首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here the DNA sequence of the alcohol dehydrogenase gene (Adh) cloned from Drosophila willistoni. The three major findings are as follows: (1) Relative to all other Adh genes known from Drosophila, D. willistoni Adh has the last intron precisely deleted; PCR directly from total genomic DNA indicates that the deletion exists in all members of the willistoni group but not in any other group, including the closely related saltans group. Otherwise the structure and predicted protein are very similar to those of other species. (2) There is a significant shift in codon usage, especially compared with that in D. melanogaster Adh. The most striking shift is from C to U in the wobble position (both third and first position). Unlike the codon-usage-bias pattern typical of highly biased genes in D. melanogaster, including Adh, D. willistoni has nearly 50% G + C in the third position. (3) The phylogenetic information provided by this new sequence is in agreement with almost all other molecular and morphological data, in placing the obscura group closer to the melanogaster group, with the willistoni group farther distant but still clearly within the subgenus Sophophora.   相似文献   

2.
Rate of recombination is a powerful variable affecting several aspects of molecular variation and evolution. A nonrecombining portion of the genome of most Drosophila species, the "dot" chromosome or F element, exhibits very low levels of variation and unusual codon usage. One lineage of Drosophila, the willistoni/saltans groups, has the F element fused to a normally recombining E element. Here, we present polymorphism data for genes on the F element in two Drosophila willistoni and one D. insularis populations, genes previously studied in D. melanogaster. The D. willistoni populations were known to be very low in inversion polymorphism, thus minimizing the recombination suppression effect of inversions. We first confirmed, by in situ hybridization, that D. insularis has the same E + F fusion as D. willistoni, implying this was a monophyletic event. A clear gradient in codon usage exists along the willistoni F element, from the centromere distally to the fusion with E; estimates of recombination rates parallel this gradient and also indicate D. insularis has greater recombination than D. willistoni. In contrast to D. melanogaster, genes on the F element exhibit moderate levels of nucleotide polymorphism not distinguishable from two genes elsewhere in the genome. Although some linkage disequilibrium (LD) was detected between polymorphic sites within genes (generally <500 bp apart), no long-range LD between F element loci exists in the two willistoni group species. In general, the distribution of allele frequencies of F element genes display the typical pattern of expectations of neutral variation at equilibrium. These results are consistent with the hypothesis that recombination allows the accumulation of nucleotide variation as well as allows selection to act on synonymous codon usage. It is estimated that the fusion occurred ~20 Mya and while the F element in the willistoni lineage has evolved "normal" levels and patterns of nucleotide variation, equilibrium may not have been reached for codon usage.  相似文献   

3.
We investigated the nucleotide composition of five genes, Xdh, Adh, Sod, Per, and 28SrRNA, in nine species of Drosophila (subgenus Sophophora) and one of Scaptodrosophila. The six species of the Drosophila saltans group markedly differ from the others in GC content and codon use bias. The GC content in the third codon position, and to a lesser extent in the first position and the introns, is higher in the D. melanogaster and D. obscura groups than in the D. saltans group (in Scaptodrosophila it is intermediate but closer to the melanogaster and obscura species). Differences are greater for Xdh than for Adh, Sod, Per, and 28SrRNA, which are functionally more constrained. We infer that rapid evolution of GC content in the saltans lineage is largely due to a shift in mutation pressure, which may have been associated with diminished natural selection due to smaller effective population numbers rather than reduced recombination rates. The rate of GC content evolution impacts the rate of protein evolution and may distort phylogenetic inferences. Previous observations suggesting that GC content evolution is very limited in Drosophila may have been distorted due to the restricted number of genes and species (mostly D. melanogaster) investigated.  相似文献   

