首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Friedman R  Hughes AL 《Immunogenetics》2002,53(10-11):964-974
The mechanisms of innate immunity in vertebrates show certain overall resemblances to immune mechanisms of insects. Two hypotheses have been proposed to explain these resemblances. (1) According to the evolutionary continuity hypothesis, innate immune mechanisms evolved in the common ancestor of vertebrates and insects and have been conserved since that time. (2) In the independent-evolution hypothesis, the mechanisms of innate immunity in vertebrates evolved independently from invertebrate immune mechanisms. Phylogenetic analysis of five gene families (Pelle, Rel, IkappaB, Toll, and TRAF) whose members are involved in NF-kappaB signaling in vertebrates and insects were used to decide between these hypotheses. The phylogenies of the Rel and TRAF families strongly supported independent evolution of immune functions in vertebrates and invertebrates, and, except for a possible case in the Pelle family, orthologous molecules having immune functions in both vertebrates and invertebrates were not found. The results suggest that NF-kappaB represents an ancient, generalized signaling system that has been co-opted for immune system roles independently in vertebrate and insect lineages.  相似文献   

3.
The aims of the study were to outline the sequence of eventsthat gave rise to the vertebrate insulin-relaxin gene familyand the chromosomal regions in which they reside. We analyzedthe gene content surrounding the human insulin/relaxin geneswith respect to what family they belonged to and if the duplicationhistory of investigated families parallels the evolution ofthe insulin-relaxin family members. Markov Clustering and phylogeneticanalysis were used to determine family identity. More than 15%of the genes belonged to families that have paralogs in theregions, defining two sets of quadruplicate paralogy regions.Thereby, the localization of insulin/relaxin genes in humansis in accordance with those regions on human chromosomes 1,11, 12, 19q (insulin/insulin-like growth factors) and 1, 6p/15q,9/5, 19p (insulin-like factors/relaxins) were formed duringtwo genome duplications. We compared the human genome with thatof Ciona intestinalis, a species that split from the vertebratelineage before the two suggested genome duplications. Two insulin-likeorthologs were discovered in addition to the already describedCi-insulin gene. Conserved synteny between the Ciona regionshosting the insulin-like genes and the two sets of human paralogonsimplies their common origin. Linkage of the two human paralogons,as seen in human chromosome 1, as well as the two regions hostingthe Ciona insulin-like genes suggests that a segmental duplicationgave rise to the region prior to the genome doublings. Thus,preserved gene content provides support that genome duplication(s)in addition to segmental and single-gene duplications shapedthe genomes of extant vertebrates.  相似文献   

4.
The discovery that the p53 family consists of three members (p53, p63 and p73) in vertebrates and of a single homolog in invertebrates has raised the challenge of understanding the functions of the ancestor and how they have evolved and differentiated within the duplicated genes in vertebrates. Here, we report that the fatty acid synthase (FAS) gene, encoding for a key enzyme involved in the biogenesis of membrane lipids in rapidly proliferating cells, is a conserved target of the p53 family throughout the evolution. We show that CEP-1, the C. elegans p53 homolog, is able to bind the two p53 family responsive elements (REs) identified in the worm fasn-1 gene. Moreover, we demonstrate that fasn-1 expression is modulated by CEP-1 in vivo, by comparing wild-type and CEP-1 knockout worms. In human, luciferase and chromatin immunoprecipitation assays demonstrate that TAp73α and ΔNp63α, but not p53, TAp73β and TAp63α bind the two p53 REs of the human FASN gene. We show that the ectopic expression of TAp73β and ΔNp63α leads to an increase of FASN mRNA levels, while their silencing produces a decrease of FASN expression. Furthermore, we present data showing a correlation between ΔNp63α and FASN expression in cellular proliferation. Of relevant importance is that fasn-1 is the first CEP-1 direct target gene identified so far in C. elegans and our results suggest a new CEP-1 role in cellular proliferation and development, besides the one already described in apoptosis of germ cells. These data confirm the hypothesis that the ancestral functions of the single invertebrate gene may have been spread out among the three vertebrate members, each of them have acquired specific role in cell cycle regulation.  相似文献   

