首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study is to measure the oxygen partial pressure (pO2) in developing chicken tissues, namely, in the cerebral hemispheres, liver, m. pectoralis, and m. gastrocnemius, and to estimate the correlation of pO2 with the earlier measured values (laser Doppler flowmetry) of volume blood flow (BF) in these organs. We have studied 10-, 15-, and 19-day-old embryos and 4-day-old chickens anesthetized with urethane. The pO2 has been measured in the surface layers of organs with a membrane amperometric Clark-type O2 electrode (cathode diameter of approximately 50 μm) placed in the center of the sensor unit (outer diameter of 3.4 mm). Noticeable distinctions between both the tissue pO2 values in different organs and the dynamics of their changes during the observation time have been recorded. The following differences are the most important: (1) the lowest pO2} {cm(and BF) is observed in the brain and, especially, in the liver of 10-day-old embryos; (2) in the subsequent period of embryogenesis, the pO2 in the brain increases 1.9-fold (BF also increases), falls 1.7-fold in m. pectoralis, and displays minor changes in the liver and m. gastrocnemius on the background of constant BF value in the liver and both muscles; and (3) after hatching, pO2 in the liver and m. pectoralis increases severalfold (BF increases too) but does not change in a statistically significant manner in the brain and m. gastrocnemius despite an increase in BF (more pronouncedly in the muscle). Two possible mechanisms underlying the changes in the tissue pO2 in developing chicken organs have been proposed: one is determined by the specific features of intracardiac blood flows and the other is associated with the oxyhemoglobin dissociation pattern in the blood capillary circulation in the organs, determined by the specific features in its oxidative metabolism.  相似文献   

2.
In chicken Leghorn, blood flow volume speed in pectoralis and gastrocnemius muscles was measured on 15 and 19 day-old embryos and at the 1st and the 10th days alter hatching. It was revealed that in the last quarter of embryogenesis BF in muscles did not vary remaining in both muscles in identical limits. Similar BF parameters in pectoralis and gastrocnemius muscles and their age-dependent dynamics were observed at embryos with the detained development (with the body weight 2-fold less than the norm). After hatching, the blood flow in both muscles was grown, on the average, 2.4-fold and remained high by the 10th day, a little decreasing in the pectoralis muscle. It was shown, that increase of a muscular blood flow after hatching was accompanied by different changes of anatomic lumen of the arteries addressed in pectoralis and gastrocnemius muscles: in the former it decreased, in the latter--increased.  相似文献   

3.
The activities of several enzymes possibly implicated in lipogenesis were measured in the soluble fraction of homogenates of liver and adipose tissue of embryonic and growing chicks. The activities of adipose-tissue enzymes showed little or no change. The activities of hepatic hexose monophosphate-shunt dehydrogenases, malate dehydrogenase, 3-phosphoglyceraldehyde dehydrogenase and NAD-linked α-glycerophosphate dehydrogenase also showed little or no change. Isocitrate dehydrogenase activity in liver rose to a peak on the day of hatching and fell to half the peak value during the next 12 days, where it remained to 26 days after hatching. The activities of `malic' enzyme and citrate-cleavage enzyme showed very low stable values in embryonic liver and remarkable rises during the early part of the post-hatching period. An 85-fold increase in the activity of `malic' enzyme activity was completed in 7 days and a 15-fold increase in that of citrate-cleavage enzyme in 5 days. The activities then attained were maintained up to 26 days after hatching. 2. The increases in the activities of hepatic citrate-cleavage enzyme and `malic' enzyme occurred simultaneously with a marked increase in lipogenesis, suggesting a relationship of these enzymes to lipogenesis in chick liver. By contrast, activity of the hexose monophosphate-shunt dehydrogenases does not appear to be thus associated.  相似文献   

4.
The effect of CO2 on the cerebral circulation was assessed 24 hours after induction of unilateral brain infarction performed in the rat by injecting radioactive calibrated 50 microns microspheres into the internal carotid artery. The intracerebral distribution of microspheres and regional cerebral blood flow were measured bilaterally in 8 brain regions. In control rats, increase in arterial pCO2 to about 80 mm Hg resulted in 30 to 100% increase in flow according to the area. Cerebral blood flow was also enhanced in the embolized rats, the basal values being multiplied by a factor 1.7 in the embolized hemisphere and by a factor 1.8 in the contralateral hemisphere. These results do not provide evidence for the existence of a "steal" phenomenon between the non infarcted and infarcted hemispheres.  相似文献   

