首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Micro Arrayed Compound Screening (microARCS) is a miniaturized ultra-high-throughput screening platform developed at Abbott Laboratories. In this format, 8,640 discrete compounds are spotted and dried onto a polystyrene sheet, which has the same footprint as a 96-well plate. A homogeneous time-resolved fluorescence assay format (LANCE) was applied to identify the inhibitors of caspase-3 using a peptide substrate labeled with a fluorescent europium chelate and a dabcyl quencher. The caspase-3 enzyme was cast into a thin agarose gel, which was placed on a sheet containing test compounds. A second gel containing caspase substrate was then laid above the enzyme gel to initiate the reaction. Caspase-3 cleaves the substrate and separates the europium from the quencher, giving rise to a time-resolved fluorescent signal, which was detected using a ViewLux charge-coupled device imaging system. Potential inhibitors of caspase-3 appeared as dark spots on a bright fluorescent background. Results from the microARCS assay format were compared to those from a conventional 96-well plate-screening format.  相似文献   

3.
A novel high-throughput strand transfer assay has been developed, using Microarray Compound Screening (microARCS) technology, to identify inhibitors of human immunodeficiency virus (HIV) integrase. This technology utilizes agarose matrices to introduce a majority of the reagents throughout the assay. Integration of biotinylated donor DNA with fluorescein isothiocyanate (FITC)-labeled target DNA occurs on a SAM membrane in the presence of integrase. An anti-FITC antibody conjugated to alkaline phosphatase (AP) was used to do an enzyme-linked immunosorbent assay with the SAM. An agarose gel containing AttoPhos, a substrate of AP, was used for detection of the integrase reactions on the SAM. For detection, the AttoPhos gel was separated from the SAM after incubation and then the gel was imaged using an Eagle Eye II closed-circuit device camera system. Potential integrase inhibitors appear as dark spots on the gel image. A library of approximately 250,000 compounds was screened using this HIV integrase strand transfer assay in microARCS format. Compounds from different structural classes were identified in this assay as novel integrase inhibitors.  相似文献   

4.
A novel competitive binding assay for protein kinase inhibitors has been developed for high-throughput screening (HTS). Unlike functional kinase assays, which are based on detection of substrate phosphorylation by the enzyme, this novel method directly measures the binding potency of compounds to the kinase ATP binding site through competition with a conjugated binding probe. The binding interaction is coupled to a signal amplification system based on complementation of beta-galactosidase enzyme fragments, a homogeneous, nonisotopic assay technology platform developed by DiscoveRx Corp. In the present study, staurosporine, a potent, nonselective kinase inhibitor, was chemically conjugated to a small fragment of beta-galactosidase (termed ED-SS). This was used as the binding probe to the kinase ATP binding pocket. The binding potencies of several inhibitors with diverse structures were assessed by displacement of ED-SS from the kinase. The assay format was specifically evaluated with GSK3alpha, an enzyme previously screened in a radioactive kinase assay (i.e., measurement of [(33)P]-gamma-ATP incorporation into the kinase peptide substrate). Under optimized assay conditions, nonconjugated staurosporine inhibited ED-SS binding in a concentration-dependent manner with an apparent potency (IC(50)) of 11 nM, which was similar to the IC(50) value determined in a radioactive assay. Furthermore, 9 kinase inhibitors with diverse structures, previously identified from chemical compound library screening, were screened using the competitive binding assay. The potencies in the binding assay were in very good agreement with those obtained previously in the isotopic functional activity assay. The binding assay was adapted for automated HTS using selected compound libraries in a 384-well microtiter plate format. The HTS assay was observed to be highly robust and reproducible (Z' factors > 0.7) with high interassay precision (R(2) > 0.96). Interference of compounds with the beta-galactosidase signal readout was negligible. In conclusion, the DiscoveRx competitive kinase binding assay, termed ED-NSIP trade mark, provides a novel method for screening kinase inhibitors. The format is homogeneous, robust, and amenable to automation. Because there is no requirement for substrate-specific antibodies, the assay is particularly applicable to Ser/Thr kinase assay, in which difficulties in identifying a suitable substrate and antibody preclude development of nonisotopic assays. Although the nonselective kinase inhibitor, staurosporine, was used here, chemically conjugating the ED fragment to other small molecule enzyme inhibitors is also feasible, suggesting that the format is generally applicable to other enzyme systems.  相似文献   

