首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:为了进一步研究苯丙胺神经毒性作用机制,我们对大鼠进行不同时长的反复苯丙胺刺激,检测大鼠部分脑区中蛋白羰基化的变化情况,我们的研究为苯丙胺的成瘾及治疗提供了新的理论依据。方法:分别对大鼠进行1d、3d、7d、10d及14d的苯丙胺反复刺激,进行旷场测试检测其活动量变化后,采用DNPH法检查的大鼠大脑前皮层、海马区、杏仁核三大脑区总蛋白的蛋白羰基化水平变化,探讨反复苯丙胺刺激对大鼠脑部蛋白羰基化的影响。结果:苯丙胺刺激7d及14d时,大鼠活动量出现了显著性增加,同时大鼠前皮层总蛋白的蛋白羰基化也出现了显著性增加,而海马区及杏仁核区域总蛋白的蛋白羰基化没有明显变化。结论:反复苯丙胺刺激能够增加大鼠活动量及大脑前皮层总蛋白蛋白羰基化水平。  相似文献   

2.
Abstract: Experiments were performed to confirm that noradrenergic terminals regulate extracellular concentrations of dopamine (DA) in the frontal cortex of rats. The effects of 20 mg/kg 1-[2-[bis(4-fluorphenyl)methoxy]-ethyl]-4-(3-phenylpropyl)piperazine (GBR 12909), a selective inhibitor of DA uptake, and 2.5 mg/kg desipramine (DMI) on the extracellular concentrations of DA in the frontal cortex and striatum were studied in rats given 6-hydroxydopamine (6 µg/µl) bilaterally into the locus coeruleus to destroy noradrenergic terminals. GBR 12909 increased dialysate DA similarly in the striatum of vehicle and 6-hydroxydopamine-treated rats, whereas in the frontal cortex it raised DA concentrations only in lesioned animals. DMI raised extracellular DA concentrations in the frontal cortex but not in the striatum of controls. The effect of DMI on cortical DA was abolished by the 6-hydroxydopamine lesion. GBR 12909, at a subcutaneous dose of 20 mg/kg, further increased cortical dialysate DA in rats given DMI intraperitoneally at 20 mg/kg or through the probe at 10−5 mol/L. The data support the hypothesis of an important regulation of the extracellular concentrations of DA in the frontal cortex by noradrenergic terminals.  相似文献   

3.
Depression has a high rate of comorbidity with neuropathic pain. This study aims to investigate the effect of Mygalin, an acylpolyamine synthesized from a natural molecule in the hemolymph of the Acanthoscurria gomesiana spider, injected into the prelimbic (PrL) region of the medial prefrontal cortex on chronic neuropathic pain and depression comorbidity in rats. To investigate that comorbidity, neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve in male Wistar rats. The biotinylated biodextran amine (BDA) bidirectional neural tract tracer was microinjected into the PrL cortex to study brain connections. Rodents were further subjected to von Frey (mechanical allodynia), acetone (cold allodynia), and forced swim (depressive-like behavior) tests. BDA neural tract tracer-labeled perikarya were found in the dorsal columns of the periaqueductal gray matter (dPAG) and the dorsal raphe nucleus (DRN). Neuronal activity of DRN neurons decreased in CCI rats. However, PrL cortex treatment with Mygalin increased the number of spikes on DRN neurons. Mygalin treatment in the PrL cortex decreased both mechanical and cold allodynia and immobility behavior in CCI rats. PrL cortex treatment with N-methyl-D -aspartate (NMDA) receptor receptors attenuated the analgesic and antidepressive effects caused by Mygalin. The PrL cortex is connected with the dPAG and DRN, and Mygalin administration into the PrL increased the activity of DRN neurons. Mygalin in the PrL cortex produced antinociceptive and antidepressive-like effects, and the NMDA agonist reversed these effects.  相似文献   