5.
Tracheal blood flow increases greater than twofold in response to eucapnic hyperventilation of dry gas in anesthetized sheep. To determine whether this occurs at normal minute ventilation, we studied sheep in which tracheal blood flow was measured in response to humid and dry gas ventilation while 1) awake and spontaneously breathing and 2) anesthetized and intubated during isocapnic mechanical ventilation. In additional sheep, three tracheal mucosal temperatures were measured during humid and dry gas mechanical ventilation to measure airway tissue cooling. Tracheal blood flow was determined by use of a left atrial injection of 15-microns-diam radiolabeled microspheres. Previously implanted flow probes on the pulmonary artery and the common bronchial artery allowed continuous recording of cardiac output and bronchial blood flow. Tracheal blood flow in awake spontaneously breathing sheep was 10.8 +/- 5.6 (SD) ml.min-1.100 g wet wt-1 while humid gas was breathed, and it was unchanged with dry gas. In contrast, isocapnic ventilation of intubated animals with dry gas resulted in a 10-fold increase in blood flow to the most proximal two-ring tracheal segment compared with that seen while humid gases were spontaneously ventilated [101 +/- 75 vs. 11 +/- 6 (SD) ml.min-1.100 g-1, P less than 0.05]. Despite a 10-fold increase in proximal tracheal blood flow, there was no response in distal tracheal and bronchial blood flow, as indicated by no change in the common bronchial artery blood flow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
Lactate concentration in blood, liver, yolk, amniotic and allantoic fluid and blood pyruvate was measured in embryos in the final week of incubation. Blood lactate was low up to day 18. The blood lactate/pyruvate ratio and liver lactate increased from day 19 until hatching. From day 14 to 19, lactate concentration in amniotic fluid remained constant, it increased 2-fold in yolk and 10-fold in allantoic fluid. There was only a 48% net accumulation of lactate in the three cavities. In conclusion, fowl embryos do not turn to anaerobic metabolism until the hatching process starts on day 19.  相似文献   

8.
The development of blood vessels and growth of different tissue compartments in the avian nasal mucosa were studied in chickens from hatching to 5 months of age. The vascularity of the rostral and middle nasal conchae increased about 4-fold, while there was a progressive decrease in the relative size of the epithelium and connective tissue compartments, during the maturation period. Arteriovenous anastomoses (AVAs) were present already at hatching and their density increased 3-fold during the second week of posthatching development. The seromucous glands form by a process of invagination of the epithelium, which occurs predominantly during the first week after hatching. The glands continue to grow in size and an increasing fraction of the cells becomes mucous-secreting. The observations are discussed in relation to the role of the nasal mucosa in temperature regulation and conditioning of the inhaled air.  相似文献   

9.
We evaluated whether prior training would improve collateral blood flow (BF) to the calf muscles after acute-onset occlusion of the femoral artery. Exercise training was performed in the absence of any vascular occlusion. Adult male Sprague-Dawley rats ( approximately 325 g) were kept sedentary (n = 14), limited to cage activity, or exercise trained (n = 14) for 6 wk by treadmill running. Early in the day of measurement, animals were surgically prepared for BF determination, and the femoral arteries were occluded bilaterally. Four to five hours later, collateral BF was determined twice during treadmill running with the use of (141)Ce and (85)Sr microspheres: first, at a demanding speed and, second, after a brief rest and at a higher speed. The absence of any further increase in BF at the higher speed indicated that maximal collateral BF was measured. Prior training increased calf muscle BF by approximately 70% compared with sedentary animals; however, absolute BF remained below values previously observed in animals with a well-developed collateral vascular tree. Thus prior training appeared to optimize the use of the existing collateral circuit. This implies that altered vasoresponsiveness induced in normal nonoccluded vessels with exercise training serves to improve collateral BF to the periphery.  相似文献   

10.
Cerebral blood flow in the fetal guinea-pig   总被引:1,自引:0,他引:1  
To measure brain blood flow in the fetal guinea-pig, radioactive microspheres were injected in the lateral saphenous vein whilst a reference sample of blood was withdrawn from the right axillary artery. Measurements were made near term of pregnancy, on the 60th-66th day, during anaesthesia with pentobarbitone and diazepam. Fetal blood pressure was 4.25 +/- 0.12 kPa and fetal heart rate was 250 +/- 7 beats per min. The arterial oxygen content varied between 1.9-5.1 mmol 1(-1). Blood flow to the whole brain (mean 1.13 +/- 0.14 ml min-1 g-1) was significantly correlated to the reciprocal of arterial oxygen content (r = 0.84). Four regions of the brain were examined: the cerebral hemispheres, the cerebellum, the thalamus and midbrain, and the pons and medulla. In each region blood flow was inversely related to arterial oxygen content (r = 0.80-0.83) but the rate of perfusion of the brain stem was greater than that of the cerebral hemispheres or cerebellum.  相似文献   

