首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
辽宁省潜在蒸散时空变化特征与成因   总被引:1,自引:0,他引:1  
曹永强  李维佳 《生态学报》2018,38(20):7276-7287
潜在蒸散量是衡量变化环境下区域水热资源演变的重要参数,探究其历史变化规律及制约因素对预测农业用水走势乃至合理制定相关决策都至关重要。基于辽宁省23个气象站点1966—2015年的逐日气象数据,采用FAO推荐的Penman-Monteith模型与偏相关性检验法辨识辽宁省近50年潜在蒸散量的时空特征及其影响因素。结果表明:辽宁省各监测站年平均潜在蒸散量为453—1043 mm,多年变化趋势以1.43 mm/a的速度递减,并于2003年发生突变。此外,其时空差异性较为显著。在年代际尺度上表现为,辽西北至辽西南逐次降低;在季节尺度上表现为,夏季潜在蒸散量最高、春秋季节次之、冬季最低;日最高气温、日最低气温和日照时数的减少共同导致过去50年辽宁省潜在蒸散量在整体上表现出减少的趋势。该研究成果可以为水资源的优化配置,评价区域干湿程度等提供一定的理论支撑。  相似文献   

2.
1971-2010年中国大陆潜在蒸散变化的年代际转折及其成因   总被引:5,自引:0,他引:5  
曹雯  段春锋  申双和 《生态学报》2015,35(15):5085-5094
潜在蒸散时间演变的年代际转折研究有助于全面认识潜在蒸散对气候变化的响应。基于修正的FAO56 Penman-Monteith公式和中国580个台站逐日气象观测资料,利用气候变化趋势转折判别模型分析了1971—2010年中国潜在蒸散变化的年代际转折特征,并探讨转折前、后的变化趋势及其主导因素。结果表明:1971—2010年中国年平均潜在蒸散在20世纪90年代初期由显著下降(-2.46 mm/a)转变为显著上升(1.57 mm/a),这与影响潜在蒸散变化的4个气象因子趋势的年代际转折密切相关。90年代之前,全国风速和日照时数普遍下降引起的负贡献超过气温上升引起的正贡献,导致潜在蒸散显著下降;90年代之后,全国大部分地区的增暖加剧和干旱化使得气温和相对湿度的正贡献明显增大,超过由于风速和日照时数下降趋势减缓甚至转折而减小的负贡献,导致潜在蒸散显著上升。潜在蒸散趋势转折现象在全国80%以上的站点普遍存在,且转折前、后主导因子的空间分布格局存在差异。90年代之前,风速和日照时数分别是北方和南方多数站点的主导因子;90年代之后,以气温和相对湿度为主导因子的站点明显增多,尤其是在西北地区、青藏高原和东南沿海部分地区。  相似文献   

3.
长江流域潜在蒸散量时空变化特征   总被引:4,自引:0,他引:4  
根据1961-2011年长江流域116个气象站点的逐日气象资料,应用Penman-Monteith法计算该流域的潜在蒸散量,在此基础上使用反距离加权(IDW)插值、M-K突变检验、Morlet小波分析和R/S趋势分析等方法对该流域潜在蒸散量的时空变化特征进行研究.结果表明:近51年来长江流域潜在蒸散量年际变化倾向率为-0.34 mm· a-1,空间分布上表现为由西向东先减小后增大的趋势;从潜在蒸散量的季节变化来看,除秋季增加趋势比较明显外,其他各季均表现为不同程度的减小趋势,总体表现为夏季>秋季>春季>冬季;通过M-K突变检验和小波分析发现,全年潜在蒸散量的突变发生在1980年前后,年潜在蒸散量出现了准12年左右的第一主周期和准4年左右的第二主周期;R/S分析表明,除了降水量之外,其他气候因子与潜在蒸散量的变化都与过去保持持续的趋势一致性.  相似文献   

