共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Salmonella enterica is a bacterial pathogen of humans that can proliferate within epithelial cells as well as professional phagocytes of the immune system. This ability requires an S. enterica specific locus termed Salmonella pathogenicity island 2 (SPI-2). SPI-2 encodes a type III secretion system that injects effectors encoded within the island into host cell cytosol to promote virulence. SsrAB is a two-component regulator encoded within SPI-2 that was assumed to activate SPI-2 genes exclusively. Here, it is shown that SsrB in fact activates a global regulon. At least 10 genes outside SPI-2 are SsrB regulated within epithelial and macrophage cells. Nine of these 10 SsrB-regulated genes outside SPI-2 reside within previously undescribed regions of the Salmonella genome. Most share no sequence homology with current database entries. However, one is remarkably homologous to human glucosyl ceramidase, an enzyme involved in the ceramide signalling pathway. The SsrB regulon is modulated by the two-component regulatory systems PhoP/PhoQ and OmpR/EnvZ, and is upregulated in the intracellular microenvironment. 相似文献
4.
Bacillus subtilis cysteine synthetase is a global regulator of the expression of genes involved in sulfur assimilation 总被引:2,自引:0,他引:2 下载免费PDF全文
The synthesis of L-cysteine, the major mechanism by which sulfur is incorporated into organic compounds in microorganisms, occupies a significant fraction of bacterial metabolism. In Bacillus subtilis the cysH operon, encoding several proteins involved in cysteine biosynthesis, is induced by sulfur starvation and tightly repressed by cysteine. We show that a null mutation in the cysK gene encoding an O-acetylserine-(thiol)lyase, the enzyme that catalyzes the final step in cysteine biosynthesis, results in constitutive expression of the cysH operon. Using DNA microarrays we found that, in addition to cysH, almost all of the genes required for sulfate assimilation are constitutively expressed in cysK mutants. These results indicate that CysK, besides its enzymatic role in cysteine biosynthesis, is a global negative regulator of genes involved in sulfur metabolism. 相似文献
5.
Jason W. Hoskins Charles C. Chung Aidan OBrien Jun Zhong Katelyn Connelly Irene Collins Jianxin Shi Laufey T. Amundadottir 《PLoS computational biology》2021,17(11)
Expression QTL (eQTL) analyses have suggested many genes mediating genome-wide association study (GWAS) signals but most GWAS signals still lack compelling explanatory genes. We have leveraged an adipose-specific gene regulatory network to infer expression regulator activities and phenotypic master regulators (MRs), which were used to detect activity QTLs (aQTLs) at cardiometabolic trait GWAS loci. Regulator activities were inferred with the VIPER algorithm that integrates enrichment of expected expression changes among a regulator’s target genes with confidence in their regulator-target network interactions and target overlap between different regulators (i.e., pleiotropy). Phenotypic MRs were identified as those regulators whose activities were most important in predicting their respective phenotypes using random forest modeling. While eQTLs were typically more significant than aQTLs in cis, the opposite was true among candidate MRs in trans. Several GWAS loci colocalized with MR trans-eQTLs/aQTLs in the absence of colocalized cis-QTLs. Intriguingly, at the 1p36.1 BMI GWAS locus the EPHB2 cis-aQTL was stronger than its cis-eQTL and colocalized with the GWAS signal and 35 BMI MR trans-aQTLs, suggesting the GWAS signal may be mediated by effects on EPHB2 activity and its downstream effects on a network of BMI MRs. These MR and aQTL analyses represent systems genetic methods that may be broadly applied to supplement standard eQTL analyses for suggesting molecular effects mediating GWAS signals. 相似文献
6.
7.
8.
9.
10.
11.
12.
13.
Swem LR Kraft BJ Swem DL Setterdahl AT Masuda S Knaff DB Zaleski JM Bauer CE 《The EMBO journal》2003,22(18):4699-4708
All living organisms alter their physiology in response to changes in oxygen tension. The photosynthetic bacterium uses the RegB-RegA signal transduction cascade to control a wide variety of oxygen-responding processes such as respiration, photosynthesis, carbon fixation and nitrogen fixation. We demonstrate that a highly conserved cysteine has a role in controlling the activity of the sensor kinase, RegB. In vitro studies indicate that exposure of RegB to oxidizing conditions results in the formation of an intermolecular disulfide bond and that disulfide bond formation is metal-dependent, with the metal fulfilling a structural role. Formation of a disulfide bond in vitro is also shown to convert the kinase from an active dimer into an inactive tetramer state. Mutational analysis indicates that a cysteine residue flanked by cationic amino acids is involved in redox sensing in vitro and in vivo. These residues appear to constitute a novel 'redox-box' that is present in sensor kinases from diverse species of bacteria. 相似文献
14.
Lebeau A Reverchon S Gaubert S Kraepiel Y Simond-Côte E Nasser W Van Gijsegem F 《Environmental microbiology》2008,10(3):545-559
Pathogenicity of the phytopathogenic enterobacterium Erwinia chrysanthemi , the causal agent of soft rot disease on many plants, is a complex process involving several factors whose production is regulated by a complex, intertwined regulatory network. In this work we characterized the GacA regulator, member of the GacS–GacA two-component system, as a global regulator which is required for disease expression but not for bacterial multiplication in planta during the first stages of the plant infection. GacA was shown to control the expression of plant cell wall-degrading enzymes and hrp genes in vitro . Analysis of virulence gene expression during infection of Arabidopsis thaliana revealed a coordinated expression of these virulence genes at 12 h post infection and showed that GacA is required for the appropriate production of virulence factors in planta . GacA might partly act by negatively controlling the expression of the pecT gene encoding the global repressor PecT, indicating a hierarchy in the pathways involved in the E. chrysanthemi regulatory network. 相似文献
15.
16.
17.
In the present work, further study of the genes encoding RhtB family proteins is presented. In our previous work the involvement of two family members, RhtB and RhtC, in efflux of amino acids was demonstrated. Now we investigated regulation of expression of the rhtB, rhtC, yeaS and yahN genes. It is shown that expression of these genes is under control of the global regulator Lrp, depends on the presence of some amino acids in growth medium, and increases during different physiological stresses. 相似文献
18.
19.
20.
Arabidopsis ICX1 is a negative regulator of several pathways regulating flavonoid biosynthesis genes 总被引:2,自引:0,他引:2
Flavonoid biosynthesis gene expression is controlled by a range of endogenous and environmental signals. The Arabidopsis icx1 (increased chalcone synthase expression 1) mutant has elevated induction of CHS (CHALCONE SYNTHASE) and other flavonoid biosynthesis genes in response to several stimuli. We show that ICX1 is a negative regulator of the cryptochrome 1, phytochrome A, ultraviolet (UV)-B, low temperature, sucrose, and cytokinin induction of CHS expression and/or anthocyanin accumulation, demonstrating that these pathways are regulated either directly or indirectly by at least one common component. Expression analysis of CHS and other genes (LTP, CAB, and rbcS) indicates that ICX1 functions in both seedlings and mature leaf tissue and acts principally in the epidermis, consistent with the alterations in epidermal development seen in icx1. The mutant was unaltered in the synergistic interactions between UV-B, blue, and UV-A light that regulate CHS and we propose a model of action of ICX1 in these responses. 相似文献