首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heterozygosity–fitness correlations (HFCs) are a useful tool to investigate the effects of inbreeding in wild populations, but are not informative in distinguishing between direct and indirect effects of heterozygosity on fitness-related traits. We tested HFCs in male Alpine ibex (Capra ibex) in a free-ranging population (which suffered a severe bottleneck at the end of the eighteenth century) and used confirmatory path analysis to disentangle the causal relationships between heterozygosity and fitness-related traits. We tested HFCs in 149 male individuals born between 1985 and 2009. We found that standardized multi-locus heterozygosity (MLH), calculated from 37 microsatellite loci, was related to body mass and horn growth, which are known to be important fitness-related traits, and to faecal egg counts (FECs) of nematode eggs, a proxy of parasite resistance. Then, using confirmatory path analysis, we were able to show that the effect of MLH on horn growth was not direct but mediated by body mass and FEC. HFCs do not necessarily imply direct genetic effects on fitness-related traits, which instead can be mediated by other traits in complex and unexpected ways.  相似文献   

2.
Large horns or antlers require a high energy allocation to produce and carry both physiological and social reproductive costs. Following the principle of energy allocation that implies trade-offs among fitness components, growing large weapons early in life should thus reduce future growth and survival. Evidence for such costs is ambiguous, however, partly because individual heterogeneity can counterbalance trade-offs. Individuals with larger horns or antlers may be of better quality and thus have a greater capacity to survive. We investigated trade-offs between male early horn growth and future horn growth, baseline mortality, onset of actuarial senescence, and rate of ageing in an Alpine ibex (Capra ibex ibex) population. Horn growth of males in early life was positively correlated to their horn length throughout their entire life. Cohort variation and individual heterogeneity both accounted for among-individual variation in horn length, suggesting both long-lasting effects of early life conditions and individual-specific horn growth trajectories. Early horn growth did not influence annual survival until 12 years of age, indicating that males do not invest in horn growth at survival costs over most of their lifetime. However, males with fast-growing horns early in life tended to have lower survival at very old ages. Individual heterogeneity, along with the particular life-history tactic of male ibex (weak participation to the rut until an old age after which they burn out in high mating investment), are likely to explain why the expected trade-off between horn growth and survival does not show up, at least until very old ages.  相似文献   

3.
Heterozygosity-fitness correlations (HFC) were assessed for a sample of a gilthead sea bream Sparus aurata population. Two hundred and seventy-one fish were genotyped at 22 known and novel microsatellite loci, from which correlations between the multilocus heterozygosity index (I(MLH) ) and various fitness traits (fork length, mass and specific growth rates) were calculated. Significant global HFCs were found in this sample (0·02 ≤r(2) ≤ 0·08). In addition, all the significant correlations found in this work were negative, indicating that heterozygotes had lower fitness than their homozygote counterparts. Marker location could not explain the observed HFCs. Evidence of inbreeding, outbreeding or population and family structuring was not found in this work. The presence of undetected general effects that may lead to the appearance of HFCs, however, cannot be ruled out. These results seem to be best explained by the occurrence of local effects (due to linkage) or even by possible direct locus advantages.  相似文献   