4.
The best documented selection-based hypothesis to explain unequal usage of codons is based on the relative abundance of isoaccepting tRNAs. In unicellular organisms the most used codons are optimally translated by the most abundant tRNAs. The chemical bonding energies are affected by modification of the four traditional bases, in particular in the first anti-codon corresponding to the third codon position. One nearly universal modification is queuosine (Q) for guanine (G) in tRNAHis, tRNAAsp, tRNAAsn, and tRNATyr; this changes the optimal binding from codons ending in C to no preference or a slight preference for U-ending codons. Among species of Drosophila, codon usage is constant with the exception of the Drosophila willistoni lineage which has shifted primary usage from C-ending codons to U/T ending codons only for these four amino acids. In Drosophila melanogaster Q containing tRNAs only predominate in old adults. We asked the question whether in D. willistoni these Q containing tRNAs might predominate earlier in development. As a surrogate for levels of modification we studied the expression of the gene (tgt) coding for the enzyme that catalyzes the substitution of Q for G in different life stages of D. melanogaster, D. pseudoobscura, and D. willistoni. Unlike the other two species, the highest tgt expression in D. willistoni is in young females producing eggs. Because tRNAs laid down in eggs persist through the early stages of development, this implies that Q modification occurs earlier in development in D. willistoni than in other Drosophila.  相似文献   

5.
H. Akashi 《Genetics》1996,144(3):1297-1307
Both natural selection and mutational biases contribute to variation in codon usage bias within Drosophila species. This study addresses the cause of codon bias differences between the sibling species, Drosophila melanogaster and D. simulans. Under a model of mutation-selection-drift, variation in mutational processes between species predicts greater base composition differences in neutrally evolving regions than in highly biased genes. Variation in selection intensity, however, predicts larger base composition differences in highly biased loci. Greater differences in the G+C content of 34 coding regions than 46 intron sequences between D. melanogaster and D. simulans suggest that D. melanogaster has undergone a reduction in selection intensity for codon bias. Computer simulations suggest at least a fivefold reduction in N(e)s at silent sites in this lineage. Other classes of molecular change show lineage effects between these species. Rates of amino acid substitution are higher in the D. melanogaster lineage than in D. simulans in 14 genes for which outgroup sequences are available. Surprisingly, protein sizes are larger in D. melanogaster than in D. simulans in the 34 genes compared between the two species. A substantial fraction of silent, replacement, and insertion/deletion mutations in coding regions may be weakly selected in Drosophila.  相似文献   

6.
We present a likelihood method for estimating codon usage bias parameters along the lineages of a phylogeny. The method is an extension of the classical codon-based models used for estimating dN/dS ratios along the lineages of a phylogeny. However, we add one extra parameter for each lineage: the selection coefficient for optimal codon usage (S), allowing joint maximum likelihood estimation of S and the dN/dS ratio. We apply the method to previously published data from Drosophila melanogaster, Drosophila simulans, and Drosophila yakuba and show, in accordance with previous results, that the D. melanogaster lineage has experienced a reduction in the selection for optimal codon usage. However, the D. melanogaster lineage has also experienced a change in the biological mutation rates relative to D. simulans, in particular, a relative reduction in the mutation rate from A to G and an increase in the mutation rate from C to T. However, neither a reduction in the strength of selection nor a change in the mutational pattern can alone explain all of the data observed in the D. melanogaster lineage. For example, we also confirm previous results showing that the Notch locus has experienced positive selection for previously classified unpreferred mutations.  相似文献   

7.
According to population genetics models, genomic regions with lower crossing-over rates are expected to experience less effective selection because of Hill-Robertson interference (HRi). The effect of genetic linkage is thought to be particularly important for a selection of weak intensity such as selection affecting codon usage. Consistent with this model, codon bias correlates positively with recombination rate in Drosophila melanogaster and Caenorhabditis elegans. However, in these species, the G+C content of both noncoding DNA and synonymous sites correlates positively with recombination, which suggests that mutation patterns and recombination are associated. To remove this effect of mutation patterns on codon bias, we used the synonymous sites of lowly expressed genes that are expected to be effectively neutral sites. We measured the differences between codon biases of highly expressed genes and their lowly expressed neighbors. In D. melanogaster we find that HRi weakly reduces selection on codon usage of genes located in regions of very low recombination; but these genes only comprise 4% of the total. In C. elegans we do not find any evidence for the effect of recombination on selection for codon bias. Computer simulations indicate that HRi poorly enhances codon bias if the local recombination rate is greater than the mutation rate. This prediction of the model is consistent with our data and with the current estimate of the mutation rate in D. melanogaster. The case of C. elegans, which is highly self-fertilizing, is discussed. Our results suggest that HRi is a minor determinant of variations in codon bias across the genome.  相似文献   