4.
Studies have demonstrated that oxidative stress is associated with amphetamine-induced neurotoxicity, but little is known about the adaptations of antioxidant enzymes in the brain after amphetamine exposure. We studied the effects of acute and chronic amphetamine administration on superoxide dismutase (SOD) and catalase (CAT) activity, in a rodent model of mania. Male Wistar rats received either a single IP injection of d-amphetamine (1 mg/kg, 2 mg/kg, or 4 mg/kg) or vehicle (acute treatment). In the chronic treatment rats received a daily IP injection of either d-amphetamine (1 mg/kg, 2 mg/kg, or 4 mg/kg) or vehicle for 7 days. Locomotor behavior was assessed using the open field test. SOD and CAT activities were measured in the prefrontal cortex, hippocampus, and striatum. Acute and to a greater extent chronic amphetamine treatment increased locomotor behavior and affected SOD and CAT activities in the prefrontal cortex, hippocampus and striatum. Our findings suggest that amphetamine exposure is associated with an imbalance between SOD and CAT activity in the prefrontal cortex, hippocampus and striatum.  相似文献   

5.
6.
The central nervous system is one of the primary target organs for hydrogen sulphide (H2S) toxicity; however, there are limited data on the neurotoxic effects of low-dose chronic exposure on the developing nervous system. Levels of serotonin and norepinephrine in the developing rat cerebellum and frontal cortex were determined following chronic exposure to 20 and 75 ppm H2S during perinatal development. Both monoamines were altered in rats exposed to 75 ppm H2S compared with controls; serotonin levels were significantly increased at days 14 and 21 postnatal in both brain regions, and norepinephrine levels were significantly increased at days 7, 14, and 21 postnatal in cerebellum and at day 21 in the frontal cortex. Exposure to 20 ppm H2S significantly increased the levels of serotonin in the frontal cortex at day 21, whereas levels of norepinephrine were significantly reduced in the frontal cortex at days 14 and 21, and at day 14 in the cerebellum.  相似文献   

7.
We report here the effects of oral micronized estradiol and soy phytoestrogens on uterine weight, choline acetyltransferase (ChAT) and nerve growth factor (NGF) mRNAs in the frontal cortex and hippocampus of ovariectomized young and retired breeder rats. Within each age category, 15 bilaterally ovariectomized rats were randomized equally into three groups: control (OVX), estradiol (E2), and soy phytoestrogens (SBE). The OVX rats were fed a casein/lactalbumin-based control diet; the E2 rats were fed with the control diet with added estradiol; and the SBE rats were fed with the control diet with added soy phytoestrogens. After 8 weeks of treatment, blood, uteri, frontal cortex, and hippocampus were collected at necropsy. Results showed that the uterine weights and serum estradiol concentrations were significantly higher in the E2 group compared with those in the OVX and SBE groups. In the hippocampus of young rats, E2 treatment resulted in significantly higher NGF mRNA levels than no treatment (OVX), and NGF mRNA levels in the SBE group were intermediate between the E2 and OVX groups. ChAT mRNA levels were significantly higher in the frontal cortex of E2 and SBE-treated retired breeder rats compared to OVX retired breeder rats. There were no differences among treatment groups for ChAT mRNA levels in the frontal cortex of young rats and in the hippocampus of both young and retired breeder rats. Our data suggest that soy phytoestrogens may function as estrogen agonists in regulating ChAT and NGF mRNAs in the brain of female rats.  相似文献   