5.
Most of the protein kinase inhibitors being developed are directed toward the adenosine triphosphate (ATP) binding site that is highly conserved in many kinases. A major issue with these inhibitors is the specificity for a given kinase. Structure determination of several kinases has shown that protein kinases adopt distinct conformations in their inactive state, in contrast to their strikingly similar conformations in their active states. Hence, alternative assay formats that can identify compounds targeting the inactive form of a protein kinase are desirable. The authors describe the development and optimization of an Immobilized Metal Assay for Phosphochemicals (IMAP)-based couple d assay using PDK1 and inactive Akt-2 enzymes. PDK1 phosphorylates Akt-2 at Thr 309 in the catalytic domain, leading to enzymatic activation. Activation of Akt by PDK1 is measured by quantitating the phosphorylation of Akt-specific substrate peptide using the IMAP assay format. This IMAP-coupled assay has been formatted in a 384-well microplate format with a Z' of 0.73 suitable for high-throughput screening. This assay was evaluated by screening the biologically active sample set LOPAC trade mark and validated with the protein kinase C inhibitor staurosporine. The IC(50) value generated was comparable to the value obtained by the radioactive (33)P-gamma-ATP flashplate transfer assay. This coupled assay has the potential to identify compounds that target the inactive form of Akt and prevent its activation by PDK1, in addition to finding inhibitors of PDK1 and activated Akt enzymes.  相似文献   

6.
In this study, the development of an image-based high-content screening (HCS) binding assay for the seven-transmembrane (7TM) receptor Smoothened (Smo) is described. Using BacMam-based gene delivery of Smo, BODIPY-cyclopamine as a fluorescent probe, and a confocal imaging system, a robust 384-well assay that could be used for high-throughput compound profiling activities was developed. The statistically robust HCS binding assay was developed through optimization of multiple parameters, including cell transduction conditions, Smo expression levels, the image analysis algorithm, and staining procedures. Evaluation of structurally diverse compounds, including functional Smo activators, inhibitors, and related analogs, demonstrated good compound potency correlations between high-content imaging binding, membrane fluorescence polarization binding, and gene reporter assays. Statistical analysis of data from a screening test set of compounds at a single 10-μM concentration suggested that the high-content imaging Smo binding assay is amenable for use in hit identification. The 384-well HCS assay was rapidly developed and met statistical assay performance targets, thus demonstrating its utility as a fluorescent whole-cell binding assay suitable for compound screening and profiling.  相似文献   

7.
Methionine aminopeptidase (MAP) (E.C. 3.4.11.18) is a metallopeptidase that cleaves the N-terminal methionine (Met) residue from some proteins. MAP is essential for growth of several bacterial pathogens, making it a target for antibacterial drug discovery. MAP enzymes are also present in eukaryotic cells, and one is a target for antiangiogenic cancer therapy. To screen large compound libraries for MAP inhibitors as the starting point for drug discovery, a high-throughput-compatible assay is valuable. Here the authors describe a novel assay, which detects the Met product of MAP-catalyzed peptide cleavage by coupling it to adenosine triphosphate (ATP)-dependent production of S-adenosyl-L-methionine (SAM) and inorganic phosphate (P(i)) by SAM synthetase (MetK) combined with inorganic pyrophosphatase. The three P(i) ions produced for each Met consumed are detected using Malachite Green/molybdate reagent. This assay can use any unmodified peptide MAP substrate with an N-terminal Met. The assay was used to measure kinetic constants for Escherichia coli MAP using Mn(2+) as the activator and the peptide Met-Gly-Met-Met as the substrate, as well as to measure the potency of a MAP inhibitor. A Mn(2+) buffer is described that can be used to prevent free Mn(2+) depletion by chelating compounds from interfering in screens for MAP inhibitors.  相似文献   

8.
Endoplasmic reticulum stress plays a critical role to restore the homeostasis of protein production in eukaryotic cells. This vital process is hence involved in many types of diseases including COPD. PERK, one branch in the ER stress signaling pathways, has been reported to activate NRF2 signaling pathway, a known protective response to COPD. Based on this scientific rationale, we aimed to identify PERK activators as a mechanism to achieve NRF2 activation. In this report, we describe a phenotypic screening assay to identify PERK activators. This assay measures phosphorylation of GFP-tagged eIF2α upon PERK activation via a cell-based LanthaScreen technology. To obtain a robust assay with sufficient signal to background and low variation, multiple parameters were optimized including GFP-tagged eIF2α BacMam concentration, cell density and serum concentration. The assay was validated by a tool compound, Thapsigargin, which induces phosphorylation of eIF2α. In our assay, this compound showed maximal signal window of approximately 2.5-fold with a pEC50 of 8.0, consistent with literature reports. To identify novel PERK activators through phosphorylation of eIF2α, a focused set of 8,400 compounds was screened in this assay at 10 µM. A number of hits were identified and validated. The molecular mechanisms for several selected hits were further characterized in terms of PERK activation and effects on PERK downstream components. Specificity of these compounds in activating PERK was demonstrated with a PERK specific inhibitor and in PERK knockout mouse embryonic fibroblast (MEF) cells. In addition, these hits showed NRF2-dependent anti-oxidant gene induction. In summary, our phenotypic screening assay is demonstrated to be able to identify PERK specific activators. The identified PERK activators could potentially be used as chemical probes to further investigate this pathway as well as the link between PERK activation and NRF2 pathway activation.  相似文献   

