首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A group of luminescent strains of marine bacteria Aliivibrio logei has been isolated (basins of the Okhotsk, White and Bering Seas). Strains A. logei were shown to be psycrophilic bacteria with an optimal growth temperature of approximately 15°C. Bioluminescent characteristics of strains were studied, and the expression of lux genes was shown to be regulated by the “quorum sensing” system. The A. logei lux operon was cloned in Escherichia coli cells and the structure of this operon and its nucleotide sequence were determined. The structure of A. logei lux operon differs markedly from that in the closely related species of luminescent marine bacteria A. fischeri. In the structure of the A. logei lux operon, the luxI gene is absent in front of luxC, and a fragment containing luxR2-luxI genes is located immediately after luxG gene. Luminescent psycrophilic marine bacteria of A. logei are assumed to be widely distributed in cold waters of northern seas.  相似文献   

3.
The 5' and 3' ends of the lux mRNA of Vibrio harveyi, which extends over 8 kilobases, have been mapped, and two new genes, luxG and luxH, were identified at the 3' end of the lux operon. Both S1 nuclease and primer extension mapping demonstrated that the start site for the lux mRNA was 26 bases before the initiation codon of the first gene, luxC. The promoter region contained a typical -10 but not a recognizable -35 consensus sequence. By using S1 nuclease mapping the mRNA was found to be induced in a cell density- and arginine-dependent manner. The DNA downstream of the five known V. harveyi lux genes, luxCDABE, was sequenced and found to contain coding regions for two new genes, designated luxG and luxH, followed by a classical rho-independent termination signal for RNA polymerase. luxG codes for a protein of 233 amino acids with a molecular weight of 26,108, and luxH codes for a protein of 230 amino acids with a molecular weight of 25,326. The termination signal is active in vivo as demonstrated by 3' S1 nuclease mapping, confirming that the two genes are part of the V. harveyi lux operon. Comparison of the luxG amino acid sequence with coding regions immediately downstream from luxE in other luminescent bacteria has demonstrated that this gene may be a common component of the luminescent systems in different marine bacteria.  相似文献   

4.
The complete nucleotide sequences of the luxA to luxE genes, as well as the flanking regions, were determined for the lux operons of two Xenorhabdus luminescens strains isolated from insects and humans. The nucleotide sequences of the corresponding lux genes (luxCDABE) were 85 to 90% identical but completely diverged 350 bp upstream of the first lux gene (luxC) and immediately downstream of the last lux gene (luxE). These results show that the luxG gene found immediately downstream of luxE in luminescent marine bacteria is missing at this location in terrestrial bacteria and raise the possibility that the lux operons are at different positions in the genomes of the X. luminescens strains. Four enteric repetitive intergenic consensus (ERIC) or intergenic repetitive unit (IRU) sequences of 126 bp were identified in the 7.7-kbp DNA fragment from the X.luminescens strain isolated from humans, providing the first example of multiple ERIC structures in the same operon including two ERIC structures at the same site. Only a single ERIC structure between luxB and luxE is present in the 7-kbp lux DNA from insects. Analysis of the genomic DNAs from five X. luminescens strains or isolates by polymerase chain reaction has demonstrated that an ERIC structure is between luxB and luxE in all of the strains, whereas only the strains isolated from humans had an ERIC structure between luxD and luxA. The results indicate that there has been insertion and/or deletion of multiple 126-bp repetitive elements in the lux operons of X.luminescens during evolution.  相似文献   

5.
The DNA downstream of the lux structural genes in the Vibrio fischeri lux operon has been sequenced and a new lux gene (luxG) has been identified. A hairpin loop that begins with a poly(A) region and ends with a poly(T) region and thus can function as a bidirectional termination site for luxG and a convergent gene is located immediately downstream of luxG. 3' S1 nuclease mapping has demonstrated that the luxG mRNA was induced in a cell-density-dependent fashion consistent with it being part of the lux system and that the lux mRNA terminated immediately after the hairpin loop. The mRNA coded by an open reading frame convergent to luxG on the complementary strand was also shown by S1 nuclease mapping to overlap the lux mRNA for at least 20 nucleotides before termination. Expression of DNA containing the hairpin loop, placed between a strong promoter and a reporter gene and transferred by conjugation into luminescent bacteria, demonstrated the very high efficiency of termination by this hairpin loop oriented in either direction. These results also demonstrate that the organization of the genes at the 3' ends of the lux operons of V. fischeri and V. harveyi has clearly diverged.  相似文献   