8.
There is substantial evidence that early life events influence brain development and subsequent adult behaviour and play an important role in the causation of certain psychiatric disorders including schizophrenia and depression. The underlying mechanism of the effects of these early environmental factors is still not understood. It is a challenge to attempt to model early environmental factors in animals to gain understanding of the basic mechanisms that underlie the long-term effects. This paper reviews the effects of rearing rats from weaning in social isolation and reports some recent results indicating hippocampal dysfunction. Isolation rearing in rats from weaning produces a range of persistent behavioural changes in the young adult, including hyperactivity in response to novelty and amphetamine and altered responses to conditioning. These are associated with alterations in the central aminergic neurotransmitter functions in the mesolimbic areas and other brain regions. Isolation-reared rats have enhanced presynaptic dopamine (DA) and 5-HT function in the nucleus accimbens (NAC) associated with decreased presynaptic 5-HT function in the frontal cortex and hippocampus. Isolation-reared rats have reduced presynaptic noradrenergic function in the hippocampus, but have enhanced presynaptic DA function in the amygdala. These neurochemical imbalances may contribute to the exaggerated response of the isolated rat to a novel stimulus or to stimuli predictive of danger, and isolation-induced behavioural changes. These changes have neuroanatomical correlates; changes which seem to parallel to a certain degree those seen in human schizophrenia. A greater understanding of the processes that underlie these changes should improve our knowledge of how environmental events may alter brain development and function, and play a role in the development of neuropsychiatric disorders.  相似文献   

9.
Kanter M 《Neurochemical research》2008,33(11):2241-2249
The goal of this study was designed to evaluate the possible protective effects of Nigella sativa (NS) on the neuronal injury in the frontal cortex and brain stem after chronic toluene exposure in rats. The rats were randomly alotted into one of three experimental groups: A (control), B (toluene treated) and C (toluene treated with NS); each group contain 10 animals. Control group received 1 ml serum physiologic and toluene treatment was performed by inhalation of 3,000 ppm toluene, in a 8 h/day and 6 day/week order for 12 weeks. The rats in NS treated group was given NS (in a dose of 400 mg/kg body weight) once a day orally by using intra gastric intubation for 12 weeks starting just after toluene exposure. Tissue samples were obtained for histopathological investigation. To date, no histopathological changes of neurodegeneration in the frontal cortex and brain stem after chronic toluene exposure in rats by NS treatment have been reported. In this study, chronic toluene exposure caused severe degenerative changes, shrunken cytoplasma, severely dilated cisternae of endoplasmic reticulum, markedly swollen mitochondria with degenerated cristae and nuclear membrane breakdown with chromatin disorganization in neurons of the frontal cortex and brain stem. The nerve cells showing the pathologic changes were almost absent in the NS-treated rats. We conclude that NS therapy causes morphologic improvement on neurodegeneration in frontal cortex and brain stem after chronic toluene exposure in rats. We believe that further preclinical research into the utility of NS may indicate its usefulness as a potential treatment on neurodegeneration after chronic toluene exposure in rats.  相似文献   

10.
The goal of this work was to find out to which degree the black coat color mutation nonagouti that appears in wild Norway rat in the course of breeding for the maintenance and enhancement of aggressiveness towards a human affects selected and other behavioral traits as well as stress reactivity and brain neurochemistry. Nonagouti rats displayed increased emotionality in the open-field and forced-swimming tests as compared to agouti animals, whereas there were no differences in anxiety estimated in the elevated plus-maze. Neither were there any differences in glucocorticoid reactions to a combined stressful procedure such as forced swimming. The dopamine content in the frontal cortex and striatum and noradrenaline content in the frontal cortex were increased in black rats as compared to gray rats. The result suggest that the nonagouti mutation in gray aggressive rats enhances the effects of selection for aggressiveness on some behavioral traits and brain catecholamine level.  相似文献   

11.
Assessment of complement 4 (C4) levels in experimental animals is used as a marker for activation of the classical complement pathway. The objective of this study was to develop a method for measuring C4 concentrations in the rat brain. An ELISA (sensitivity = 0.5 ng C4/ml) was used to measure C4 in regional brain homogenates from Fischer rats cardiac-perfused with phosphate buffered saline to remove cerebrovascular contents, and from sham-perfused rats. Ventral midbrain C4 levels were increased (p < 0.001) versus frontal cortex and striatum in sham-perfused rats, whereas after perfusion there were no differences between brain regions. Removal of cerebrovascular contents decreased C4 by 43% in striatum, 52% in frontal cortex, and 69% in ventral midbrain (all p < 0.01 versus sham-perfused means). These results indicate that C4 in the rat brain can be measured quantitatively by ELISA provided that cerebrovascular proteins are removed by perfusion.  相似文献   