5.
The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.  相似文献   

6.
The protein called voltage-dependent anion-selective channel (VDAC), or mitochondrial porin, forms channels that provide the major pathway for small metabolites across the mitochondrial outer membrane. We have identified and sequenced agporin, a gene of the malaria vector mosquito Anopheles gambiae that conceptually encodes a protein with 73% identity to the VDAC protein encoded by the porin gene in Drosophila melanogaster. By in situ hybridization, we have localized agporin at region 35D on the right arm of A. gambiae chromosome 3, which is homologous to the 2L chromosomal arm of D. melanogaster where the porin gene resides. The comparison of agporin with its putative Drosophila counterpart revealed that both the nucleotide sequence and the structural organization of the two genes are strikingly conserved even though the ancestral lines of A. gambiae and D. melanogaster are thought to have diverged about 250 million years ago. Our results suggest that, while in yeast, plants, and mammals, VDAC isoforms are encoded by small multigene families and are able to compensate for each other at least partially, in A. gambiae a single gene encodes the VDAC protein.  相似文献   

7.
8.
Dmrt基因在水生生物中的研究进展   总被引:1,自引:0,他引:1  
  相似文献   

9.

Background  

The L-lactate and D-lactate dehydrogenases, which are involved in the reduction of pyruvate to L(-)-lactate and D(+)-lactate, belong to evolutionarily unrelated enzyme families. The genes encoding L-LDH have been used as a model for gene duplication due to the multiple paralogs found in eubacteria, archaebacteria, and eukaryotes. Phylogenetic studies have suggested that several gene duplication events led to the main isozymes of this gene family in chordates, but little is known about the evolution of L-Ldh in invertebrates. While most invertebrates preferentially oxidize L-lactic acid, several species of mollusks, a few arthropods and polychaetes were found to have exclusively D-LDH enzymatic activity. Therefore, it has been suggested that L-LDH and D-LDH are mutually exclusive. However, recent characterization of putative mammalian D-LDH with significant similarity to yeast proteins showing D-LDH activity suggests that at least mammals have the two naturally occurring forms of LDH specific to L- and D-lactate. This study describes the phylogenetic relationships of invertebrate L-LDH and D-LDH with special emphasis on crustaceans, and discusses gene duplication events during the evolution of L-Ldh.  相似文献   

10.
11.
Gene duplication is a crucial mechanism of evolutionary innovation. A substantial fraction of eukaryotic genomes consists of paralogous gene families. We assess the extent of ancestral paralogy, which dates back to the last common ancestor of all eukaryotes, and examine the origins of the ancestral paralogs and their potential roles in the emergence of the eukaryotic cell complexity. A parsimonious reconstruction of ancestral gene repertoires shows that 4137 orthologous gene sets in the last eukaryotic common ancestor (LECA) map back to 2150 orthologous sets in the hypothetical first eukaryotic common ancestor (FECA) [paralogy quotient (PQ) of 1.92]. Analogous reconstructions show significantly lower levels of paralogy in prokaryotes, 1.19 for archaea and 1.25 for bacteria. The only functional class of eukaryotic proteins with a significant excess of paralogous clusters over the mean includes molecular chaperones and proteins with related functions. Almost all genes in this category underwent multiple duplications during early eukaryotic evolution. In structural terms, the most prominent sets of paralogs are superstructure-forming proteins with repetitive domains, such as WD-40 and TPR. In addition to the true ancestral paralogs which evolved via duplication at the onset of eukaryotic evolution, numerous pseudoparalogs were detected, i.e. homologous genes that apparently were acquired by early eukaryotes via different routes, including horizontal gene transfer (HGT) from diverse bacteria. The results of this study demonstrate a major increase in the level of gene paralogy as a hallmark of the early evolution of eukaryotes.  相似文献   

