfavours amyloid nucleation.  相似文献   

14.
Sucha Sudarsanam 《Proteins》1998,30(3):228-231
One of the most important questions in the protein folding problem is whether secondary structures are formed entirely by local interactions. One way to answer this question is to compare identical subsequences of proteins to see if they have identical structures. Such an exercise would also reveal a lower limit on the number of amino acids needed to form unique secondary structures. In this context, we have searched the April 1996 release of the Protein Data Bank for sequentially identical subsequences of proteins and compared their structures. We find that identical octamers can have different conformations. In addition, there are several examples of identical heptamers with different conformations, and the number of identical hexamers with different conformations has increased since the previous PDB releases. These observations imply that secondary structure can be formed entirely by non-local interactions and that an identical match of up to eight amino acids may not imply structural similarity. In addition to the larger context of the protein folding problem, these observations have implications for protein structure prediction methods. Proteins 30:228–231, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
PKB: a program system and data base for analysis of protein structure   总被引:2,自引:0,他引:2  
S H Bryant 《Proteins》1989,5(3):233-247
PKB is a computer program system that combines a data base of three-dimensional protein structures with a series of algorithms for pattern recognition, data analysis, and graphics. By typing relatively simple commands the user may search the data base for instances of a structural motif and analyze in detail the set of individual structures that are found. The application of PKB to the study of protein folding is illustrated in three examples. The first analysis compares the conformations observed for a short sequential motif, sequences similar to the cell-attachment signal Arg-Gly-Asp. The second compares sequences observed for a conformational motif, a 16-residue beta alpha beta unit. The third analysis considers a population of substructures containing ion-pair interactions, examining the relationship of frequency of occurrence to calculated electrostatic energy.  相似文献   

16.
Yo Matsuo  Ken Nishikawa 《Proteins》1995,23(3):370-375
A protein fold recognition method was tested by the blind prediction of the structures of a set of proteins. The method evaluates the compatibility of an amino acid sequence with a three-dimensional structure using the four evaluation functions: side-chain packing, solvation, hydrogen-bonding, and local conformation functions. The structures of 14 proteins containing 19 sequences were predicted. The predictions were compared with the experimental structures. The experimental results showed that 9 of the 19 target sequences have known folds or portions of known folds. Among them, the folds of Klebsiella aerogenes urease β subunit (KAUB) and pyruvate phosphate dikinase domain 4 (PPDK4) were successfully recognized; our method predicted that KAUB and PPDK4 would adopt the folds of macromomycin (Ig-fold) and phosphoribosylanthra-nilate isomerase:indoleglycerol-phosphate synthase (TIM barrel), respectively, and the experimental structure revealed that they actually adopt the predicted folds. The predictions for the other targets were not successful, but they often gave secondary structural patterns similar to those of the experimental structures. © 1995 Wiley-Liss, Inc.  相似文献   

17.
QMEAN: A comprehensive scoring function for model quality assessment   总被引:3,自引:0,他引:3  
  相似文献   

18.
Recently we developed methods for the construction of knowledge-based mean fields from a data base of known protein structures. As shown previously, this approach can be used to calculate ensembles of probable conformations for short fragments of polypeptide chains. Here we develop procedures for the assembly of short fragments to complete three-dimensional models of polypeptide chains. The amino acid sequence of a given protein is decomposed into all possible overlapping fragments of a given length, and an ensemble of probable conformations is calculated for each fragment. The fragments are assembled to a complete model by choosing appropriate conformations from the individual ensembles and by averaging over equivalent angles. Finally a consistent model is obtained by rebuilding the conformation from the average angles. From the average angles the local variability of the structure can be calculated, which is a useful criterion for the reliability of the model. The procedure is applied to the calculation of the local backbone conformations of myoglobin and lysozyme whose structures have been solved by X-ray analysis and thymosin beta 4, a polypeptide of 43 amino acid residues whose structure was recently investigated by NMR spectroscopy. We demonstrate that substantial fractions of the calculated local backbone conformations are similar to the experimentally determined structures.  相似文献   

19.
    
Karchin R  Cline M  Karplus K 《Proteins》2004,55(3):508-518
Residue burial, which describes a protein residue's exposure to solvent and neighboring atoms, is key to protein structure prediction, modeling, and analysis. We assessed 21 alphabets representing residue burial, according to their predictability from amino acid sequence, conservation in structural alignments, and utility in one fold-recognition scenario. This follows upon our previous work in assessing nine representations of backbone geometry.1 The alphabet found to be most effective overall has seven states and is based on a count of C(beta) atoms within a 14 A-radius sphere centered at the C(beta) of a residue of interest. When incorporated into a hidden Markov model (HMM), this alphabet gave us a 38% performance boost in fold recognition and 23% in alignment quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号