首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Curcumin, the major active component of the spice turmeric, is recognised as a safe compound with great potential for cancer chemoprevention and cancer therapy. It induces apoptosis, but its initiation mechanism remains poorly understood. Curcumin has been assessed on the human cancer cell lines, TK-10, MCF-7 and UACC-62, and their IC50 values were 12.16, 3.63, 4.28?μM respectively. The possibility of this compound being a topoisomerase II poison has also been studied and it was found that 50?μM of curcumin is active in a similar fashion to the antineoplastic agent etoposide. These results point to DNA damage induced by topoisomerase II poisoning as a possible mechanism by which curcumin initiates apoptosis, and increase the evidence suggesting its possible use in cancer therapy.  相似文献   

2.
3.
Lung cancer is a main cause of death all over the world with a high incidence rate. Metastasis into neighboring and distant tissues as well as resistance of cancer cells to chemotherapy demand novel strategies in lung cancer therapy. Curcumin is a naturally occurring nutraceutical compound derived from Curcuma longa (turmeric) that has great pharmacological effects, such as anti-inflammatory, neuroprotective, and antidiabetic. The excellent antitumor activity of curcumin has led to its extensive application in the treatment of various cancers. In the present review, we describe the antitumor activity of curcumin against lung cancer. Curcumin affects different molecular pathways such as vascular endothelial growth factors, nuclear factor-κB (NF-κB), mammalian target of rapamycin, PI3/Akt, microRNAs, and long noncoding RNAs in treatment of lung cancer. Curcumin also can induce autophagy, apoptosis, and cell cycle arrest to reduce the viability and proliferation of lung cancer cells. Notably, curcumin supplementation sensitizes cancer cells to chemotherapy and enhances chemotherapy-mediated apoptosis. Curcumin can elevate the efficacy of radiotherapy in lung cancer therapy by targeting various signaling pathways, such as epidermal growth factor receptor and NF-κB. Curcumin-loaded nanocarriers enhance the bioavailability, cellular uptake, and antitumor activity of curcumin. The aforementioned effects are comprehensively discussed in the current review to further direct studies for applying curcumin in lung cancer therapy.  相似文献   

4.
Curcumin is a well-known natural compound with antiinflammatory properties. Its antiproliferative effect and ability to modulate apoptotic response are considered essential in cancer therapy. The physicochemical properties of curcumin suggest membranous localization, which prompted an investigation of the mechanisms of membrane disturbances evoked by curcumin. We chose the erythrocyte as a convenient model for studying membrane effects of curcumin and showed its nonspecific, apoptosis-independent way of action. Curcumin was found to expand the cell membrane, inducing echinocytosis. Changes in cell shape were accompanied by transient exposure of phosphatidylserine. Membrane asymmetry was recovered by the action of aminophospholipid translocase, which remained active in the presence of curcumin. Lipids rearrangements and drug partitioning caused changes of lipid fluidity. Such nonspecific effects of curcumin on cellular membranes would produce artifacts of apoptosis measurement, since several methods are based on membrane changes.  相似文献   

5.
6.
7.
Curcumin, an active ingredient from the rhizome of the plant, Curcuma longa, has antioxidant, anti-inflammatory and anti-cancer activities. It has recently been demonstrated that the chemopreventive activities of curcumin might be due to its ability to inhibit cell growth and induce apoptosis. In the present study, we have investigated the effects of curcumin on growth and apoptosis in the human ovarian cancer cell line Ho-8910 by MTT assay, fluorescence microscopy, flow cytometry and Western blotting. Our data revealed that curcumin could significantly inhibit the growth and induce apoptosis in Ho-8910 cells. A decrease in expression of Bcl-2, Bcl-X(L) and pro-caspase-3 was observed after exposure to 40 microM curcumin, while the levels of p53 and Bax were increased in the curcumin-treated cells. These activities may contribute to the anticarcinogenic action of curcumin.  相似文献   