9.
Phospholipase C (PLC) isozymes are important signaling molecules, but few small molecule modulators are available to pharmacologically regulate their function. With the goal of developing a general approach for identification of novel PLC inhibitors, we developed a high-throughput assay based on the fluorogenic substrate reporter WH-15. The assay is highly sensitive and reproducible: screening a chemical library of 6280 compounds identified three novel PLC inhibitors that exhibited potent activities in two separate assay formats with purified PLC isozymes in vitro. Two of the three inhibitors also inhibited G protein-coupled receptor-stimulated PLC activity in intact cell systems. These results demonstrate the power of the high-throughput assay for screening large collections of small molecules to identify novel PLC modulators. Potent and selective modulators of PLCs will ultimately be useful for dissecting the roles of PLCs in cellular processes, as well as provide lead compounds for the development of drugs to treat diseases arising from aberrant phospholipase activity.  相似文献   

10.
Early success of kinase inhibitors has validated their use as drugs. However, discovery efforts have also suffered from high attrition rates due to lack of cellular activity. We reasoned that screening for such candidates in live cells would identify novel cell-permeable modulators for development. For this purpose, we have used our recently optimized epidermal growth factor receptor (EGFR) biosensor assay to screen for modulators of EGFR activity. Here, we report on its validation under high-throughput screening (HTS) conditions displaying a signal-to-noise ratio of 21 and a Z' value of 0.56-attributes of a robust cell-based assay. We performed a pilot screen against a library of 6912 compounds demonstrating good reproducibility and identifying 82 inhibitors and 66 activators with initial hit rates of 1.2% and 0.95%, respectively. Follow-up dose-response studies revealed that 12 of the 13 known EGFR inhibitors in the library were confirmed as hits. ZM-306416, a vascular endothelial growth factor receptor (VEGFR) antagonist, was identified as a potent inhibitor of EGFR function. Flurandrenolide, beclomethasone, and ebastine were confirmed as activators of EGFR function. Taken together, our results validate this novel approach and demonstrate its utility in the discovery of novel kinase modulators with potential use in the clinic.  相似文献   

11.
UCH-L3 (ubiquitin C-terminal hydrolase-L3) is a de-ubiquitinating enzyme that is a component of the ubiquitin-proteasome system and known to be involved in programmed cell death. A previous study of high-throughput drug screening identified an isatin derivative as a UCH-L3 inhibitor. In this study, we attempted to identify a novel inhibitor with a different structural basis. We performed in silico structure-based drug design (SBDD) using human UCH-L3 crystal structure data (PDB code; 1XD3) and the virtual compound library (ChemBridge CNS-Set), which includes 32,799 chemicals. By a two-step virtual screening method using DOCK software (first screening) and GOLD software (second screening), we identified 10 compounds with GOLD scores of over 60. To address whether these compounds exhibit an inhibitory effect on the de-ubiquitinating activity of UCH-L3, we performed an enzymatic assay using ubiquitin-7-amido-4-methylcoumarin (Ub-AMC) as the substrate. As a result, we identified three compounds with similar basic dihydro-pyrrole skeletons as UCH-L3 inhibitors. These novel compounds may be useful for the research of UCH-L3 function, and in drug development for UCH-L3-associated diseases.  相似文献   

12.
Gaucher disease (GD), the most common lysosomal storage disorder, results from the inherited deficiency of the lysosomal enzyme glucocerebrosidase (GCase). Previously, wildtype GCase was used for high throughput screening (HTS) of large collections of compounds to identify small molecule chaperones that could be developed as new therapies for GD. However, the compounds identified from HTS usually showed reduced potency later in confirmatory cell-based assays. An alternate strategy is to perform HTS on mutant enzyme to identify different lead compounds, including those enhancing mutant enzyme activities. We developed a new screening assay using enzyme extract prepared from the spleen of a patient with Gaucher disease with genotype N370S/N370S. In tissue extracts, GCase is in a more native physiological environment, and is present with the native activator saposin C and other potential cofactors. Using this assay, we screened a library of 250,000 compounds and identified novel modulators of mutant GCase including 14 new lead inhibitors and 30 lead activators. The activities of some of the primary hits were confirmed in subsequent cell-based assays using patient-derived fibroblasts. These results suggest that primary screening assays using enzyme extracted from tissues is an alternative approach to identify high quality, physiologically relevant lead compounds for drug development.  相似文献   