4.
Microsatellite measures of inbreeding: a meta-analysis   总被引:17,自引:0,他引:17  
Abstract Meta-analyses of published and unpublished correlations between phenotypic variation and two measures of genetic variation at microsatellite loci, multilocus heterozygosity (MLH) and mean d2, revealed that the strength of these associations are generally weak (mean r < 0.10). Effects on life-history trait variation were significantly greater than zero for both measures over all reported effect sizes ( r = 0. 0856 and 0.0479 for MLH and mean d 2, respectively), whereas effects on morphometric traits were not ( r = 0.0052 and r = 0.0038), which is consistent with the prediction that life-history traits exhibit greater inbreeding depression than morphometric traits. Effect sizes reported using mean d 2 were smaller and more variable than those reported using MLH, suggesting that MLH may be a better metric for capturing inbreeding depression most of the time. However, analyses of paired effect sizes reported using both measures from the same data did not differ significantly. Several lines of evidence suggest that published effects sizes are upwardly biased. First, effect sizes from published studies were significantly higher than those reported in unpublished studies. Second, fail-safe numbers for reported effect sizes were generally quite low, with the exception of correlations between MLH and life-history traits. Finally, the slope of the regression of effect size on sample size was negative for most sets of traits. Taken together, these results suggest that studies designed to detect inbreeding depression on a life-history trait using microsatellites will need to sample in excess of 600 individuals to detect an average effect size ( r = 0.10) with reasonable statistical power (0.80). Very few published studies have used samples sizes approaching this value.  相似文献   

5.
Males and females differ in their phenotypic optima for many traits, and as the majority of genes are expressed in both sexes, some alleles can be beneficial to one sex but harmful to the other (intralocus sexual conflict; ISC). ISC theory has recently been extended to intrasexual dimorphisms, where certain alleles may have opposite effects on the fitness of males of different morphs that employ alternative reproductive tactics (intralocus tactical conflict; ITC). Here, we use a half‐sib breeding design to investigate the genetic basis for ISC and ITC in the dung beetle Onthophagus taurus. We found positive heritabilities and intersexual genetic correlations for almost all traits investigated. Next, we calculated the intrasexual genetic correlation between males of different morphs for horn length, a sexually selected trait, and compared it to intrasexual correlations for naturally selected traits in both sexes. Intrasexual genetic correlations did not differ significantly between the sexes or between naturally and sexually selected traits, failing to support the hypothesis that horns present a reduction of intrasexual genetic correlations due to ITC. We discuss the implications for the idea of developmental reprogramming between male morphs and emphasize the importance of genetic correlations as constraints for the evolution of dimorphisms.  相似文献   

6.
In sexually dimorphic ungulates, sexual selection favoring rapid horn growth in males may be counterbalanced by a decrease in longevity if horns are costly to produce and maintain. Alternatively, if early horn growth varied with individual quality, it may be positively correlated with longevity. We studied Alpine ibex Capra ibex in the Gran Paradiso National Park, Italy, to test these alternatives by comparing early horn growth and longevity of 383 males that died from natural causes. After accounting for age at death, total horn length after age 5 was positively correlated with horn growth from two to four years. Individuals with the fastest horn growth as young adults also had the longest horns later in life. Annual horn growth increments between two and six years of age were independent of longevity for ibex whose age at death ranged from 8 to 16 years. Our results suggest that growing long horns does not constrain longevity. Of the variability in horn length, 22% could be explained by individual heterogeneity, suggesting persistent differences in phenotypic quality among males. Research on unhunted populations of sexually dimorphic ungulates documents how natural mortality varies according to horn or antler size, and can help reduce the impact of sport hunting on natural processes.  相似文献   

7.
Understanding the genetic architecture of phenotypic variation in natural populations is a fundamental goal of evolutionary genetics. Wild Soay sheep (Ovis aries) have an inherited polymorphism for horn morphology in both sexes, controlled by a single autosomal locus, Horns. The majority of males have large normal horns, but a small number have vestigial, deformed horns, known as scurs; females have either normal horns, scurs or no horns (polled). Given that scurred males and polled females have reduced fitness within each sex, it is counterintuitive that the polymorphism persists within the population. Therefore, identifying the genetic basis of horn type will provide a vital foundation for understanding why the different morphs are maintained in the face of natural selection. We conducted a genome-wide association study using ~36000 single nucleotide polymorphisms (SNPs) and determined the main candidate for Horns as RXFP2, an autosomal gene with a known involvement in determining primary sex characters in humans and mice. Evidence from additional SNPs in and around RXFP2 supports a new model of horn-type inheritance in Soay sheep, and for the first time, sheep with the same horn phenotype but different underlying genotypes can be identified. In addition, RXFP2 was shown to be an additive quantitative trait locus (QTL) for horn size in normal-horned males, accounting for up to 76% of additive genetic variation in this trait. This finding contrasts markedly from genome-wide association studies of quantitative traits in humans and some model species, where it is often observed that mapped loci only explain a modest proportion of the overall genetic variation.  相似文献   