8.
Anoikis, an apoptosis triggered by loss of cell anchorage, has been shown to be a principal mechanism of inhibition of tumor metastasis. Recently, anti-apoptotic Bcl-2 and Cav-1 proteins have been demonstrated to be highly associated with tumor metastasis and apoptosis resistance. Curcumin, a major active component of turmeric, Curcuma longa, has been shown to inhibit neoplastic evolution and tumor progression; however, the underlying mechanisms are unclear. In this study, we investigated the effect of curcumin on cell anoikis as a possible mechanism of anti-tumorigenic action of curcumin, and evaluated the potential role of Bcl-2 and Cav-1 in this process. Our results showed that ectopic expression of either Bcl-2 or Cav-1 induced anoikis resistance of lung carcinoma H460 cells. Curcumin downregulated Bcl-2 protein during anoikis and sensitized the cells to detachment-induced apoptosis, whereas it had no significant effect on Cav-1 protein expression. Bcl-2 down-regulation as well as anoikis enhancement by curcumin were inhibited by superoxide anion scavenger, Mn(III)tetrakis(4-benzoic acid) porphyrin chloride, but were unaffected by other ROS scavengers including catalase and deferoxamine, suggesting that superoxide anion is a key player in the downregulation of Bcl-2 by curcumin. Furthermore, we provided evidence that curcumin decreased Bcl-2 level through ubiquitin-proteasomal degradation which sensitized cells to detachment-induced apoptosis. These findings indicate a novel pathway for curcumin regulation of Bcl-2 and provide a key mechanism of anoikis regulation that may be exploited for metastatic cancer treatment.  相似文献   

9.
《Free radical research》2013,47(12):1397-1408
Abstract

Neuroblastoma (NB) is one of the most frequent extracranial solid tumors in children. It accounts for 8–10% of all childhood cancer deaths, and there is a need for development of new drugs for its treatment. Curcumin (diferuloylmethane), a major active component of turmeric (Curcuma longa), has been shown to exert anti-tumor activity on NB, but the specific mechanism by which curcumin inhibits cancer cells proliferation remains unclear. In the present study, we investigated the anti-proliferative effect of curcumin in human LAN5 NB cells. Curcumin treatment causes a rapid increase in reactive oxygen species and a decrease in the mitochondrial membrane potential—events leading to apoptosis activation. Furthermore, curcumin induces decrease in haet shock protein (Hsp)60 and hexokinase II mitochondrial protein levels and increase in the pro-apoptotic protein, bcl-2 associated death promoter (BAD). Moreover, we demonstrate that curcumin modulates anti-tumor activity through modulation of phosphatase and tensin homolog deleted on chromosome 10 and consequential inhibition of the survival Akt cell-signaling pathway. Inhibition of Akt causes its translocation into the cytoplasm and import of Foxo3a into the nucleus where it activates the expression of p27, Bim, and Fas-L pro-apoptotic genes. Together, these results take evidence for considering curcumin as a potential therapeutic agent for patients with NB.  相似文献   

10.
Curcumin has long been known to posses medicinal properties and recent scientific studies have shown its efficacy in treating cancer. Curcumin is now considered to be a promising anti-cancer agent and studies continue on its molecular mechanism of action. Curcumin has been shown to act in a multi-faceted manner by targeting the classical hallmarks of cancer like sustained proliferation, evasion of apoptosis, sustained angiogenesis, insensitivity to growth inhibitors, tissue invasion and metastasis etc. However, one of the emerging hallmarks of cancer is the avoidance of immune system by tumors. Growing tumors adopt several strategies to escape immune surveillance and successfully develop in the body. In this review we highlight the recent studies that show that curcumin also targets this process and helps restore the immune activity against cancer. Curcumin mediates several processes like restoration of CD4+/CD8+ T cell populations, reversal of type-2 cytokine bias, reduction of Treg cell population and suppression of T cell apoptosis; all these help to resurrect tumor immune surveillance that leads to tumor regression. Thus interaction of curcumin with the immune system is also an important feature of its multi-faceted modes of action against cancer. Finally, we also point out the drawbacks of and difficulties in curcumin administration and indicate the use of nano-formulations of curcumin for better therapeutic efficacy.  相似文献   