6.
The organization of the lux structural genes (A-E) in Photobacterium phosphoreum has been determined and a new gene designated as luxF discovered. The P. phosphoreum luminescence system was cloned into Escherichia coli using a pBR322 vector and identified by cross-hybridization with Vibrio fischeri lux DNA. The lux genes were located by specific expression of P. phosphoreum DNA fragments in the T7-phage polymerase/promoter system in E. coli and identification of the labeled polypeptide products. The luxA and luxB gene products (luciferase subunits) were shown to catalyze light emission in the presence of FMNH2, O2, and aldehyde. The luxC, luxD, and luxE gene products (fatty acid reductase subunits) responsible for aldehyde biosynthesis could be specifically acylated with 3H-labeled fatty acids. The order of the lux genes in P. phosphoreum was found to be luxCDABFE with luxF coding for a new polypeptide of 26 kDa. The presence of a new gene in the P. phosphoreum luminescence system between luxB and luxE as compared to the organization of the lux structural gene in V. fischeri and Vibrio harveyi (luxCDABE) demonstrates that the luminescent systems in the marine bacteria have significantly diverged. The discovery of the luxF gene provides the basis for elucidating the role of its gene product in the expression of luminescence in different marine bacteria.  相似文献   

7.
Horizontal gene transfer (HGT) is thought to occur frequently in bacteria in nature and to play an important role in bacterial evolution, contributing to the formation of new species. To gain insight into the frequency of HGT in Vibrionaceae and its possible impact on speciation, we assessed the incidence of interspecies transfer of the lux genes (luxCDABEG), which encode proteins involved in luminescence, a distinctive phenotype. Three hundred three luminous strains, most of which were recently isolated from nature and which represent 11 Aliivibrio, Photobacterium, and Vibrio species, were screened for incongruence of phylogenies based on a representative housekeeping gene (gyrB or pyrH) and a representative lux gene (luxA). Strains exhibiting incongruence were then subjected to detailed phylogenetic analysis of horizontal transfer by using multiple housekeeping genes (gyrB, recA, and pyrH) and multiple lux genes (luxCDABEG). In nearly all cases, housekeeping gene and lux gene phylogenies were congruent, and there was no instance in which the lux genes of one luminous species had replaced the lux genes of another luminous species. Therefore, the lux genes are predominantly vertically inherited in Vibrionaceae. The few exceptions to this pattern of congruence were as follows: (i) the lux genes of the only known luminous strain of Vibrio vulnificus, VVL1 (ATCC 43382), were evolutionarily closely related to the lux genes of Vibrio harveyi; (ii) the lux genes of two luminous strains of Vibrio chagasii, 21N-12 and SB-52, were closely related to those of V. harveyi and Vibrio splendidus, respectively; (iii) the lux genes of a luminous strain of Photobacterium damselae, BT-6, were closely related to the lux genes of the lux-rib(2) operon of Photobacterium leiognathi; and (iv) a strain of the luminous bacterium Photobacterium mandapamensis was found to be merodiploid for the lux genes, and the second set of lux genes was closely related to the lux genes of the lux-rib(2) operon of P. leiognathi. In none of these cases of apparent HGT, however, did acquisition of the lux genes correlate with phylogenetic divergence of the recipient strain from other members of its species. The results indicate that horizontal transfer of the lux genes in nature is rare and that horizontal acquisition of the lux genes apparently has not contributed to speciation in recipient taxa.  相似文献   

8.
9.
The lux genes required for expression of luminescence have been cloned from a terrestrial bacterium, Xenorhabdus luminescens, and the nucleotide sequences of the luxA and luxB genes coding for the alpha and beta subunits of luciferase determined. The lux gene organization was closely related to that of marine bacteria from the Vibrio genus with the luxD gene being located immediately upstream and the luxE downstream of the luciferase genes, luxAB. A high degree of homology (85% identity) was found between the amino acid sequences of the alpha subunits of X. luminescens luciferase and the luciferase from a marine bacterium, Vibrio harveyi, whereas the beta subunits of the two luciferases had only 60% identity in amino acid sequence. The similarity in the sequences of the alpha subunits of the two luciferases was also reflected in the substrate specificities and turnover rates with different fatty aldehydes supporting the proposal that the alpha subunit almost exclusively controls these properties. The luciferase from X. luminescens was shown to have a remarkably high thermal stability being stable at 45 degrees C (t 1/2 greater than 3 h) whereas V. harveyi luciferase was rapidly inactivated at this temperature (t 1/2 = 5 min). These results indicate that the X. luminescens lux system may be the bacterial bioluminescent system of choice for application in coupled luminescent assays and expression of lux genes in eukaryotic systems at higher temperatures.  相似文献   

