首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
 In the presence of stimulatory concentrations of glucose, the membrane potential of pancreatic β-cells may experience a transition from periods of rapid spike-like oscillations alternating with a pseudo-steady state to spike-only oscillations. Insulin secretion from β-cells closely correlates the periods of spike-like oscillations. The purpose of this paper is to study the mathematical structure which underlines this transitional stage in a pancreatic β-cell model. It is demonstrated that the transition can be chaotic but becomes more and more regular with increase in glucose. In particular, the system undergoes a reversed period-doubling cascade leading to the spike-only oscillations as the glucose concentration crosses a threshold. The transition interval in glucose concentration is estimated to be extremely small in terms of the rate of change for the calcium dynamics in the β-cells. The methods are based on the theory of unimodal maps and the geometric and asymptotic theories of singular perturbations. Received: 25 October 1996/Revised version: 18 August 1997  相似文献   

2.
NADPH is an important component of the antioxidant defense system and a proposed mediator in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. An increase in the NADPH/NADP(+) ratio has been reported to occur within minutes following the rise in glucose concentration in β-cells. However, 30 min following the increase in glucose, the total NADPH pool also increases through a mechanism not yet characterized. NAD kinase (NADK) catalyzes the de novo formation of NADP(+) by phosphorylation of NAD(+). NAD kinases have been shown to be essential for redox regulation, oxidative stress defense, and survival in bacteria and yeast. However, studies on NADK in eukaryotic cells are scarce, and the function of this enzyme has not been described in β-cells. We employed INS-1 832/13 cells, an insulin-secreting rat β-cell line, and isolated rodent islets to investigate the role of NADK in β-cell metabolic pathways. Adenoviral-mediated overexpression of NADK resulted in a two- to threefold increase in the total NADPH pool and NADPH/NADP(+) ratio, suggesting that NADP(+) formed by the NADK-catalyzed reaction is rapidly reduced to NADPH via cytosolic reductases. This increase in the NADPH pool was accompanied by an increase in GSIS in NADK-overexpressing cells. Furthermore, NADK overexpression protected β-cells against oxidative damage by the redox cycling agent menadione and reversed menadione-mediated inhibition of GSIS. Knockdown of NADK via shRNA exerted the opposite effect on all these parameters. These data suggest that NADK kinase regulates intracellular redox and affects insulin secretion and oxidative defense in the β-cell.  相似文献   

3.
Based on recently determined ionic channel properties, a simple theoretical model for the burst activity of the pancreatic β-cell is formulated in this paper. The model contains an inward voltage-activated Ca2+ current which is inactivated by intracellular calcium ions and an outward K+ current that is activated by the membrane potential. The probability of opening of the channel gates is represented by Boltzmann equations. Our model is applicable in a regime where an ATP-blockable K+ channel is inhibited. In this regime, glucose is treated as an activator for the rate of efflux of intracellular Ca2+ ions, and hence its effect is equated tok Ca, the efflux rate constant. In addition, intracellular H+ ion, which is a byproduct of the glycolytic metabolic process, is treated as a competitive inhibitor for Ca2+ ion. Since H+ is a competitive inhibitor (according to our assumption), its effect is equated to the strength of the Cai dissociation constantK h. In the model, a Ca2+ binding site is assumed to exist in the inner membrane of the voltage-gated Ca2+ channel. The model predicts that a spike and burst electrical pattern can be generated by varyingk ca and that a given pattern may produce different levels of intracellular Ca2+ depending onK h. In other words, it predicts that levels of [Ca2+]i can be separated from the electrical activity by controlling the concentration of glucose and pH appropriately. This may account for the experimental observation of Lebrun et al. (1985) that insulin secretion is not correlated to the burst of electrical activity.  相似文献   