11.
Curcumin (diferuloylmethane), the yellow pigment of turmeric, is one of the most commonly used and extensively studied phytochemicals due to its pleiotropic effects in several human cancers. In the current study, the therapeutic efficacy of curcumin was investigated in human colorectal carcinoma HCT-15 cells. Curcumin inhibited HCT-15 cells proliferation and induced apoptosis in a dose- and time-dependent manner. Hoechst 33342 and DCFHDA staining revealed morphological and biochemical features of apoptosis as well as ROS generation in HCT-15 cells treated with 30 and 50 μM curcumin. Over-expression of pre-mRNA processing factor 4B (Prp4B) and p53 mutations have been reported as hallmarks of cancer cells. Western blot analysis revealed that curcumin treatment activated caspase-3 and decreased expression of p53 and Prp4B in a time-dependent manner. Transfection of HCT-15 cells with Prp4B clone perturbed the growth inhibition induced by 30 μM curcumin. Fractionation of cells revealed increased accumulation of Prp4B in the nucleus, following its translocation from the cytoplasm. To further evaluate the underlying mechanism and survival effect of Prp4B, we generated siRNA-Prp4B HCT15 clones. Knockdown of Prp4B with siRNA diminished the protective effects of Prp4B against curcumin-induced apoptosis. These results suggest a possible underlying molecular mechanism in which Prp4B over-expression and activity are closely associated with the survival and regulation of apoptotic events in human colon cancer HCT-15 cells.  相似文献   

12.
Curcumin, the active ingredient of the rhizome of Curcuma longa has anti-inflammatory, antioxidant and antiproliferative activities. Although its precise mode of action remains elusive, studies have shown that chemopreventive action of curcumin might be due to its ability to induce apoptosis in cancer cells. Curcumin was shown to be responsible for the inhibition of AK-5 tumor (a rat histiocytoma) growth by inducing apoptosis in AK-5 tumor cells via caspase activation. This study was designed to investigate the mechanism leading to the induction of apoptosis in AK-5 tumor cells. Curcumin treatment resulted in the hyperproduction of reactive oxygen species (ROS), loss of mitochondrial membrane potential (delta psi(m)) and cytochrome c release to the cytosol, with the concomitant exposure of phosphatidylserine (PS) residues on the cell surface. This study suggests redox signalling and caspase activation as the mechanisms responsible for the induction of curcumin mediated apoptosis in AK-5 tumor cells.  相似文献   

13.
A hallmark of cancer is resistance to apoptosis, with both the loss of proapoptotic signals and the gain of anti-apoptotic mechanisms contributing to tumorigenesis. As inducing apoptosis in malignant cells is one of the most challenging tasks regarding cancer, researchers increasingly focus on natural products to regulate apoptotic signaling pathways. Curcumin, a polyphenolic derivative of turmeric, is a natural compound derived from Curcuma longa, has attracted great interest in the research of cancer during the last half century. Extensive studies revealed that curcumin has chemopreventive properties, which are mainly due to its ability to arrest cell cycle and to induce apoptosis in cancer cells either alone or in combination with chemotherapeutic agents or radiation. The underlying action mechanisms of curcumin are diverse and has not been elucidated so far. By regulating multiple important cellular signalling pathways including NF-κB, TRAIL, PI3 K/Akt, JAK/STAT, Notch-1, JNK, etc., curcumin are known to activate cell death signals and induce apoptosis in pre-cancerous or cancer cells without affecting normal cells, thereby inhibiting tumor progression. Several phase I and phase II clinical trials indicate that curcumin is quite safe and may exhibit therapeutic efficacy. This article reviews the main effects of curcumin on the different apoptotic signaling pathways involved in curcumin induced apoptosis in cancer cells via cellular transduction pathways and provides an in depth assessment of its pharmacological activity in the management of tumor progression.  相似文献   