11.
1. Chicken liver transthyretin cDNA hybridizes strongly with choroid plexus transthyretin mRNA from chickens, pigeons, quails and ducks. 2. In the chicken at hatching the choroid plexus has reached 70%, total brain 30%, and liver 5.8% of their organ masses in adults. 3. The proportion of transthyretin mRNA in total RNA is 0.45-times the adult value in the choroid plexus of the chicken at hatching. 4. In the liver at hatching, the proportion of transthyretin mRNA in total RNA is 1.1-times the value in adult chickens. 5. The pattern of maturation of transthyretin gene expression in chicken liver is comparable to that in precocial, but differs from that in altricial mammals.  相似文献   

12.
Fifteen min after resumption of the blood flow in the common carotid arteries the arrest of which was caused by ligation, a considerable intensification of the blood supply in the hemispheres, diencephalon and the midbrain and its simultaneous reduction in the cerebellum and the medulla oblongata occurred. Sixty min later the cerebral blood supply in all the parts of the brain under study recovered completely, except the hemispheres. The complete postischemic recovery of the phospholipid metabolism intensity occurred in the brain regions showing a considerable diminution of the phospholipid metabolism during the ischemic period.  相似文献   

13.
The effect of the method of heart catheterization on the measurement of cerebral blood flow (CBF) with radioactive microspheres was evaluated during various experimental procedures in male Sprague-Dawley rats. Catheters were inserted into the left ventricle via the right carotid or right subclavian artery or directly into the left atrium for microsphere injections. CBF was measured in cerebral cortical and subcortical tissues under control anesthetized (70 % N2O, 30 % O2), hypoxic or hypercapnic test conditions. Under control conditions, CBF was similar in the right vs the left cerebral hemisphere in subclavian artery and atrial catheterized rats but was greater in the left vs the right cortex in carotid catheterized animals (p<.05). During hypoxia and hypercapnia CBF increased equally in both cerebral hemispheres in atrial catheterized rats. The increase in CBF was significantly attenuated in the cerebral hemisphere ipsilateral to carotid catheterization during hypoxia and hypercapnia, although the percentage increase in flow was similar in both hemispheres. The results indicate the limitations of measuring regional CBF changes under experimental test conditions in rats with a ligated carotid artery and suggest that atrial catheterization is the method of choice when comparable changes in CBF are desired in both cerebral hemispheres.  相似文献   

14.
S Ferrari  R Battini  E Drusiani 《Life sciences》1989,45(14):1247-1253
A BamHI-HindIII restriction fragment containing the 5'-terminal portion of the gene encoding chicken Calbindin D28K was sequenced and used as a probe in Northern-blot hybridizations to RNA extracted from the brain and intestine of chickens at various stages of development. In both tissues Calbindin D28K mRNA consists of a family of three species, which differ by size. In the intestine Calbindin D28K mRNAs appear at hatching and reach a peak at day 7. In the brain the same RNA species are easily detected at least 7 days before hatching, show a moderate increase at hatching and remain essentially constant during the first 10 days of adult life. The concentration of Calbindin D28K mRNAs in the intestine is strictly dependent on Vitamin D, while it is not in the cerebellum.  相似文献   

15.
The aim of the study was to determine changes in the blood flow in arterial trunks (coming out of the heart of chickens) by changes of the lumen of these arteries during embryogenesis (on the 10th, 15th, and 19th days) and 6 days after the hatching. For this purpose, posthumous morphometry of aorta, pulmonary arteries, and arterial (Botallo’s) ducts (AD) from their exit from the heart until final extraorgan branching was conducted. It was demonstrated that, in this period, (1) initial lumens of aorta and pulmonary arteries are equal to each other and are equally increased (with temporary stop in last quarter of embryogenesis) with an increase of the body weight (BW); (2) the portion of the right ventricle in a total blood circulation minute volume (BCMV) is somewhat smaller than the portion of the left ventricle, but it approaches equality to it by the end of embryogenesis; (3) with the growth of embryos, the portion of total BCMV flowing through the anterior (before the inflow of AD into the aorta) part of the body decreases (from 41 to 33%); that in the average part increases (from 17 to 31%); that in the posterior part (after bifurcation of aorta), where chorioallantoic membrane (CAM) is located, remains almost unchanged; (4) after the hatching (and disappearance of CAM), BCMV of the left ventricle multiply increases due to the junction of two blood flows from the heart (through the ascending aorta and AD) into a single flow, which flows sequentially by lesser and greater circulations, resulting in multiple increase in the organ blood flow.  相似文献   