8.
McVean GA  Vieira J 《Genetics》2001,157(1):245-257
Selection acting on codon usage can cause patterns of synonymous evolution to deviate considerably from those expected under neutrality. To investigate the quantitative relationship between parameters of mutation, selection, and demography, and patterns of synonymous site divergence, we have developed a novel combination of population genetic models and likelihood methods of phylogenetic sequence analysis. Comparing 50 orthologous gene pairs from Drosophila melanogaster and D. virilis and 27 from D. melanogaster and D. simulans, we show considerable variation between amino acids and genes in the strength of selection acting on codon usage and find evidence for both long-term and short-term changes in the strength of selection between species. Remarkably, D. melanogaster shows no evidence of current selection on codon usage, while its sister species D. simulans experiences only half the selection pressure for codon usage of their common ancestor. We also find evidence for considerable base asymmetries in the rate of mutation, such that the average synonymous mutation rate is 20-30% higher than in noncoding regions. A Bayesian approach is adopted to investigate how accounting for selection on codon usage influences estimates of the parameters of mutation.  相似文献   

9.
Codon Usage Bias and tRNA Abundance in Drosophila   总被引:5,自引:0,他引:5  
Codon usage bias of 1,117 Drosophila melanogaster genes, as well as fewer D. pseudoobscura and D. virilis genes, was examined from the perspective of relative abundance of isoaccepting tRNAs and their changes during development. We found that each amino acid contributes about equally and highly significantly to overall codon usage bias, with the exception of Asp which had very low contribution to overall bias. Asp was also the only amino acid that did not show a clear preference for one of its synonymous codons. Synonymous codon usage in Drosophila was consistent with ``optimal' codons deduced from the isoaccepting tRNA availability. Interestingly, amino acids whose major isoaccepting tRNAs change during development did not show as strong bias as those with developmentally unchanged tRNA pools. Asp is the only amino acid for which the major isoaccepting tRNAs change between larval and adult stages. We conclude that synonymous codon usage in Drosophila is well explained by tRNA availability and is probably influenced by developmental changes in relative abundance. Received: 5 December 1996 / Accepted: 14 June 1997  相似文献   

10.
The number and relative amount of isoacceptor tRNAs for each amino acid in Micrococcus luteus, a Gram-positive bacterium with high genomic G + C content, have been determined by sequencing their anticodon loop and its adjacent regions and by selective labelling of tRNAs. Thirty-one tRNA species with 29 different anticodon sequences have been detected. All the tRNAs have G or C at the anticodon first position except for tRNA(ICGArg) and tRNA(NGASer), in response to the abundant usage of NNC and NNG codons. No tRNA with the anticodon UNN capable of translating codon NNA has been detected, in accordance with a very low or zero usage of NNA codons. The relative amount of isoacceptor tRNAs for an amino acid determined by selective labelling strongly correlates with usage of the corresponding codons. On the basis of these and other observations in this and other eubacterial species, we conclude that the relative amount and anticodon composition of isoacceptor tRNA species are flexible, and their changes are mainly adaptive phenomena that have been primarily affected by codon usage, which in turn is affected by directional mutation pressure.  相似文献   