12.
The effect of different L-phenylalanine (Phe) concentrations (0.12-12.1 mM) on acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg2+-ATPase activities was investigated in homogenates of adult rat whole brain and frontal cortex at 37 degrees C. AChE, (Na+,K+)-ATPase and Mg2+-ATPase activities were determined after preincubation with Phe. AChE activity in both tissues showed a decrease up to 18% (p<0.01) with Phe. Whole brain Na+,K+-ATPase was stimulated by 30-35% (p<0.01) with high Phe concentrations, while frontal cortex Na+,K+-ATPase was stimulated by 50-55% (p<0.001). Mg2+-ATPase activity was increased only in frontal cortex with high Phe concentrations. It is suggested that: a) The inhibitory effect of Phe on brain AChE is not influenced by developmental factors, while the stimulation of Phe on brain Na+,K+-ATPase is indeed affected; b) The stimulatory effect of Phe on rat whole brain Na+,K+-ATPase is decreased with age; c) Na+,K+-ATPase is selectively more stimulated by high Phe concentrations in frontal cortex than in whole brain homogenate; d) High (toxic) Phe concentrations can affect Mg2+-ATPase activity in frontal cortex, but not in whole brain, thus modulating the amount of intracellular Mg2+.  相似文献   

13.
Electroencephalographic changes occurring in rat brain following frontal cortex stimulation in non-lesioned rats and in rats with bilateral lesions in the region of amygdala were investigated in Experiment I. Seizure duration and EEG spike frequency varied systematically with current level. The amnesic effects of conventional ECS and frontal cortex stimulation were studied in Experiment II. Both treatments were highly effective in producing retrograde amnesia for an inhibitory avoidance response. The findings are interpreted as suggesting that the effectiveness of ECS in producing RA varies with the amount of current reaching the brain.  相似文献   

14.
Previously we have shown that addition of amphetamine to physical therapy results in enhanced motor improvement following stroke in rats, which was associated with the formation of new motor pathways from cortical projection neurons of the contralesional cortex. It is unclear what mechanisms are involved, but amphetamine is known to induce the neuronal release of catecholamines as well as upregulate fibroblast growth factor-2 (FGF-2) expression in the brain. Since FGF-2 has been widely documented to stimulate neurite outgrowth, the present studies were undertaken to provide evidence for FGF-2 as a neurobiological mechanism underlying amphetamine-induced neuroplasticity. In the present study rats that received amphetamine plus physical therapy following permanent middle cerebral artery occlusion exhibited significantly greater motor improvement over animals receiving physical therapy alone. Amphetamine plus physical therapy also significantly increased the number of FGF-2 expressing pyramidal neurons of the contralesional cortex at 2 weeks post-stroke and resulted in significant axonal outgrowth from these neurons at 8 weeks post-stroke. Since amphetamine is a known releaser of norepinephrine, in vitro analyses focused on whether noradrenergic stimulation could lead to neurite outgrowth in a manner requiring FGF-2 activity. Primary cortical neurons did not respond to direct stimulation by norepinephrine or amphetamine with increased neurite outgrowth. However, conditioned media from astrocytes exposed to norepinephrine or isoproterenol (a beta adrenergic agonist) significantly increased neurite outgrowth when applied to neuronal cultures. Adrenergic agonists also upregulated FGF-2 expression in astrocytes. Pharmacological analysis indicated that beta receptors and alpha1, but not alpha2, receptors were involved in both effects. Antibody neutralization studies demonstrated that FGF-2 was a critical contributor to neurite outgrowth induced by astrocyte-conditioned media. Taken together the present results suggest that noradrenergic activation, when combined with physical therapy, can improve motor recovery following ischemic damage by stimulating the formation of new neural pathways in an FGF-2-dependent manner.  相似文献   