4.
5.
Mitochondrial dysfunction due to nuclear or mitochondrial DNA alterations contributes to multiple diseases such as metabolic myopathies, neurodegenerative disorders, diabetes and cancer. Nevertheless, to date, only half of the estimated 1,500 mitochondrial proteins has been identified, and the function of most of these proteins remains to be determined. Here, we characterize the function of M19, a novel mitochondrial nucleoid protein, in muscle and pancreatic β-cells. We have identified a 13-long amino acid sequence located at the N-terminus of M19 that targets the protein to mitochondria. Furthermore, using RNA interference and over-expression strategies, we demonstrate that M19 modulates mitochondrial oxygen consumption and ATP production, and could therefore regulate the respiratory chain activity. In an effort to determine whether M19 could play a role in the regulation of various cell activities, we show that this nucleoid protein, probably through its modulation of mitochondrial ATP production, acts on late muscle differentiation in myogenic C2C12 cells, and plays a permissive role on insulin secretion under basal glucose conditions in INS-1 pancreatic β-cells. Our results are therefore establishing a functional link between a mitochondrial nucleoid protein and the modulation of respiratory chain activities leading to the regulation of major cellular processes such as myogenesis and insulin secretion.  相似文献   

6.
Summary ATP-inhibited potassium channels (K(ATP)) were studied in excised, inside-out patches from cultured adult mouse pancreatic -cells and HIT cells. In the absence of ATP, ADP opened K(ATP) channels at concentrations as low as 10 m and as high as 500 m, with maximal activation between 10 and 100 m ADP in mouse -cell membrane patches. At concentrations greater than 500 m, ADP inhibited K(ATP) channels while 10 mm virtually abolished channel activity. HIT cell channels had a similar biphasic response to ADP except that more than 1 mm ADP was required for inhibition. The channel opening effect of ADP required magnesium while channel inhibition did not. Using creatine/creatine phosphate solutions with creatine phosphokinase to fix ATP and ADP concentrations, we found substantially different K(ATP)-channel activity with solutions having the same ATP/ADP ratio but different absolute total nucleotide levels. To account for ATP-ADP competition, we propose a new model of channel-nucleotide interactions with two kinds of ADP binding sites regulating the channel. One site specifically binds MgADP and increases channel opening. The other, the previously described ATP site, binds either ATP or ADP and decreases channel opening. This model very closely fits the ADP concentration-response curve and, when incorporated into a model of -cell membrane potential, increasing ADP in the 10 and 100 m range is predicted to compete very effectively with millimolar levels of ATP to hyperpolarize -cells.The results suggest that (i) K(ATP)-channel activity is not well predicted by the ATP/ADP ratio, and (ii) ADP is a plausible regulator of K(ATP) channels even if its free cytoplasmic concentration is in the 10–100 m range as suggested by biochemical studies.We would like to thank Mr. Louis Stamps for expert technical assistance and Dr. Wil Fujimoto and Ms. Jeanette Teague for generously providing HIT cells obtained from Dr. Robert Santerre at Eli Lilly. We would also like to thank Dr. Michel Vivaudou for providing the program ALEX. Support was provided by the NIH and the Department of Veterans Affairs.  相似文献   

7.
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) plays a crucial role in the endocrine system. The present study aimed to investigate the effect of PACAP38 on insulin secretion and the underlying mechanism in rat pancreatic β-cells. The insulin secretion results showed that PACAP38 stimulated insulin secretion in a glucose- and dose-dependent manner. The insulinotropic effect was mediated by PAC1 receptor, but not by VPAC1 and VPAC2 receptors. Inhibition of adenylyl cyclase and protein kinase A suppressed PACAP38-augmented insulin secretion. Glucose-regulated insulin secretion is dependent on a series of electrophysiological activities. Current-clamp technology suggested that PACAP38 prolonged action potential duration. Voltage-clamp recordings revealed that PACAP38 blocked voltage-dependent potassium currents, and this effect was reversed by inhibition of PAC1 receptor, adenylyl cyclase, or protein kinase A. Activation of Ca2+ channels by PACAP38 was also observed, which could be antagonized by the PAC1 receptor antagonist. In addition, calcium-imaging analysis indicated that PACAP38 increased intracellular Ca2+ concentration, which was decreased by PAC1 receptor antagonist. These findings demonstrate that PACAP38 stimulates glucose-induced insulin secretion mainly by acting on PAC1 receptor, inhibiting voltage-dependent potassium channels, activating Ca2+ channels and increasing intracellular Ca2+ concentration. Further, PACAP blocks voltage-dependent potassium currents via the adenylyl cyclase/protein kinase A signaling pathway.  相似文献   