4.
基于Penman-Monteith模型和Hurst指数模型,分析了我国西北五省1960-2011年潜在蒸散(ET0)的时空演变特征及其未来趋势,并采用敏感性分析方法定量分析了驱动ET0变化的主导因素.结果表明:研究期间,西北五省ET0整体呈下降趋势,降速为-0.72 mm·a-1,但1993年之后,ET0逐渐增加;ET0空间分布存在显著差异,西北五省ET0平均值为1158 mm 675~2282 mm),最大值出现在新疆的七角井(2282 mm),低值区主要分布在陕南秦巴山地(<800 mm).除春季外,其余季节ET0均呈下降趋势,且在未来趋势分析中,西北五省81.4%的区域ET0由减少转为增加,在全球变暖背景下,该区暖湿化程度将有所减弱,而新疆中部的ET0将持续减少.西北五省全年及各季节影响ET0变化的主导因素主要为风速,但风速在不同季节、不同区域的影响范围有所差异,冬季风速影响范围覆盖整个西北五省,夏季则影响整个新疆及甘肃和青海的西北部.  相似文献   

5.
松嫩平原潜在蒸散量的时空变化特征   总被引:4,自引:0,他引:4  
利用松嫩平原及周边地区72个气象站1961—2003年逐日气象资料,应用Penman-Monteith方程计算潜在蒸散量,采用气候倾向率、Mann-Kendall突变检验、累积距平法,对松嫩平原地区潜在蒸散量变化进行定量分析,并应用ArcGIS软件的空间分析功能对研究区潜在蒸散量的空间分布特征进行分析.结果表明:1961—2003年,松嫩平原年均潜在蒸散量在330~860 mm,总体呈减小趋势,空间分布总体特征为西南高、四周低,呈环带状向西南方向增加;年潜在蒸散量的气候倾向率为-0.21 mm.a-1;年潜在蒸散量在1982年达最大值,形成突变点,而后下降,至1995年降至最低,此后呈增加趋势;春、夏、秋、冬季潜在蒸散量的气候倾向率分别为-0.19、0.01、-0.05、0.03 mm.a-1,表明春、秋季潜在蒸散量呈微弱减小趋势,夏、冬呈微弱增加趋势.  相似文献   

6.
泾河流域潜在蒸散量的时空变异   总被引:1,自引:0,他引:1  
赵姹  李志  刘文兆  王小静 《生态学报》2014,34(19):5600-5608
潜在蒸散量是水文循环中的重要变量,分析其当前特征并预测未来变化,对于区域干旱和水文特征分析具有重要的参考意义。基于15个气象站点的日数据、NCEP再分析数据以及HadCM3的预测数据,在分析当前潜在蒸散量的基础上,应用统计降尺度方法对泾河流域21世纪的潜在蒸散量进行了预测。结果表明,1961—2005年泾河流域潜在蒸散量年均值为934.6 mm,且存在空间差异,整体由东向西南方向递减;时间变化上呈不显著的上升趋势。21世纪泾河流域潜在蒸散量呈显著的上升趋势,但存在季节差异,夏季增幅较大而冬季增幅较小;空间分布基本保持现有模式,但区域差异增大。潜在蒸散量增加可能加剧泾河流域的干旱状况,需提前采取一定的应对措施。  相似文献   

7.
辽宁省潜在蒸散量演变规律及归因分析   总被引:1,自引:0,他引:1  
曹永强  齐静威  王菲  李玲慧  路洁 《生态学报》2020,40(10):3519-3525
根据辽宁省21个气象站点1965—2017年的逐日实测气象数据,利用Penman-Monteith法、小波分析法、敏感系数和因子分析法探究潜在蒸散量的时空变异规律及其主要气象要素多年变化定量分析。结果表明:(1)从变化趋势来看,在时间尺度上,辽宁省潜在蒸散量下降趋势显著,变化率为2.89 mm/a,多年平均值为955.82 mm,21个气象站点中有20个气象站点潜在蒸散量呈递减趋势,仅有1个气象站点呈递增趋势;在空间尺度上,辽宁省潜在蒸散量由西向东呈递减趋势。(2)潜在蒸散量对相对湿度最为敏感,对最低气温敏感性最小。(3)平均风速是对潜在蒸散量影响最大的气象因子,相对湿度与潜在蒸散量呈负相关。  相似文献   