12.
Leucine-rich repeat containing proteins are involved in protein-protein interactions and they regulate numerous cellular events during nervous system development and disease. Here we have isolated and characterized a new four-membered family of genes from human and mouse, named LRRTMs, that encode putative leucine-rich repeat transmembrane proteins. Human and mouse LRRTMs are highly conserved, and orthologous genes exist in other vertebrates but not in invertebrates. All LRRTMs, except LRRTM4, are located in the introns of different alpha-catenin genes, suggesting coevolution of these two gene families. We show by in situ hybridization and RT-PCR that LRRTM mRNAs are predominantly expressed in the nervous system and that each LRRTM possesses a specific, partially nonoverlapping expression pattern. The structure and expression profile of LRRTM mRNAs suggest that they may have a role in the development and maintenance of the vertebrate nervous system.  相似文献   

13.
 Protein phylogenies were used to test the hypothesis that aspects of the innate immune system of vertebrates have been conserved since the last common ancestor of vertebrates and arthropods. The phylogeny of lysozymes showed evidence of conservation of function, but phylogenies of seven other protein families did not. Natural resistance-associated macrophage protein, nitric oxide synthetase, and serine protease families all showed a pattern of gene duplication within vertebrates after their divergence from arthropods, giving rise to immune system-expressed genes in vertebrates. Insect hemolin, a member of the immunoglobulin superfamily, was found not to be closely related to members of that family having an immune system role in vertebrates; rather, it appeared most closely related to both arthropod and vertebrate molecules expressed in the nervous system. Thus, hemolin seems to have evolved its role independently in insects, probably through duplication of a neuroglian-like ancestor. Furthermore, vertebrate immune system-expressed serpins, chitinases, and pentraxins were found to lack orthologous relationships with arthropod members of the same families also functioning in immunity. Therefore members of these families have evolved immune system functions independently in the two phyla. It is now widely recognized that the specific immune system of vertebrates has no counterpart in invertebrates; these phylogenetic analyses suggest that there is a similar evolutionary discontinuity with respect to innate immunity as well. Received: 10 May 1997 / Revised: 10 September 1997  相似文献   

14.
Aromatic amino acid hydroxylase (AAAH) genes and insulin-like genes form part of an extensive paralogy region shared by human chromosomes 11 and 12, thought to have arisen by tetraploidy in early vertebrate evolution. Cloning of a complementary DNA (cDNA) for an amphioxus (Branchiostoma floridae) hydroxylase gene (AmphiPAH) allowed us to investigate the ancestry of the human chromosome 11/12 paralogy region. Molecular phylogenetic evidence reveals that AmphiPAH is orthologous to vertebrate phenylalanine (PAH) genes; the implication is that all three vertebrate AAAH genes arose early in metazoan evolution, predating vertebrates. In contrast, our phylogenetic analysis of amphioxus and vertebrate insulin-related gene sequences is consistent with duplication of these genes during early chordate ancestry. The conclusion is that two tightly linked gene families on human chromosomes 11 and 12 were not duplicated coincidentally. We rationalize this paradox by invoking gene loss in the AAAH gene family and conclude that paralogous genes shared by paralogous chromosomes need not have identical evolutionary histories.  相似文献   

15.
Studying the evolutionary history of gene families is a challenging and exciting task with a wide range of implications. In addition to exploring fundamental questions about the origin and evolution of genes, disentangling their evolution is also critical to those who do functional/structural studies to allow a deeper and more precise interpretation of their results in an evolutionary context. The sirtuin gene family is a group of genes that are involved in a variety of biological functions mostly related to aging. Their duplicative history is an open question, as well as the definition of the repertoire of sirtuin genes among vertebrates. Our results show a well-resolved phylogeny that represents an improvement in our understanding of the duplicative history of the sirtuin gene family. We identified a new sirtuin gene family member (SIRT3.2) that was apparently lost in the last common ancestor of amniotes but retained in all other groups of jawed vertebrates. According to our experimental analyses, elephant shark SIRT3.2 protein is located in mitochondria, the overexpression of which leads to an increase in cellular levels of ATP. Moreover, in vitro analysis demonstrated that it has deacetylase activity being modulated in a similar way to mammalian SIRT3. Our results indicate that there are at least eight sirtuin paralogs among vertebrates and that all of them can be traced back to the last common ancestor of the group that existed between 676 and 615 millions of years ago.  相似文献   