16.
1. Human APP cDNA hybridized to a 3.5 kb mRNA in liver and brain RNA from chickens, pigeons, quail and ducks as well as in RNA from choroid plexus of chicken and quail. In contrast to all other species hitherto examined a 1.6 kb mRNA hybridizing to APP cDNA was found in abundant amounts in RNA from chicken and quail livers. 2. In the chicken, before hatching, the levels of APP mRNA in total RNA from liver and choroid plexus were higher than those in RNA from liver and choroid plexus of adults. However, RNA from the rest of the brain of chicken embryos contained less APP mRNA than RNA from brain of adults. 3. In the chicken, between 10 and 40 days after hatching, APP mRNA levels in RNA from liver were higher than adult levels, APP mRNA levels in RNA from choroid plexus were similar to adult levels and APP mRNA levels in RNA from the rest of brain were below the adult levels.  相似文献   

17.
Utilizing RNA blot hybridization and immunoblotting techniques, the changes of the hepatic contents of acetyl-CoA carboxylase mRNA and of the enzyme protein in growing chicks have been investigated. In the post-hatching period, the hepatic mRNA level markedly increased at least 70-fold when compared to that before hatching. This increase was not observed in chicks receiving no diet. These changes were closely paralleled with the rise of the hepatic content of acetyl-CoA carboxylase protein in chicks up to 10 days old. Neither the acetyl-CoA carboxylase mRNA level nor the enzyme quantity significantly changed in heart. It is concluded from these results that the developmental regulation of acetyl-CoA carboxylase in the post-hatching period of chicks is tissue specific and occurs primarily at a pretranslational step. The content of acetyl-CoA carboxylase mRNA in adult chicken liver was low, which is comparable to those in embryos at 3 days before hatching and chicks at hatching day. Although acetyl-CoA carboxylase mRNA was detected in adult chicken brain, heart, lung, kidney, uropygial gland, spleen, testis, and chest muscle as well as liver, the mRNA level in these tissues was much lower than that in liver of growing chicks.  相似文献   

18.
The pattern of chick liver and brain 3-hydroxy-3-methylglutaryl-CoA reductase and its relationship with changes in microsomal membrane fluidity was studied during embryonic and postnatal development. A peak of brain activity was found at 19 days of embryonic development, while liver activity only increased after hatching. A significant increase in cholesterol content of brain microsomes occurred at about 14 days of incubation, decreasing afterwards. No significant variations were observed in liver microsomes during the same period. A similar profile was found in the phospholipid content of both brain and liver microsomes. The cholesterol/lipidic phosphorus molar ratio of brain and liver microsomes did not exhibit significant changes throughout embryonic and postnatal development. These results demonstrate that membrane-mediated control does not regulate the evolution of reductase activity during this developmental period.  相似文献   

19.
While brain development during embryogenesis has been extensively studied in precocial birds, there is no information available on altricial birds. Thus, the concentrations of the catecholamines norepinephrine (NE), epinephrine (E), and dopamine (DA), and the dopaminergic metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and 4-hydroxy-3-methoxyphenylacetic acid (HVA) were determined at several stages during the late embryonic period (E13, E14, E15, E16, E17 and E18) and the day-of-hatch (P0) in the pigeon telencephalon, cerebellum, optic lobe, and brainstem. The concentrations of all catecholamines were higher than those reported in chicken embryos. During embryogenesis, NE, E, DOPAC and HVA concentrations in the various brain parts increased throughout embryonic development until shortly before hatching at which time they decreased. DA, however, continued to increase through hatching in the brainstem, and the changes in DA concentrations varied in several brain parts. In conclusion, catecholamine concentrations in the various brain parts tended to increase with embryonic age, and the concentrations were higher than those in chickens. Furthermore, brain catcholamine metabolism changed at hatch in pigeons.  相似文献   

20.
We have cloned the murine glutamine synthetase (GS) gene and measured GS enzyme activity and mRNA in five tissues (retina, brain, liver, kidney, and skeletal muscle) during perinatal development. Retinal GS enzyme activity increases 200-fold between Day 1 and Day 21 and is accompanied by an increase in the level of GS mRNA; developmental regulation in other tissues is much less dramatic. Based on Southern blotting analysis, a single GS gene gives rise to the tissue-specific patterns of GS mRNA expression. The increase in murine retinal GS observed during perinatal development is similar in magnitude to that observed in the chicken retina just prior to hatching. In the embryonic chicken retina, glucocorticoid hormones mediate a large increase in the level of GS mRNA. However, although glucocorticoids induce a 12-fold increase in GS mRNA in murine skeletal muscle, expression of the retinal enzyme and mRNA is only modestly glucocorticoid-inducible in the mouse. Therefore, despite the hormonal responsiveness of the murine GS gene, it is not likely that glucocorticoids are important physiological modulators of the developmental rise in murine retinal GS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号