11.
Rao Y  Wu G  Wang Z  Chai X  Nie Q  Zhang X 《DNA research》2011,18(6):499-512
Synonymous codons are used with different frequencies both among species and among genes within the same genome and are controlled by neutral processes (such as mutation and drift) as well as by selection. Up to now, a systematic examination of the codon usage for the chicken genome has not been performed. Here, we carried out a whole genome analysis of the chicken genome by the use of the relative synonymous codon usage (RSCU) method and identified 11 putative optimal codons, all of them ending with uracil (U), which is significantly departing from the pattern observed in other eukaryotes. Optimal codons in the chicken genome are most likely the ones corresponding to highly expressed transfer RNA (tRNAs) or tRNA gene copy numbers in the cell. Codon bias, measured as the frequency of optimal codons (Fop), is negatively correlated with the G + C content, recombination rate, but positively correlated with gene expression, protein length, gene length and intron length. The positive correlation between codon bias and protein, gene and intron length is quite different from other multi-cellular organism, as this trend has been only found in unicellular organisms. Our data displayed that regional G + C content explains a large proportion of the variance of codon bias in chicken. Stepwise selection model analyses indicate that G + C content of coding sequence is the most important factor for codon bias. It appears that variation in the G + C content of CDSs accounts for over 60% of the variation of codon bias. This study suggests that both mutation bias and selection contribute to codon bias. However, mutation bias is the driving force of the codon usage in the Gallus gallus genome. Our data also provide evidence that the negative correlation between codon bias and recombination rates in G. gallus is determined mostly by recombination-dependent mutational patterns.  相似文献   

12.
Sequences from the nuclear (nu) alcohol dehydrogenase gene, the nu 28S ribosomal RNA locus, and the mitochondrial cytochrome oxidase II gene were used both individually and in combined analyses to infer the phylogeny of the subgenus Sophophora (Diptera: Drosophilidae). We used several optimality criteria, including maximum likelihood, maximum parsimony, and minimum evolution, to analyze these partitions to test the monophyly of the subgenus Sophophora and its four largest species groups, melanogaster, obscura, saltans, and willistoni. Our results suggest that the melanogaster and obscura species groups are each monophyletic and form a closely related clade. The Neotropical clade, containing the saltans and willistoni species groups, is also recovered, as previous studies have suggested. While the saltans species group is strongly supported as monophyletic, the results of several analyses indicate that the willistoni species group may be paraphyletic with respect to the saltans species group.  相似文献   

13.
Wall DP  Herbeck JT 《Journal of molecular evolution》2003,56(6):673-88; discussion 689-90
In this study we reconstruct the evolution of codon usage bias in the chloroplast gene rbcL using a phylogeny of 92 green-plant taxa. We employ a measure of codon usage bias that accounts for chloroplast genomic nucleotide content, as an attempt to limit plausible explanations for patterns of codon bias evolution to selection- or drift-based processes. This measure uses maximum likelihood-ratio tests to compare the performance of two models, one in which a single codon is overrepresented and one in which two codons are overrepresented. The measure allowed us to analyze both the extent of bias in each lineage and the evolution of codon choice across the phylogeny. Despite predictions based primarily on the low G + C content of the chloroplast and the high functional importance of rbcL, we found large differences in the extent of bias, suggesting differential molecular selection that is clade specific. The seed plants and simple leafy liverworts each independently derived a low level of bias in rbcL, perhaps indicating relaxed selectional constraint on molecular changes in the gene. Overrepresentation of a single codon was typically plesiomorphic, and transitions to overrepresentation of two codons occurred commonly across the phylogeny, possibly indicating biochemical selection. The total codon bias in each taxon, when regressed against the total bias of each amino acid, suggested that twofold amino acids play a strong role in inflating the level of codon usage bias in rbcL, despite the fact that twofolds compose a minority of residues in this gene. Those amino acids that contributed most to the total codon usage bias of each taxon are known through amino acid knockout and replacement to be of high functional importance. This suggests that codon usage bias may be constrained by particular amino acids and, thus, may serve as a good predictor of what residues are most important for protein fitness.  相似文献   