16.
PEX genes in fungal genomes: common, rare or redundant   总被引:3,自引:2,他引:3  
PEX genes encode proteins, termed peroxins, that are required for the biogenesis and proliferation of microbodies (peroxisomes). We have screened the available protein and DNA databases to identify putative peroxin orthologs in 17 fungal species (yeast and filamentous fungi) and in humans. This analysis demonstrated that most peroxins are present in all fungi under study. Only Pex16p is absent in most yeast species, with the exception of Yarrowia lipolytica, but this peroxin is present in all filamentous fungi. Furthermore, we found that the Y. lipolytica PEX9 gene, a putative orphan gene, might encode a Pex26p ortholog. In addition, in the genomes of Saccharomyces cerevisiae and Candida glabrata, several PEX genes appear to have been duplicated, exemplified by the presence of paralogs of the peroxins Pex5p and Pex21p, which were absent in other organisms. In all organisms, we observed multiple paralogs of the peroxins involved in organelle proliferation. These proteins belong to two groups of peroxins that we propose to designate the Pex11p and Pex23p families. This redundancy may complicate future studies on peroxisome biogenesis and proliferation in fungal species.  相似文献   

17.
Li M  Liu J  Zhang C 《PloS one》2011,6(10):e26999

Background

The mitogen activated protein kinases (MAPK) family pathway is implicated in diverse cellular processes and pathways essential to most organisms. Its evolution is conserved throughout the eukaryotic kingdoms. However, the detailed evolutionary history of the vertebrate MAPK family is largely unclear.

Methodology/Principal Findings

The MAPK family members were collected from literatures or by searching the genomes of several vertebrates and invertebrates with the known MAPK sequences as queries. We found that vertebrates had significantly more MAPK family members than invertebrates, and the vertebrate MAPK family originated from 3 progenitors, suggesting that a burst of gene duplication events had occurred after the divergence of vertebrates from invertebrates. Conservation of evolutionary synteny was observed in the vertebrate MAPK subfamilies 4, 6, 7, and 11 to 14. Based on synteny and phylogenetic relationships, MAPK12 appeared to have arisen from a tandem duplication of MAPK11 and the MAPK13-MAPK14 gene unit was from a segmental duplication of the MAPK11-MAPK12 gene unit. Adaptive evolution analyses reveal that purifying selection drove the evolution of MAPK family, implying strong functional constraints of MAPK genes. Intriguingly, however, intron losses were specifically observed in the MAPK4 and MAPK7 genes, but not in their flanking genes, during the evolution from teleosts to amphibians and mammals. The specific occurrence of intron losses in the MAPK4 and MAPK7 subfamilies might be associated with adaptive evolution of the vertebrates by enhancing the gene expression level of both MAPK genes.

Conclusions/Significance

These results provide valuable insight into the evolutionary history of the vertebrate MAPK family.  相似文献   

18.
19.
Phylogeny reconstructions of the globin gene families have revealed that paralogous genes within species are often more similar to one another than they are to their orthologous counterparts in closely related species. This pattern has been previously attributed to mechanisms of concerted evolution such as interparalog gene conversion that homogenize sequence variation between tandemly duplicated genes and therefore create the appearance of recent common ancestry. Here we report a comparative genomic analysis of the alpha-globin gene family in mammals that reveal a surprisingly high rate of lineage-specific gene duplication and deletion via unequal crossing-over. Results of our analysis reveal that patterns of sequence similarity between paralogous alpha-like globin genes from the same species are only partly explained by concerted evolution between preexisting gene duplicates. In a number of cases, sequence similarity between paralogous sequences from the same species is attributable to recent ancestry between the products of de novo gene duplications. As a result of this surprisingly rapid rate of gene gain and loss, many mammals possess alpha-like globin genes that have no orthologous counterparts in closely related species. The resultant variation in gene copy number among species may represent an important source of regulatory variation that affects physiologically important aspects of blood oxygen transport and aerobic energy metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号