10.
The effect of osmotic shock on the expression of genes in the lux regulon of marine bacteria Vibrio fischeri was studied in cells of Escherichia coli. Bioluminescence of cells was shown to drastically increase, when cells were exposed to osmotic shock at the early logarithmic growth phase. The expression of lux genes induced by osmotic shock is determined by the two-component regulatory system RcsC-RcsB. A nucleotide sequence in the regulatory region of the luxR gene homologous to the RcsB-box consensus of E. coli is assumed to be a primary site for this system.  相似文献   

11.
A chromosomal fragment of bacteria Photorhabdus luminescence Zm1, which contains the lux operon, was cloned into the vector pUC18. The hybrid clone containing plasmid pXen7 with the EcoRI fragment approximately 7-kb was shown to manifest a high level of bioluminescence. By subcloning and restriction analysis of the EcoRI fragment, the location of luxCDABE genes relative to restriction sites was determined. The nucleotide sequence of the DNA fragment containing the luxA and luxB genes encoding alpha- and beta-subunits of luciferase was determined. A comparison with the nucleotide sequences of luxAB genes in Hm and Hw strains of Ph. luminescence revealed 94.5 and 89.7% homology, respectively. The enterobacterial repetitive intergenic sequence (ERIC) of 126 bp typical for Hw strains was identified in the spacer between the luxD and luxA genes. The lux operon of Zm1 is assumed to emerge through recombination between Hm and Hw strains. Luciferase of Ph. luminescence was shown to possess a high thermal stability: its activity decreased by a factor of 10 at 44 degrees C for 30 min, whereas luciferases of marine bacteria Vibrio fischeri and Vibrio harveyi were inactivated by one order of magnitude at 44 degrees C for 1 and 6 min, respectively. The lux genes of Ph. luminescence are suggested for use in gene engineering and biotechnology.  相似文献   

12.
The lux operon is an uncommon gene cluster. To find the pathway through which the operon has been transferred, we sequenced the operon and both flanking regions in four typical luminous species. In Vibrio cholerae NCIMB 41, a five-gene cluster, most genes of which were highly similar to orthologues present in Gram-positive bacteria, along with the lux operon, is inserted between VC1560 and VC1563, on chromosome 1. Because this entire five-gene cluster is present in Photorhabdus luminescens TT01, about 1.5 Mbp upstream of the operon, we deduced that the operon and the gene cluster were transferred from V. cholerae to an ancestor of Pr. luminescens. Because in both V. fischeri and Shewanella hanedai, luxR and luxI were found just upstream of the operon, we concluded that the operon was transferred from either species to the other. Because most of the genes flanking the operon were highly similar to orthologues present on chromosome 2 of vibrios, we speculated that the operon of most species is located on this chromosome. The undigested genomic DNAs of five luminous species were analysed by pulsed-field gel electrophoresis and Southern hybridization. In all the species except V. cholerae, the operons are located on chromosome 2.  相似文献   

13.
14.
The lux genes required for light expression in the luminescent bacterium Photobacterium leiognathi (ATCC 25521) have been cloned and expressed in Escherichia coli and their organization and nucleotide sequence determined. Transformation of a recombinant 9.5-kbp chromosomal DNA fragment of P. leiognathi into an E. coli mutant (43R) gave luminescent colonies that were as bright as those of the parental strain. Moreover, expression of the lux genes in the mutant E. coli was strong enough so that not only were high levels of luciferase detected in crude extracts, but the fatty-acid reductase activity responsible for synthesis of the aldehyde substrate for the luminescent reaction could readily be measured. Determination of the 7.3-kbp nucleotide sequence of P. leiognathi DNA, including the genes for luciferase (luxAB) and fatty-acid reductase (luxCDE) as well as a new lux gene (luxG) found recently in luminescent Vibrio species, showed that the order of the lux genes was luxCDABEG. Moreover, luxF, a gene homologous to luxB and located between luxB and luxE in Photobacterium but not Vibrio strains, was absent. In spite of this different lux gene organization, an intergenic stem-loop structure between luxB and luxE was discovered to be highly conserved in other Photobacterium species after luxF.  相似文献   

15.
16.
17.
Conditions that influence the luminescence of natural and recombinant luminescent bacteria in the presence of blood serum were studied. In general, blood serum quenched the luminescence of the marine Photobacterium phosphoreum and the recombinant Escherichia coli strains harboring the luminescent system genes of Photobacterium leiognathi, but enhanced the luminescence of the soil bacterium Photorhabdus luminescens Zm1 and the recombinant E. coli strain harboring the lux operon of P. luminescens Zm1. The quenching effect of blood serum increased with its concentration and the time and temperature of incubation. The components of blood serum that determine the degree and specificity of its action on bacterial luminescence were identified.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号