14.
Curcumin, a well-known dietary pigment derived from Curcuma longa, has been shown to be a potent antiinflammatory, antioxidant, and anticarcinogenic compound. The present study was designed to investigate the cytotoxic potential of curcumin against a range of human tumor cell lines in an attempt to understand its mechanism of action, which may lead to its possible therapeutic applications. We have shown that different cancer cell lines differ in their sensitivity to curcumin. Cell lines established from malignancies like leukemia, breast, colon, hepatocellular, and ovarian carcinomas underwent apoptosis in the presence of curcumin, whereas cell lines from lung, kidney, prostate, cervix, CNS malignancies, and melanomas showed resistance to the cytotoxic effects of curcumin. Sensitivity of the cancer cell lines to curcumin correlated with the generation of superoxide radicals as determined by the reduction of ferricytochrome C. Curcumin-resistant tumor cell lines showed significantly higher production of Hsp70, thus mounting a stress response and protecting the cells from the apoptotic cell death. These observations yield clues toward understanding the regulation of the cell death machinery by the stress proteins. Interestingly, curcumin had no effect on nontransformed cell lines, which showed neither superoxide generation nor the induction of a stress response. These observations demonstrate that curcumin is an interesting molecule with varied actions, depending on the cell type.  相似文献   

15.
Curcumin is a natural compound derived from turmeric and can target malignant tumor molecules involved in cancer propagation. It has potent antioxidant activity, but its effectiveness is limited due to poor absorption and rapid elimination from the body. Various curcumin derivatives have also shown anticancer potential in in-vitro and in-vivo models. Curcumin can target multiple signaling pathways involved in cancer development/progression or induce cancer cell death through apoptosis. In addition, curcumin and its derivatives could also enhance the effectiveness of conventional chemotherapy, radiation therapy and reduce their associated side effects. Lately, nanoparticle-based delivery systems are being developed/explored to overcome the challenges associated with curcumin's delivery, increasing its overall efficacy. The use of an imaging system to track these formulations could also give beneficial information about the bioavailability and distribution of the nano-curcumin complex. In conclusion, curcumin holds significant promise in the fight against cancer, especially in its nanoform, and could provide precise delivery to cancer cells without affecting normal healthy cells.  相似文献   

16.
Curcumin, a major yellow pigment and active component of turmeric, has been shown to possess anti-inflammatory and anti-cancer activities. Recent studies have indicated that curcumin inhibits chloroquine-sensitive (CQ-S) and chloroquine-resistant (CQ-R) Plasmodium falciparum growth in culture with an IC(50) of approximately 3.25 microM (MIC=13.2 microM) and IC(50) 4.21 microM (MIC=14.4 microM), respectively. In order to expand their potential as anti-malarials a series of novel curcumin derivatives were synthesized and evaluated for their ability to inhibit P. falciparum growth in culture. Several curcumin analogues examined show more effective inhibition of P. falciparum growth than curcumin. The most potent curcumin compounds 3, 6, and 11 were inhibitory for CQ-S P. falciparum at IC(50) of 0.48, 0.87, 0.92 microM and CQ-R P. falciparum at IC(50) of 0.45 microM, 0.89, 0.75 microM, respectively. Pyrazole analogue of curcumin (3) exhibited sevenfold higher anti-malarial potency against CQ-S and ninefold higher anti-malarial potency against CQ-R. Curcumin analogues described here represent a novel class of highly selective P. falciparum inhibitors and promising candidates for the design of novel anti-malarial agents.  相似文献   