8.
A heterozygosity–fitness correlations (HFCs) may reflect inbreeding depression, but the extent to which they do so is debated. HFCs are particularly likely to occur after demographic disturbances such as population bottleneck or admixture. We here study HFC in an introduced and isolated ungulate population of white‐tailed deer Odocoileus virginianus in Finland founded in 1934 by four individuals. A total of 422 ≥ 1‐year‐old white‐tailed deer were collected in the 2012 hunting season in southern Finland and genotyped for 14 microsatellite loci. We find significant identity disequilibrium as estimated by g2. Heterozygosity was positively associated with size‐ and age‐corrected body mass, but not with jaw size or (in males) antler score. Because of the relatively high identity disequilibrium, heterozygosity of the marker panel explained 51% of variation in inbreeding. Inbreeding explained approximately 4% of the variation in body mass and is thus a minor, although significant source of variation in body mass in this population. The study of HFC is attractive for game‐ and conservation‐oriented wildlife management because it presents an affordable and readily used approach for genetic monitoring that allowing identification of fitness costs associated with genetic substructuring in what may seem like a homogeneous population.  相似文献   

9.
Studies in a multitude of taxa have described a correlation between heterozygosity and fitness and usually conclude that this is evidence for inbreeding depression. Here, we have used multilocus heterozygosity (MLH) estimates from 15 microsatellite markers to show evidence of heterozygosity-fitness correlations (HFCs) in a long-distance migratory bird, the light-bellied Brent goose. We found significant, positive heterozygosity-heterozygosity correlations between random subsets of the markers we employed, and no evidence that a model containing all loci as individual predictors in a multiple regression explained significantly more variation than a model with MLH as a single predictor. Collectively, these results lend support to the hypothesis that the HFCs we have observed are a function of inbreeding depression. However, we do find that fitness correlations are only detectable in years where population-level productivity is high enough for the reproductive asymmetry between high and low heterozygosity individuals to become apparent. We suggest that lack of evidence of heterozygosity-fitness correlations in animal systems may be because heterozygosity is a poor proxy measure of inbreeding, especially when employing low numbers of markers, but alternatively because the asymmetries between individuals of different heterozygosities may only be apparent when environmental effects on fitness are less pronounced.  相似文献   

10.
Males are predicted to compete for reproductive opportunities, with sexual selection driving the evolution of large body size and weaponry through the advantage they confer for access to females. Few studies have explored potential trade-offs of investment in secondary sexual traits between different components of fitness or tested for sexually antagonistic selection pressures. These factors may provide explanations for observed polymorphisms in both form and quality of secondary sexual traits. We report here an analysis of selection on horn phenotype in a feral population of Soay sheep (Ovis aries) on the island of Hirta, St. Kilda, Scotland. Soay sheep display a phenotypic polymorphism for horn type with males growing either normal or reduced (scurred) horns, and females growing either normal, scurred, or no (polled) horns; further variation in size exists within horn morphs. We show that horn phenotype and the size of the trait displayed is subject to different selection pressures in males and females, generating sexually antagonistic selection. Furthermore, there was evidence of a trade-off between breeding success and longevity in normal-horned males, with both the normal horn type and larger horn size being associated with greater annual breeding success but reduced longevity. Therefore, selection through lifetime breeding success was not found to act upon horn phenotype in males. In females, a negative association of annual breeding success within the normal-horned phenotype did not result in a significant difference in lifetime fitness when compared to scurred individuals, as no significant difference in longevity was found. However, increased horn size within this group was negatively associated with breeding success and longevity. Females without horns (polled) suffered reduced longevity and thus reduced lifetime breeding success relative the other horn morphs. Our results therefore suggest that trade-offs between different components of fitness and antagonistic selection between the sexes may maintain genetic variation for secondary sexual traits within a population.  相似文献   