8.
淮河流域干旱时空演变特征及成因   总被引:2,自引:0,他引:2  
基于淮河流域149气象站点1962—2016年标准化降水蒸散发指数、16个气候因子和NCEP/NCAR再分析资料,通过小波分析和旋转经验正交函数等手段,分析淮河流域干旱重心的转移轨迹,研究气象干旱与气候因子的相关关系,并通过大气环流的异常特征揭示气象干旱的主要成因。结果表明:(1)干旱重心分布主要从淮河流域中心向四周扩散,淮河流域大范围区域呈干旱化态势。2013年干旱重心从西北部→中部→西南部→中部变化,随着干旱面积的增大,干旱重心由四周向中心移动。(2)PDO、ONI、Nino4、Nino3.4、MEI、BEST与SPEI均呈显著正相关关系,SOI、TNI与SPEI则呈显著负相关关系。(3)干旱周期主要集中在1970年代、1990年代和2000年代存在2—5年显著周期,气候因子在3.4—4.5年存在显著周期。(4)春季高纬度地区的气流南下,与印度洋、孟加拉湾北上气流导致南湿北干;夏季蒙古气旋偏弱与异常偏北风覆盖导致东干西湿;秋季大陆高压控制,偏北风和南风相互影响造成东干西湿;冬季盛行下沉气流与盛行东南风造成东湿西干的气候特征。  相似文献   

9.
中国西北干旱区降水时空分布特征   总被引:21,自引:2,他引:21  
姚俊强  杨青  刘志辉  李诚志 《生态学报》2015,35(17):5846-5855
利用中国西北干旱区122个气象站点1961—2011年月降水量资料,运用线性趋势、Mann-Kendall非参数趋势和突变检验法、Morlet小波分析等方法研究了西北干旱区降水量空间分布及多时间尺度下的变化规律和趋势。结果表明:近50年来西北干旱区降水量呈增加趋势,95.9%的站点有增湿特征,全区增湿趋势为9.31mm/10a(P0.01),但增湿幅度存在区域差异性,其中祁连山亚区(38.67mm/10a)增湿最明显;从季节来看,冬季增湿具有全区普遍性,但夏季增湿的区域差异性特征明显。全区及各亚区降水量在20世纪80年代至90年代初有明显的突变特征,除内蒙西部亚区外均通过了0.01的显著性水平检验,降水量序列存在4、8、12a和22a振荡周期,其中22a尺度振荡周期最强,其次是12a尺度。全区32%的年份降水量属正常范围,偏干年份为24%,异常偏干年份为12%,异常偏湿和偏湿年份均为16%。20世纪70年代之前降水量略低于标准降水均值,80年代开始有区域性增湿趋势,90年代之后全区增湿均较明显,正距平年数比例由70年代的10%上升至21世纪初的80%,西北干旱区整体处于相对湿润时段,且增湿趋势明显。  相似文献   

10.
中国西北干旱区气温时空变化特征   总被引:4,自引:5,他引:4  
黄蕊  徐利岗  刘俊民 《生态学报》2013,33(13):4078-4089
依据我国西北干旱区95个站点1951-2008年月平均气温资料,运用经验正交分解法(EOF)、Morlet小波分析、MannKendall秩次相关检验法及气候趋势系数等方法剖析了西北干旱区气温场空间分布结构及多时间尺度下的变异规律和变化趋势.结果表明:西北干旱区气温存在3a、9a及准12a主周期;气温场空间分布以“相间复杂”型为主(对总体方差贡献为30.93%),基于此将西北干旱区划分为北疆子区、南疆子区、河西子区、青海子区及内蒙古子区.全区44.8%的年份气温属正常范围,15.5%年份异常偏暖,3.4%显著偏暖,13.8%年份偏冷,显著偏冷和异常偏冷年份均为8.6%.自90年代以来,西北干旱区开始增温,2001-2008年温度正距平值达6.9℃,正距平年数由80年代40%上升至100%.西北干旱区97.9%的地区呈现增温趋势,其中94.7%的地区通过信度0.01的显著性检验,96.8%的站点通过了0.05的显著性检验;增温幅度为0.02℃/10a-1.21℃/10a;并形成了北疆以富蕴(1.09℃/10a),南疆以喀什(0.22℃/10a),东疆以巴里坤(0.76℃/10a),柴达木盆地以小灶火(0.81℃/10a),河西地区以松山(0.08℃/10a),内蒙古西部以吉诃德(0.03℃/10a)为中心的增温区.  相似文献   