17.
Curcumin (diferuloylmethane) is a major component of food flavoring turmeric (Curcuma longa), and has been reported to be anticarcinogenic and anti-inflammatory. Although curcumin was shown to have antioxidant properties, its exact antioxidant nature has not been fully investigated. In this report we have investigated the possible antioxidant properties of curcumin using EPR spectroscopic techniques. Curcumin was found to inhibit the (1)O(2)-dependent 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) formation in a dose-dependent manner. (1)O(2) was produced in a photosensitizing system using rose bengal as sensitizer, and was detected as TEMP-(1)O(2) adducts by electron paramagnetic resonance (EPR) spectroscopic techniques using TEMP as a spin-trap. Curcumin at 2.75 microM caused 50% inhibition of TEMP-(1)O(2) adduct formation. However, curcumin only marginally inhibited (24% maximum at 80 microM) reduction of ferricytochrome c in a xanthine-xanthine oxidase system demonstrating that it is not an effective superoxide radical scavenger. Additionally, there was minor inhibition of DMPO-OH adduct formation by curcumin (solubilized in ethanol) when an ethanol control was included in the EPR spin-trapping study, suggesting that curcumin may not be an effective hydroxyl radical scavenger. Together these data demonstrate that curcumin is able only to effectively quench singlet oxygen at very low concentration in aqueous systems.  相似文献   

18.
The substituted chloroisoquinolinediones and pyrido[3,4-b]phenazinediones were synthesized, and the cytotoxic activity and topoisomerase II inhibitory activity of the prepared compounds were evaluated. Chloroisoquinolinediones have been prepared by the reported method employing 6,7-dichloroisoquinoline-5,8-dione. The cyclization to pyrido[3,4-b]phenazinediones was achieved by adding the aqueous sodium azide solution to the dimethylformamide solution of corresponding chloroisoquinoline-5,8-dione. The cytotoxicity of the synthesized compounds was evaluated by a SRB (Sulforhodamine B) assay against various cancer cell lines such as A549 (human lung cancer cell line), SNU-638 (human stomach cancer cell), Col2 (human colon cancer cell line), HT1080 (human fibrosarcoma cell line), and HL-60 (human leukemia cell line). Almost all the synthesized pyrido[3,4-b]phenazinediones showed greater cytotoxic potential than ellipticine (IC(50)=1.82-5.97 microM). In general, the cytotoxicity of the pyrido[3,4-b]phenazinediones was higher than that of the corresponding chloroisoquinolinediones. The caco-2 cell permeability of selected compounds was 0.62 x 10(-6)-35.3 x 10(-6)cm/s. The difference in cytotoxic activity among tested compounds was correlated with the difference in permeability to some degree. To further investigate the cytotoxic mechanism, the topoisomerase II inhibitory activity of the synthesized compounds was estimated by a plasmid cleavage assay. Most of compounds showed the topoisomerase II inhibitory activity (28-100%) at 200 microM. IC(50) values for the most active compound 6a were 0.082 microM. However, the compounds were inactive for DNA relaxation by topoisomerase I at 200 microM.  相似文献   

19.
Curcumin, a biphenyl compound derived from rhizome, is a powerful anti-cancer agent. Emodin is an active component isolated from the root and rhizome of Rheum palmatum that has been widely used in traditional Chinese medicine for the treatment of various diseases. Currently, there are no studies examining the effect of curcumin in combination with emodin on tumor cell growth. In this study, we report for the first time that combined curcumin and emodin administration synergistically inhibits proliferation (MTT assay), survival (flow cytometry), and invasion (transwell migration assay) of breast cancer cells. Synergism is determined by the Chou–Talalay method. Moreover, we demonstrate that miR-34a is upregulated by curcumin and emodin. This microRNA helps mediate the anti-tumor effects of curcumin and emodin by downregulating Bcl-2 and Bmi-1. Our results not only provide insight into the mechanism of synergy between curcumin and emodin in breast cancer cells, but also suggest a new and potentially useful approach for breast cancer therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号