11.
The expression of secondary sexual traits in females has often been attributed to a correlated response to selection on male traits. In rare cases, females have secondary sexual traits that are not homologous structures to secondary sexual traits in males and are thus less likely to have evolved in females because of correlated selection. In this study, we used the dung beetle Onthophagus sagittarius, a species with sex‐specific horns, to examine the environmental and quantitative genetic control of horn expression in males and females. Offspring subjected to different brood mass manipulations (dung addition/removal) were found to differ significantly in body size. Brood mass manipulation also had a significant effect on the length of male horns; however, female horn length was found to be relatively impervious to the treatment, showing stronger patterns of additive genetic variance than males. We found no correlations between horn expression in males and females. We therefore conclude that the horns of O. sagittarius females are unlikely to result from genetic correlations between males and females. Rather, our data suggest that they may be under independent genetic control.  相似文献   

12.
Dissecting the genetic architecture of fitness-related traits in wild populations is key to understanding evolution and the mechanisms maintaining adaptive genetic variation. We took advantage of a recently developed genetic linkage map and phenotypic information from wild pedigreed individuals from Ram Mountain, Alberta, Canada, to study the genetic architecture of ecologically important traits (horn volume, length, base circumference and body mass) in bighorn sheep. In addition to estimating sex-specific and cross-sex quantitative genetic parameters, we tested for the presence of quantitative trait loci (QTLs), colocalization of QTLs between bighorn sheep and domestic sheep, and sex × QTL interactions. All traits showed significant additive genetic variance and genetic correlations tended to be positive. Linkage analysis based on 241 microsatellite loci typed in 310 pedigreed animals resulted in no significant and five suggestive QTLs (four for horn dimension on chromosomes 1, 18 and 23, and one for body mass on chromosome 26) using genome-wide significance thresholds (Logarithm of odds (LOD) >3.31 and >1.88, respectively). We also confirmed the presence of a horn dimension QTL in bighorn sheep at the only position known to contain a similar QTL in domestic sheep (on chromosome 10 near the horns locus; nominal P<0.01) and highlighted a number of regions potentially containing weight-related QTLs in both species. As expected for sexually dimorphic traits involved in male-male combat, loci with sex-specific effects were detected. This study lays the foundation for future work on adaptive genetic variation and the evolutionary dynamics of sexually dimorphic traits in bighorn sheep.  相似文献   

13.
Pollen fate can strongly affect the genetic structure of populations with restricted gene flow and significant inbreeding risk. We established an experimental population of inbred and outbred Silene latifolia plants to evaluate the effects of (i) inbreeding depression, (ii) phenotypic variation and (iii) relatedness between mates on male fitness under natural pollination. Paternity analysis revealed that outbred males sired significantly more offspring than inbred males. Independently of the effects of inbreeding, male fitness depended on several male traits, including a sexually dimorphic (flower number) and a gametophytic trait (in vitro pollen germination rate). In addition, full-sib matings were less frequent than randomly expected. Thus, inbreeding, phenotype and genetic dissimilarity simultaneously affect male fitness in this animal-pollinated plant. While inbreeding depression might threaten population persistence, the deficiency of effective matings between sibs and the higher fitness of outbred males will reduce its occurrence and counter genetic erosion.  相似文献   