13.
Aberrant regulation of phosphoinositide 3-kinase (PI3K) activity is implicated in various diseases such as cancer and diabetes. Thus, high-throughput screening (HTS) of small-molecule inhibitors for PI3 kinases is an appealing strategy for drug development. Despite the attractiveness of lipid kinases as drug targets, screening for inhibitors for PI3K activities has been hampered by limited assay formats adaptable for HTS. The authors describe a homogeneous, direct, and nonradioactive assay for highly sensitive detection of PI3Kalpha, beta, delta, and gamma activities, which is suitable for HTS. The assay is based on fluorescence superquenching of a conjugated polymer upon metal-ion-mediated association of phosphorylated and dye-labeled substrates. As a result of phosphorylation, quencher and polymer are brought into proximity, and fluorescent energy transfer occurs. This event can be monitored as either fluorescence quench of the polymer or as enhanced emission from the quencher. Ratiometric analysis of the wavelengths eliminates interferences from autofluorescing compounds, which are present in HTS libraries. The platform has been adapted for the 384-well microplate format and delivers Z factors of > 0.6 at substrate conversions as low as 7%. Using this assay platform, several unreported inhibitors and activators of PI3Ks were identified in an 84- compound screen.  相似文献   

14.
To identify novel inhibitors of tyrosinase, a fluorescent assay was developed which is suitable for high-throughput screening. In the assay, oxidation of the substrate by tyrosinase leads to the release of a fluorescent coumarin. Several small molecules were identified that inhibited mushroom tyrosinase in vitro and human tyrosinase in cell culture. These compounds may represent lead structures for therapies targeted at disorders of hyperpigmentation.  相似文献   

15.
5′ AMP-activated protein kinase (AMPK) is a highly conserved serine-threonine kinase that regulates energy expenditure by activating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. Therefore AMPK activators are considered to be drug targets for treatment of metabolic diseases such as diabetes mellitus. To identify novel AMPK activators, we screened xanthene derivatives. We determined that the AMPK activators 9H-xanthene-9-carboxylic acid {2,2,2-trichloro-1-[3-(3-nitro-phenyl)-thioureido]-ethyl}-amide (Xn) and 9H-xanthene-9-carboxylic acid {2,2,2-trichloro-1-[3-(3-cyano-phenyl)-thioureido]-ethyl}-amide (Xc) elevated glucose uptake in L6 myotubes by stimulating translocation of glucose transporter type 4 (GLUT4). Treatment with the chemical AMPK inhibitor compound C and infection with dominant-negative AMPKa2-virus inhibited AMPK phosphorylation and glucose uptake in myotubes induced by either Xn or Xc. Of the two major upstream kinases of AMPK, we found that Xn and Xc showed LKB1 dependency by knockdown of STK11, an ortholog of human LKB1. Single intravenous administration of Xn and Xc to high-fat diet-induced diabetic mice stimulated AMPK phosphorylation of skeletal muscle and improved glucose tolerance. Taken together, these results suggest that Xn and Xc regulate glucose homeostasis through LKB1-dependent AMPK activation and that the compounds are potential candidate drugs for the treatment of type 2 diabetes mellitus.  相似文献   

16.
A novel cell-based functional assay to directly monitor G protein-coupled receptor (GPCR) activation in a high-throughput format, based on a common GPCR regulation mechanism, the interaction between beta-arrestin and ligand-activated GPCR, is described. A protein-protein interaction technology, the InteraX trade mark system, uses a pair of inactive beta-galactosidase (beta-gal) deletion mutants as fusion partners to the protein targets of interest. To monitor GPCR activation, stable cell lines expressing both GPCR- and beta-arrestin-beta-gal fusion proteins are generated. Following ligand stimulation, beta-arrestin binds to the activated GPCR, and this interaction drives functional complementation of the beta-gal mutant fragments. GPCR activation is measured directly by quantitating restored beta-gal activity. The authors have validated this assay system with two functionally divergent GPCRs: the beta2-adrenergic amine receptor and the CXCR2 chemokine-binding receptor. Both receptors are activated or blocked with known agonists and antagonists in a dose-dependent manner. The beta2-adrenergic receptor cell line was screened with the LOPAC trade mark compound library to identify both agonists and antagonists, validating this system for high-throughput screening performance in a 96-well microplate format. Hit specificity was confirmed by quantitating the level of cAMP. This assay system has also been performed in a high-density (384-well) microplate format. This system provides a specific, sensitive, and robust methodology for studying and screening GPCR-mediated signaling pathways.  相似文献   