8.
Regulation of delayed rectifier-type K+ channels (Kv-channels) by glucose was studied in rat pancreatic β-cells. The Kv-channel current was increased in amplitudes by increasing glucose concentration from 2.8 to 16.6 mM, while it was decreased by 2.8 mM glucose in a reversible manner (down-regulation) in both perforated and conventional whole-cell modes. The current was decreased by FCCP, intrapipette 0 mM ATP or AMPPNP. Glyceraldehyde, pyruvic acid, 2-ketoisocaproic acid, and 10 mM MgATP prevented the down-regulation induced by 2.8 mM or less glucose. The residual current after treatment with Kv2.1-specific blocker, guangxitoxin-1E, was unchanged by lowering or increasing glucose concentration. We conclude that glucose metabolism regulates Kv2.1 channels in rats β-cells via altering MgATP levels.  相似文献   

9.
Ryanodine receptor channel model is introduced to a dynamical model of pancreatic beta-cells to discuss the effects of RyR channels and glucose concentration on membrane potential. The results show Ca(2+) concentration changes responding to enhance of glucose concentration is more quickly than that of activating RyR channels, and both methods can induce bursting action potential and increase free cytosolic Ca(2+) concentration. An interesting finding is that moderate stimulation to RyR channels will result in a kind of "complex bursting", which is more effective in enhancing average Ca(2+) concentration and insulin section.  相似文献   

10.
Transgenic mice expressing nuclear sterol regulatory element-binding protein-1a under the control of the insulin promoter were generated to determine the role of SREBP-1a in pancreatic β-cells. Only low expressors could be established, which exhibited mild hyperglycemia, impaired glucose tolerance, and reduced plasma insulin levels compared to C57BL/6 controls. The islets isolated from the transgenic mice were fewer and smaller, and had decreased insulin content and unaltered glucagon staining. Both glucose- and potassium-stimulated insulin secretions were decreased. The transgenic islets consistently expressed genes for fatty acids and cholesterol synthesis, resulting in accumulation of triglycerides but not cholesterol. PDX-1, ΒΕΤΑ2, MafA, and IRS-2 were suppressed, partially explaining the loss and dysfunction of β-cell mass. The transgenic mice on a high fat/high sucrose diet still exhibited impaired insulin secretion and continuous β-cell growth defect. Therefore, nuclear SREBP-1a, even at a low level, strongly disrupts β-cell mass and function.  相似文献   

11.
The effects of the diabetogenic agent, alloxan, on membrane potential, input resistance and electrical activity of normal mouse pancreatic -cells were studied. Tetraethylammonium (TEA), quinine and Glyburide were used to block K+-channels and to elucidate the mechanisms underlying alloxan's effects on -cell membrane potential. Exposure of the islet to alloxan (75–100 M) in the presence of glucose (11 mM), produced a rapid (15 sec), transient inhibition of electrical activity, often accompanied by hyperpolarization of the membrane, and this was followed by recovery of the burst pattern. This early effect of alloxan was followed after approximately 15 min by a complete inhibition of electrical activity and hyperpolarization. The inhibition accompanied by hyperpolarization was associated with a decrease in input resistance, indicating increased K+-conductance. Both the transient and delayed effects of alloxan were blocked by glucose (33 mM), quinine and glyburide but not by other conditions which induced continuous electrical activity such as elevated external [K+] (10 mM), ouabain, K+ removal, or TEA (20 mM). The transient inhibition induced by alloxan may be due to a direct competition with glucose transport/metabolism since it did not occur when alpha-keto isocaproic acid (KIC) was used to induce electrical activity. The delayed inhibition may reflect indirect effects of accumulation of this agent or its metabolites within the cell. Since both effects of alloxan are blocked by glyburide they appear to involve activation of the ATP-sensitive K+-channel (K-ATP).  相似文献   