14.
The horns are secondary sexual characteristics used by males of many ungulate species for intra-sexual fights during the rut. Thus, the dominant males with most developed horns are naturally selected for reproduction. Several studies have suggested that the quality of the horn, in many wild ruminants, may be correlated with semen quality. The aim of the present study was to determine whether inter-individual differences in levels of horn asymmetry and horn size are related to differences in sperm quality in a wild population of Spanish ibex by the assay of epididymal spermatozoa collected postmortem. In order to test this hypothesis we collected morphometric horns data from a total of 59 mature males (9-15 years of age) that were legally hunted during rutting season. The testicles were recovered, and the collection of epididymal spermatozoa was done at different times after death (2-60 h). The percentage of motile spermatozoa, motility rate, plasma membrane integrity, sperm viability, sperm morphology, and acrosome integrity were evaluated. Our findings showed that viable epididymal spermatozoa may be retrieved from dead animals many hours after death. However, sperm parameters were affected by the elapsed time between the death of the animal and spermatozoa collection. The study revealed that the horn quality was firstly associated with sperm motility.  相似文献   

15.
Heterozygosity-fitness correlations (HFCs) have been reported in populations of many species. We provide evidence for a positive correlation between genetic variability and growth rate at 12 allozyme loci in a catadromous marine fish species, the European eel (Anguilla anguilla L.). More heterozygous individuals show a significantly higher length and weight increase and an above average condition index in comparison with more homozygous individuals. To a lesser extent, six microsatellite loci show a similar pattern, with positive but not significant correlations between heterozygosity and growth rate. The HFCs observed could be explained by an effect of either direct allozyme over-dominance or associative overdominance. Selection affecting some of the allozyme loci would explain the greater strength of the HFCs found at allozymes in comparison with microsatellites and the lack of correlation between MLH at allozymes and MLH at microsatellites. Associative overdominance (where allozyme loci are merely acting as neutral markers of closely linked fitness loci) might provide an explanation for the HFCs if we consider that allozyme loci have a higher chance than microsatellites to be in linkage disequilibrium with fitness loci.  相似文献   

16.
Inbreeding depression may be caused by (partially) recessive or overdominant gene action. The relative evolutionary importance of these two modes has been debated; the former mode is emphasized in the “dominance hypothesis,” the latter in the “overdominance hypothesis.” We analyzed the genetic basis of inbreeding depression in the self-incompatible herb Arabis petraea (L.) Lam.: In the selfed progeny of twelve parental plants, we studied the proportion of chlorophyll-deficient seedlings, the genotypic distributions of marker genes, and associations of marker genotypes with viability and quantitative traits. Early components of fitness were examined by scoring seed size, germination time, and early growth rate and by observing the proportion of chlorophyll-deficient seedlings. Later components of fitness, flowering, and root and aboveground biomass were also measured. Marker genotypes of young seedlings were scored for 11 enzyme loci and three microsatellite markers. We found a high proportion (about 70%) of families with chlorophyll-deficient seedlings, indicating a high mutational load. We found six significant deviations from 1:2:1 ratio at marker loci of 60 tests in seedlings, with three of these significant at the experimentwide level. Deviations from the expected ratio were assumed to be due to linked viability loci. A graphical and a Bayesian method were used to distinguish between the overdominance and dominance hypotheses. Most of the deviant segregation ratios suggested overdominance instead of recessivity of the deleterious allele. Neither the early (seed size, germination time, or early growth trait) nor the late quantitative traits (flowering, and root and aboveground biomass) showed significant linkage to markers at the experimentwide level. Presence of significant associations between markers and early viability, but lack thereof for quantitative traits expressed late, suggests either that there may be relatively low inbreeding depression in later life stages or that individual quantitative trait loci may have smaller effects than loci contributing to early viability.  相似文献   