17.
For many novel epigenetics targets the chemical ligand space and structural information were limited until recently and are still largely unknown for some targets. Hit-finding campaigns are therefore dependent on large and chemically diverse libraries. In the specific case of the histone methyltransferase G9a, the authors have been able to apply an efficient process of intelligent selection of compounds for primary screening, rather than screening the full diverse deck of 900 000 compounds to identify hit compounds. A number of different virtual screening methods have been applied for the compound selection, and the results have been analyzed in the context of their individual success rates. For the primary screening of 2112 compounds, a FlashPlate assay format and full-length histone H3.1 substrate were employed. Validation of hit compounds was performed using the orthogonal fluorescence lifetime technology. Rated by purity and IC(50) value, 18 compounds (0.9% of compound screening deck) were finally considered validated primary G9a hits. The hit-finding approach has led to novel chemotypes being identified, which can facilitate hit-to-lead projects. This study demonstrates the power of virtual screening technologies for novel, therapeutically relevant epigenetics protein targets.  相似文献   

18.
Plasmodium falciparum causes severe malaria infections in millions of people every year. The parasite is developing resistance to the most common antimalarial drugs, which creates an urgent need for new therapeutics. A promising and attractive target for antimalarial drug design is the bifunctional enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase (PfGluPho) of P. falciparum, which catalyzes the key step in the parasites' pentose phosphate pathway. In this study, we describe the development of a high-throughput screening assay to identify small-molecule inhibitors of recombinant PfGluPho. The optimized assay was used to screen three small-molecule compound libraries-namely, LOPAC (Sigma-Aldrich, 1280 compounds), Spectrum (MicroSource Discovery Systems, 1969 compounds), and DIVERSet (ChemBridge, 49 971 compounds). These pilot screens identified 899 compounds that inhibited PfGluPho activity by at least 50%. Selected compounds were further studied to determine IC(50) values in an orthogonal assay, the type of inhibition and reversibility, and effects on P. falciparum growth. Screening results and follow-up studies for selected PfGluPho inhibitors are presented. Our high-throughput screening assay may provide the basis to identify novel and urgently needed antimalarial drugs.  相似文献   

19.
Inositol monophosphatase is a potential drug target for developing lithium-mimetic agents for the treatment of bipolar disorder. Enzyme-based assays have been traditionally used in compound screening to identify inositol monophosphatase inhibitors. A cell-based screening assay in which the compound needs to cross the cell membrane before reaching the target enzyme offers a new approach for discovering novel structure leads of the inositol monophosphatase inhibitor. The authors have recently reported a high-throughput measurement of G-protein-coupled receptor activation by determining inositol phosphates in cell extracts using scintillation proximity assay. This cell-based assay has been modified to allow the determination of inositol monophosphatase activity instead of G-protein-coupled receptors. The enzyme is also assayed in its native form and physiological environment. The authors have applied this cell-based assay to the high-throughput screening of a large compound collection and identified several novel inositol monophosphatase inhibitors.  相似文献   

20.
In microarrayed compound screening (microARCS), compounds are spotted and dried onto a polystyrene sheet (ChemCard)ata high density and introduced into the assay by contacting with agarose gels that contain reagents for the assay. The authors have conducted studies to characterize the compound transfer process using 59 compounds of diverse properties. The amount of compounds remaining on the ChemCard was determined by liquid chromatography/mass spectrometry after incubation with agarose gels for predetermined time periods. The results showed good correlation with kinetics of compound transfer to phosphate-buffered saline (PBS) buffer, but only moderate correlation with equilibrium solubility of compounds in PBS buffer. These observations indicate that the major factor determining compound transfer efficiency is the kinetics of dissolution of compounds, rather than equilibrium solubility and diffusion of compounds in the gel. Compounds of lower ClogP showed a higher rate of transfer to agarose gels and vice versa. Other compound properties such as molecular weight, size, acid-base, and H-bonding properties did not significantly affect compound transfer. Importantly, the majority of the compounds studied show greater than 20% transfer after a 10-min incubation with agarose gels, providing sufficient amounts of compounds for screening purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号