11.
中国西北干旱区蒸散发时空动态特征   总被引:12,自引:9,他引:12  
邓兴耀  刘洋  刘志辉  姚俊强 《生态学报》2017,37(9):2994-3008
利用MODIS ET数据集中2000—2014年的地表实际蒸散发量产品,运用变异系数、Theil-Sen median趋势分析与MannKendall检验和Hurst指数法,研究了中国西北干旱区蒸散发的空间格局、不同维度的空间异质性和时间变化特征及未来趋势预测。结果表明:(1)2000—2014年全区蒸散发量总体较小,蒸散发量小于200 mm的区域占总面积的38.329%。在空间上ET自山区向两侧平原减少,不同土地覆盖的ET大小为:林地农用地草地稀疏植被。受降水和土地覆盖的综合影响,ET的高值区(400 mm)主要在降水丰富的山区林地和草地,而低值区(200 mm)主要在降水较少的平原稀疏植被区和草地。(2)近15年全区蒸散发变异程度不明显,以相对较低的波动变化为主。各亚区内波动较低区域的比例为:北疆天山祁连山内蒙西部河西走廊南疆。(3)15年间全区年均蒸散发量呈波动变化,总体有微弱的减小趋势,变化率为-0.9348 mm/a。基于像元尺度的分析也表明全区ET以减小的变化趋势为主,但各亚区的减小程度各异:天山内蒙西部河西走廊北疆祁连山,仅南疆有增加趋势。(4)全区ET的Hurst指数均值为0.689,Hurst指数大于0.5的范围所占比例为80.033%,未来全区蒸散发的变化趋势以持续性减小为主。其中22.003%区域的变化趋势无法确定。未来各亚区ET的减少趋势为:内蒙西部天山河西走廊北疆祁连山南疆。  相似文献   

12.
曹雯  段春锋  姚筠  岳伟   《生态学杂志》2014,25(12):3619-3626
基于联和国粮农组织推荐的Penman Monteith公式和60个台站1961—2010年逐日气象观测资料,估算了安徽省的参考作物蒸散量(ET0),在对ET0空间分布特征和时间演变规律进行分析的基础上,定量探讨了安徽省影响ET0变化的主导因素.结果表明: 研究期间,安徽省ET0的年平均值约为878.58 mm·a-1,夏季最大,冬季最小.年平均ET0呈现由北向南、由低海拔向高海拔递减的空间分布特征.ET0的变化主要归因于日照时数和风速,而气温和相对湿度的作用较小.由于日照时数和风速的共同负贡献明显超过气温和相对湿度的共同正贡献,导致安徽省ET0整体上以-1.61 mm·a-1的速率显著下降.ET0在春季呈不显著的微弱上升趋势;夏季ET0以-1.37 mm·a-1的速率显著下降;秋、冬季的ET0微弱下降,但趋势不显著.春、秋、冬季ET0变化的主导因子是风速;夏季的主导因子是日照时数.ET0变化的主导因子存在明显空间差异.有36.7%站点的年平均ET0变化的主导因子是风速,主要分布在淮北南部和沿淮地区;其他大部分地区的主导因子都是日照时数.
  相似文献   