12.
Cell-cell contacts and interactions between pancreatic β-cells and/or other cell populations within islets are essential for cell survival, insulin secretion, and functional synchronization. Three-dimensional (3D) culture systems supply the ideal microenvironment for islet-like cluster formation and functional maintenance. However, the underlying mechanisms remain unclear. In this study, mouse insulinoma 6 (MIN6) cells were cultured in a rotating 3D culture system to form islet-like aggregates. Glucose-stimulated insulin secretion (GSIS) and the RhoA/ROCK pathway were investigated. In the 3D-cultured MIN6 cells, more endocrine-specific genes were up-regulated, and GSIS was increased to a greater extent than in cells grown in monolayers. RhoA/ROCK inactivation led to F-actin remodeling in the MIN6 cell aggregates and greater insulin exocytosis. The gap junction protein, connexin 36 (Cx36), was up-regulated in MIN6 cell aggregates and RhoA/ROCK-inactivated monolayer cells. GSIS dramatically decreased when Cx36 was knocked down by short interfering RNA and could not be reversed by RhoA/ROCK inactivation. Thus, the RhoA/ROCK signaling pathway is involved in insulin release through the up-regulation of Cx36 expression in 3D-cultured MIN6 cells.  相似文献   

13.
The non-steroidal compound STX modulates the hypothalamic control of core body temperature and energy homeostasis. The aim of this work was to study the potential effects of STX on pancreatic β-cell function. 1-10 nM STX produced an increase in glucose-induced insulin secretion in isolated islets from male mice, whereas it had no effect in islets from female mice. This insulinotropic effect of STX was abolished by the anti-estrogen ICI 182,780. STX increased intracellular calcium entry in both whole islets and isolated β-cells, and closed the K(ATP) channel, suggesting a direct effect on β-cells. When intraperitoneal glucose tolerance test was performed, a single dose of 100 μg/kg body weight STX improved glucose sensitivity in males, yet it had a slight effect on females. In agreement with the effect on isolated islets, 100 μg/kg dose of STX enhanced the plasma insulin increase in response to a glucose load, while it did not in females. Long-term treatment (100 μg/kg, 6 days) of male mice with STX did not alter body weight, fasting glucose, glucose sensitivity or islet insulin content. Ovariectomized females were insensitive to STX (100 μg/kg), after either an acute administration or a 6-day treatment. This long-term treatment was also ineffective in a mouse model of mild diabetes. Therefore, STX appears to have a gender-specific effect on blood glucose homeostasis, which is only manifested after an acute administration. The insulinotropic effect of STX in pancreatic β-cells is mediated by the closure of the K(ATP) channel and the increase in intracellular calcium concentration. The in vivo improvement in glucose tolerance appears to be mostly due to the enhancement of insulin secretion from β-cells.  相似文献   

14.
The secretion of insulin from isolated rat islets of Langerhans was found to be stimulated by the surface-active staphylococcal exotoxin, -haemolysin. The response was dependent on the concentration of -haemolysin, was rapid in onset, and could be maintained for at least an hour in the presence of the agent. The rate of secretion rapidly declined on removal of -haemolysin and the islets remained responsive to glucose follow!ng toxin treatment.Further characterization of the interaction of this agent with the -cell plasma membrane may provide valuable information concerning the role played by this membrane in the regulation of insulin secretion.  相似文献   

15.
Voltage-gated outward K+ currents from pancreatic islet β-cells are known to repolarize the action potential during a glucose stimulus, and consequently to modulate Ca2+ entry and insulin secretion. The voltage gated K+ (Kv) channel, Kv2.1, which is expressed in rat islet β-cells, mediates over 60% of the Kv outward K+ currents. A novel peptidyl inhibitor of Kv2.1/Kv2.2 channels, guangxitoxin (GxTX)-1, has been shown to enhance glucose-stimulated insulin secretion. Here, we show that SNAP-251–180 (S180), an N-terminal SNAP-25 domain, but not SNAP-251–206 (S206), inhibits Kv current and enhances glucose-dependent insulin secretion from rat pancreatic islet β-cells, and furthermore, this enhancement was induced by the blockade of the Kv2.1 current. This study indicates that the Kv2.1 channel is a potential target for novel therapeutic agent design for the treatment of type 2 diabetes. This target may possess advantages over currently-used therapies, which modulate insulin secretion in a glucose-independent manner.  相似文献   