15.
Rats were exposed to hypobaric hypoxia (0.5 atm) for up to 3 wk. Hypoxic rats failed to gain weight but maintained normal brain water and ion content. Blood hematocrit was increased by 48% to a level of 71% after 3 wk of hypoxia compared with littermate controls. Brain blood flow was increased by an average of 38% in rats exposed to 15 min of 10% normobaric oxygen and by 23% after 3 h but was not different from normobaric normoxic rats after 3 wk of hypoxia. Sucrose space, as a measure of brain plasma volume, was not changed under any hypoxic conditions. The mean brain microvessel density was increased by 76% in the frontopolar cerebral cortex, 46% in the frontal motor cortex, 54% in the frontal sensory cortex, 65% in the parietal motor cortex, 68% in the parietal sensory cortex, 68% in the hippocampal CA1 region, 57% in the hippocampal CA3 region, 26% in the striatum, and 56% in the cerebellum. The results indicate that hypoxia elicits three main responses that affect brain oxygen availability. The acute effect of hypoxia is an increase in regional blood flow, which returns to control levels on continued hypoxic exposure. Longer-term effects of continued moderate hypoxic exposure are erythropoiesis and a decrease in intercapillary distance as a result of angiogenesis. The rise in hematocrit and the increase in microvessel density together increase oxygen availability to the brain to within normal limits, although this does not imply that tissue PO2 is restored to normal.  相似文献   

16.
Docosahexaenoic acid (DHA) and arachidonic acid (AA) are the major polyunsaturated fatty acids (PUFA) in the neuronal membrane. Most DHA and AA accumulation in the brain occurs during the perinatal period via placenta and milk. This study examined whether maternal brain levels of DHA and AA are depleted during pregnancy and lactation due to meeting the high demand of the developing nervous system in the offspring and evaluated the effects of the reproductive cycle on serotonin metabolism and of fish oil (FO) on postpartum anxiety. Pregnant rats were fed during pregnancy and lactation with a sunflower oil-based n-3 PUFA-deficient diet without or with FO supplementation, which provided 0.37% of the energy source as n-3 PUFA, and the age-matched virgin rats were fed the same diets for 41 days. In both sets of postpartum rats, decreased DHA levels compared to those in virgin females were seen in the hypothalamus, hippocampus, frontal cortex, cerebellum, olfactory bulb and retina, while AA depletion was seen only in the hypothalamus, hippocampus and frontal cortex. Serotonin levels were decreased and turnover increased in the brainstem and frontal cortex in postpartum rats compared to virgin rats. FO supplementation during pregnancy and lactation prevented the decrease in maternal brain regional DHA levels, inhibited monoamine oxidase-A activity in the brainstem and decreased anxiety-like behavior. We propose that the reproductive cycle depletes maternal brain DHA levels and modulates maternal brain serotonin metabolism to cause postpartum anxiety and suggest that FO supplementation may be beneficial for postpartum anxiety in women on an n-3 PUFA-deficient diet.  相似文献   

17.
众所周知,肉食动物和大白鼠的脚内核,相当于灵长类的内侧苍白球(Nagy et al.1978;Fox and Schmitz 1944);它们的细胞形态、传入及传出均相同。早期以及近年来的一些研究工作者,虽然在研究其他核团的投射时,联系到一些本核团的传入,但是尚缺乏对本核团传人的系统研究。本实验即是应用辣根过氧化物酶的逆行传递法来研究大白鼠脚内核的传入性联系。  相似文献   