13.
蒸散发是土壤-植被-大气系统中水循环和能量交换的主要组成部分,准确估算区域蒸散发对农业用水调度与水资源的管理至关重要。利用MODIS数据产品结合地面气象站的观测资料,基于能量平衡原理建立的SEBAL(Surface Energy Balance Algorithms for Land)模型对西北农牧交错带2015年生长季(4—10月)的地表蒸散发量进行反演研究,并用Penman-Monteith(P-M)公式结合作物系数对模型的估算结果进行对比,结果表明:SEBAL模型估算结果与P-M公式之间的平均绝对误差为0.79mm/d,均方根误差为0.94mm/d,R2=0.76,整体反演值偏高,但基本能满足本地区的研究需求。生长季区域日均蒸散发的变化范围为0.12—10.66mm/d,日蒸散量均值为4.31mm/d,呈东北、西南部较高,西部偏低的空间分布特征。将蒸散发估算值与地表特征参数统计分析发现蒸散发与NDVI和地表净辐射之间呈正相关,与地表温度和地表反照率之间呈负相关;不同土地利用/覆被类型的日蒸散发量由大到小依次为:耕地、林地、未利用地与草地。  相似文献   

14.
华北平原参考作物蒸散量时空变化及其影响因素分析   总被引:8,自引:0,他引:8  
王鹏涛  延军平  蒋冲  刘宪锋 《生态学报》2014,34(19):5589-5599
根据华北平原56个气象站1960—2012年逐日气象数据和Penman-Monteith模型计算了各站及区域整体参考作物蒸散量(ET0),利用样条插值法、气候倾向率、累积距平、敏感性系数等方法对华北平原ET0的时空变化及其影响因素进行了分析。结果表明:(1)华北平原多年平均ET0为1071.37mm,空间上呈现高低值相间分布格局,高值中心分布在冀北、鲁中、豫西,而低值中心分布在冀东、鲁南、豫东及豫南等地;(2)近53年ET0呈减少趋势(-12.8mm/10a),山东半岛北部及冀北等地有缓慢增加趋势,其余地区以减少为主;(3)ET0对气温、平均风速、日照时数为正敏感,而对相对湿度为负敏感。平均气温与日照时数敏感系数呈现下降趋势,相对湿度与风速敏感系数表现出上升趋势。ET0对气温和风速敏感度高的区域同时对日照时数和相对湿度敏感度较低;(4)归因分析表明,华北平原ET0的主导因子是日照时数,平均风速次之,相对湿度、最高温度、最低温度对ET0变化影响较小,日照时数主导区域包括冀北、坝上地区、冀中、豫西、豫南、鲁中及鲁西北,平均风速的主导区域为冀南、河南黄河以北、豫中、鲁西北,温度主导区域零星分布于冀北、豫西、山东半岛等地,相对湿度的主导区域主要分布在鲁南、山东半岛。  相似文献   

15.
A widely used approach for estimating actual evapotranspiration (AET) in hydrological and earth system models is to constrain potential evapotranspiration (PET) with a single empirical stress factor (Ω = AET/PET). Ω represents the water availability and is fundamentally linked to canopy–atmosphere coupling. However, the mean and seasonal variability of Ω in the models have rarely been evaluated against observations, and the model performances for different climates and biomes remain unclear. In this study, we first derived the observed Ω from 28 FLUXNET sites over North America during 2000–2007, which was then used to evaluate Ω in six large‐scale model‐based datasets. Our results confirm the importance of incorporating canopy height in the formulation of aerodynamic conductance in the case of forests. Furthermore, leaf area index (LAI) is central to the prediction of Ω and can be quantitatively linked to the partitioning between transpiration and soil evaporation (R2 = 0.43). The substantial differences between observed and model‐based Ω in forests (range: 0.2~0.9) are highly related to the way these models estimated PET and the way they represented the responses of Ω to the environmental drivers, especially wind speed and LAI. This is the first assessment of Ω in models based on in situ observations. Our findings demonstrate that the observed Ω is useful for evaluating, validating, and optimizing the modeling of AET and thus of water and energy balances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号