16.
Pancreatic β-cells secrete insulin in response to various stimuli to control blood glucose levels. This insulin release is the result of a complex interplay between signaling, membrane potential and intracellular calcium levels. Various nutritional and hormonal factors are involved in regulating this process. N-Acyl taurines are a group of fatty acids which are amidated (or conjugated) to taurine and little is known about their physiological functions. In this study, treatment of pancreatic β-cell lines (HIT-T15) and rat islet cell lines (INS-1) with N-acyl taurines (N-arachidonoyl taurine and N-oleoyl taurine), induced a high frequency of calcium oscillations in these cells. Treatment with N-arachidonoyl taurine and N-oleoyl taurine also resulted in a significant increase in insulin secretion from pancreatic β-cell lines as determined by insulin release assay and immunofluorescence (p < 0.05). Our data also show that the transient receptor potential vanilloid 1 (TRPV1) channel is involved in insulin secretion in response to N-arachidonoyl taurine and N-oleoyl taurine treatment. However our data also suggest that receptors other than TRPV1 are involved in the insulin secretion response to treatment with N-oleoyl taurine.  相似文献   

17.
Cell signaling mediated by morphogens is essential to coordinate growth and patterning, two key processes that govern the formation of a complex multi-cellular organism. During growth and patterning, cells are specified by both quantitative and directional information. While quantitative information regulates cell proliferation and differentiation, directional information is conveyed in the form of cell polarities instructed by local and global cues. Major morphogens like Wnts play critical roles in embryonic development and they are also important in maintaining tissue homeostasis. Abnormal regulation of these signaling events leads to a diverse array of devastating diseases including cancer. Wnts transduce their signals through several distinct pathways and they regulate vertebrate embryonic development by providing both quantitative and directional information. Here, taking the developing skeletal system as an example, we review our work on Wnt signaling pathways in various aspects of development. We focus particularly on our most recent findings that showed that in vertebrates, Wnt5a acts as a global cue to establishing planar cell polarity (PCP). Our work suggests that Wnt morphogens regulate development by integrating quantitative and directional information. Our work also provides important insights in disease like Robinow syndrome, brachydactyly type B1 (BDB1) and spina bifida, which can be caused by human mutations in the Wnt/PCP signaling pathway.  相似文献   

18.
In studies of gene-ablated mice, activin signaling through activin type IIB receptors (ActRIIB) and Smad2 has been shown to regulate not only pancreatic β cell mass but also insulin secretion. However, it still remains unclear whether gain of function of activin signaling is involved in the modulation of pancreatic β cell mass and insulin secretion. To identify distinct roles of activin signaling in pancreatic β cells, the Cre-loxP system was used to activate signaling through activin type IB receptor (ActRIB) in pancreatic β cells. The resultant mice (pancreatic β cell-specific ActRIB transgenic (Tg) mice; ActRIBCAβTg) exhibited a defect in glucose-stimulated insulin secretion (GSIS) and a progressive impairment of glucose tolerance. Patch-clamp techniques revealed that the activity of ATP-sensitive K+ channels (KATP channels) was decreased in mutant β cells. These results indicate that an appropriate level of activin signaling may be required for GSIS in pancreatic β cells, and that activin signaling involves modulation of KATP channel activity.  相似文献   

19.
Mitochondrial oxidative damage is thought to play a key role in pancreatic β-cell failure in the pathogenesis of type 2 diabetes. Despite this, the potential of mitochondria-targeted antioxidants to protect pancreatic β-cells against oxidative stress has not yet been studied. Therefore, we investigated if mitochondria-targeted antioxidants protect pancreatic β-cells such as RINm5F and HIT-T15 cells against oxidative stress under glucotoxic and glucolipotoxic conditions. When β-cells were incubated under these conditions, the expression levels of mitochondrial electron transport chain complex subunits, mitochondrial antioxidant enzymes (such as MnSOD and Prx3), β-cell apoptosis, lipogenic enzymes (such as ACC, FAS and ABCA1), intracellular lipid accumulation, oxidative stress, ER stress, mitochondrial membrane depolarization, nuclear NF- κB and sterol regulatory element binding protein 1c (SREBP1c) were all increased, in parallel with decreases in intracellular ATP content, citrate synthase enzymatic activity and glucose-stimulated insulin secretion. These changes were consistent with elevated mitochondrial oxidative stress, and incubation with the mitochondria-targeted antioxidants, MitoTempol or Mitoquinone (MitoQ), prevented these effects. In conclusion, mitochondria-targeted antioxidants protect pancreatic β-cells against oxidative stress, promote their survival, and increase insulin secretion in cell models of the glucotoxicity and glucolipotoxicity associated with Type 2 diabetes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号