17.
Molecular estimates of inbreeding may be made using genetic markers such as microsatellites, however the interpretation of resulting heterozygosity‐fitness correlations (HFCs) with respect to inbreeding depression is not straightforward. We investigated the relationship between pedigree‐determined inbreeding coefficients (f) and HFCs in a closely monitored, reintroduced population of Stewart Island robins (Petroica australis rakiura) on Ulva Island, New Zealand. Using a full sibling design, we focused on differences in juvenile survival associated specifically with individual sibling variation in standardized multilocus heterozygosity (SH) when expected f was identical. We found that within broods, siblings with higher SH at microsatellite loci experienced a higher probability of juvenile survival. This effect, however, was detected primarily within broods that experienced inbreeding or when inbreeding had occurred in their pedigree histories (i.e., at the parents’ level). Thus we show, for the first time in a wild population, that the strength of an HFC is partially dependent on the presence of inbreeding events in the recent pedigree history. Our results illustrate the importance of realized effects of inbreeding on genetic variation and fitness and the value of full‐sibling designs for the study of HFCs in the context of small, inbred populations.  相似文献   

18.
To understand the mechanisms behind heterozygosity-fitness correlations (HFC), it is necessary to employ large numbers of markers with known function and independently estimate the variation in inbreeding in the population. Here we genotyped 794 blue tits with 79 microsatellites that were distributed across 25 chromosomes and that were classified either as "functional" (N= 58) or "neutral" (N= 21). We found a positive effect of individual heterozygosity at multiple loci on clutch size, on the number of eggs sired by males, and on the number of recruits produced by males and females. We documented the occurrence of some consanguineous matings and found evidence for a particular type of population structure that can contribute to the occurrence of inbreeding. As the set of "neutral" loci provided more power to detect HFC and identity disequilibrium, we argue that "neutral" markers are better predictors of the effects of inbreeding. The number of significant effects at single loci did not exceed the expected number of false positives and no strong effects were associated with heterozygosity at "functional" markers. Thus, the HFC found here cannot be attributed to strong effects of the loci under study.  相似文献   

19.
Correlations between heterozygosity and components of fitness have been investigated in natural populations for over 20 years. Positive correlations between a trait of interest and heterozygosity (usually measured at allozyme loci) are generally recognized as evidence of inbreeding depression. More recently, molecular markers such as microsatellites have been employed for the same purpose. A typical study might use around five to ten markers. In this paper we use a panel of 71 microsatellite loci to: (1) Compare the efficacy of heterozygosity and a related microsatellite‐specific variable, mean d2, in detecting inbreeding depression; (2) Examine the statistical power of heterozygosity to detect such associations. We performed our analyses in a wild population of red deer (Cervus elaphus) in which inbreeding depression in juvenile traits had previously been detected using a panel of nine markers. We conclude that heterozygosity‐based measures outperform mean d2‐based measures, but that power to detect heterozygosity‐fitness associations is nonetheless low when ten or fewer markers are typed.  相似文献   

20.
The evolution of complex traits, which are specified by the interplay of multiple genetic loci and environmental effects, is a topic of central importance in evolutionary biology. Here, we show that body and tail vertebral numbers in fishes of the pipefish and seahorse family (Syngnathidae) can serve as a model for studies of quantitative trait evolution. A quantitative genetic analysis of body and tail vertebrae from field-collected families of the Gulf pipefish, Syngnathus scovelli, shows that both traits exhibit significantly positive additive genetic variance, with heritabilities of 0.75 +/- 0.13 (mean +/- standard error) and 0.46 +/- 0.18, respectively. We do not find any evidence for either phenotypic or genetic correlations between the two traits. Pipefish are characterized by male pregnancy, and phylogenetic consideration of body proportions suggests that the position of eggs on the pregnant male's body may have contributed to the evolution of vertebral counts. In terms of numbers of vertebrae, tail-brooding males have longer tails for a given trunk size than do trunk-brooding males. Overall, these results suggest that vertebral counts in pipefish are heritable traits, capable of a response to selection, and they may have experienced an interesting history of selection due to the phenomenon of male pregnancy. Given that these traits vary among populations within species as well as among species, they appear to provide an excellent model for further research on complex trait evolution. Body segmentation may thus afford excellent opportunities for comparative study of homologous complex traits among disparate vertebrate taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号