18.
Recent studies have shown marked increases in brain content of neuropeptide Y (NPY) after seizures induced by intraperitoneal injection of kainic acid and after pentylenetetrazole kindling in the rat. We have now investigated possible changes in the rate of biosynthesis of NPY after kainic acid treatment, by using pulse-labeling of the peptide and by determining prepro-NPY mRNA concentrations. For pulse labeling experiments, [3H]tyrosine was injected into the frontal cortex, and the incorporation of the amino acid into NPY was determined after purifying the peptide by gel filtration chromatography, antibody affinity chromatography, and reversed-phase HPLC. At 2 and 30 days after kainic acid treatment, the rate of tyrosine incorporation was enhanced by approximately 380% in the cortex. In addition, concentrations of pre-pro-NPY mRNA were determined in four different brain areas by hybridization of Northern blots with a complementary 32P-labeled RNA probe 2, 10, 30, and 60 days after kainic acid treatment. Marked increases were observed in the frontal cortex (by up to 350% of controls), in the dorsal hippocampus (by 750%), and in the amygdala/pyriform cortex (by 280%) at all intervals investigated. In the striatum only a small, transient increase was observed. The data demonstrate increased expression of prepro-NPY mRNA and an enhanced rate of in vivo synthesis of NPY as a result of seizures induced by the neurotoxin kainic acid.  相似文献   

19.
Abstract: Formation of 6-hydroxydopamine (6-OHDA) from dopamine has been hypothesized to mediate neuro-degeneration induced by some psychostimulants. Although the emergence of a 6-OHDA-like substance was reported in the striatum of methamphetamine-treated rats, this substance has not been identified by a direct approach. We used mass fragmentography to search for 6-OHDA in the rat frontal cortex and striatum after the administration of a number of drugs including 3,4-dihy-droxyphenyl-L-alanine, methamphetamine, amphetamine, and cocaine, all of which increase synaptic dopamine. No 6-OHDA was detected after the acute systemic administration of these agents. Intraventricular administration of 6-OHDA (10 μg/rat.) produced measurable concentrations of 6-OHDA that were higher in the striatum than in the frontal cortex. Intraventricular administration of 2,4,5-trihydroxy-phenyl-D,L-alanine (6-OHDOPA; 10 μg/rat) produced similar concentrations of 6-OHDA in both regions. Pargyline, but not carbidopa (α-methyldopahydrazine), enhanced the effect of intraperitoneal 6-OHDOPA administration (80 mg/kg). We conclude that (1) 6-OHDOPA can cross the blood-brain barrier and is converted to 6-OHDA in the brain, (2) 6-OHDA is a substrate for monoamine oxidase(s) and therefore a search for its purported deaminated metabolite is warranted, and (3) acute treatment with the above stimulants either does not lead to the formation of 6-OHDA or produces concentrations below the detection limit of the assay (<34 pg/mg of protein).  相似文献   

20.
The effect of age on phosphate incorporation into phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid (PA) was studied. Lysed crude synaptosomal fractions of different brain regions of 3-month-old and 32-month-old Brown Norway rats were used. The brain regions tested were the hippocampus, frontal cortex, occipital/parietal cortex, entorhinal/pyriformal cortex, striatum/septum, thalamus and hypothalamus. The individual specific phosphorylating activities were unevenly distributed within the brain of Brown Norway rats. Strikingly, the distribution of phosphate incorporation into PIP2 was opposite from that of phosphate incorporation into PA. Phosphate incorporation into PA decreased (-15%) with age in almost all brain regions tested, whereas phosphate incorporation into PIP2 decreased with age only in the frontal cortex (-20%) and in the hypothalamus (-8%). The effects of age may reflect a deterioration of phosphoinositide metabolism, with its function in signal transduction coupled to receptors via G-proteins, in the brain regions involved. In addition, there was an age related decrease in protein content and total phospholipid phosphorus content of lysed crude synaptosomal preparations of all brain regions. The high correlation between the changes in these parameters may be indicative of a decrease in the number or size of synaptosomes with age in the brain regions involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号