14.
Heger A  Ponting CP 《Genetics》2007,177(3):1337-1348
Codon usage bias in Drosophila melanogaster genes has been attributed to negative selection of those codons whose cellular tRNA abundance restricts rates of mRNA translation. Previous studies, which involved limited numbers of genes, can now be compared against analyses of the entire gene complements of 12 Drosophila species whose genome sequences have become available. Using large numbers (6138) of orthologs represented in all 12 species, we establish that the codon preferences of more closely related species are better correlated. Differences between codon usage biases are attributed, in part, to changes in mutational biases. These biases are apparent from the strong correlation (r = 0.92, P < 0.001) among these genomes' intronic G + C contents and exonic G + C contents at degenerate third codon positions. To perform a cross-species comparison of selection on codon usage, while accounting for changes in mutational biases, we calibrated each genome in turn using the codon usage bias indices of highly expressed ribosomal protein genes. The strength of translational selection was predicted to have varied between species largely according to their phylogeny, with the D. melanogaster group species exhibiting the strongest degree of selection.  相似文献   

15.
16.
R. Garesse 《Genetics》1988,118(4):649-663
The sequence of a 8351-nucleotide mitochondrial DNA (mtDNA) fragment has been obtained extending the knowledge of the Drosophila melanogaster mitochondrial genome to 90% of its coding region. The sequence encodes seven polypeptides, 12 tRNAs and the 3' end of the 16S rRNA and CO III genes. The gene organization is strictly conserved with respect to the Drosophila yakuba mitochondrial genome, and different from that found in mammals and Xenopus. The high A + T content of D. melanogaster mitochondrial DNA is reflected in a reiterative codon usage, with more than 90% of the codons ending in T or A, G + C rich codons being practically absent. The average level of homology between the D. melanogaster and D. yakuba sequences is very high (roughly 94%), although insertion and deletions have been detected in protein, tRNA and large ribosomal genes. The analysis of nucleotide changes reveals a similar frequency for transitions and transversions, and reflects a strong bias against G + C on both strands. The predominant type of transition is strand specific.  相似文献   

17.
In many unicellular organisms, invertebrates, and plants, synonymous codon usage biases result from a coadaptation between codon usage and tRNAs abundance to optimize the efficiency of protein synthesis. However, it remains unclear whether natural selection acts at the level of the speed or the accuracy of mRNAs translation. Here we show that codon usage can improve the fidelity of protein synthesis in multicellular species. As predicted by the model of selection for translational accuracy, we find that the frequency of codons optimal for translation is significantly higher at codons encoding for conserved amino acids than at codons encoding for nonconserved amino acids in 548 genes compared between Caenorhabditis elegans and Homo sapiens. Although this model predicts that codon bias correlates positively with gene length, a negative correlation between codon bias and gene length has been observed in eukaryotes. This suggests that selection for fidelity of protein synthesis is not the main factor responsible for codon biases. The relationship between codon bias and gene length remains unexplained. Exploring the differences in gene expression process in eukaryotes and prokaryotes should provide new insights to understand this key question of codon usage. Received: 18 June 2000 / Accepted: 10 November 2000  相似文献   

18.
In this study we reconstruct the evolution of codon usage bias in the chloroplast gene rbcL using a phylogeny of 92 green-plant taxa. We employ a measure of codon usage bias that accounts for chloroplast genomic nucleotide content, as an attempt to limit plausible explanations for patterns of codon bias evolution to selection- or drift-based processes. This measure uses maximum likelihood-ratio tests to compare the performance of two models, one in which a single codon is overrepresented and one in which two codons are overrepresented. The measure allowed us to analyze both the extent of bias in each lineage and the evolution of codon choice across the phylogeny. Despite predictions based primarily on the low G+C content of the chloroplast and the high functional importance of rbcL, we found large differences in the extent of bias, suggesting differential molecular selection that is clade specific. The seed plants and simple leafy liverworts each independently derived a low level of bias in rbcL, perhaps indicating relaxed selectional constraint on molecular changes in the gene. Overrepresentation of a single codon was typically plesiomorphic, and transitions to overrepresentation of two codons occurred commonly across the phylogeny, possibly indicating biochemical selection. The total codon bias in each taxon, when regressed against the total bias of each amino acid, suggested that twofold amino acids play a strong role in inflating the level of codon usage bias in rbcL, despite the fact that twofolds compose a minority of residues in this gene. Those amino acids that contributed most to the total codon usage bias of each taxon are known through amino acid knockout and replacement to be of high functional importance. This suggests that codon usage bias may be constrained by particular amino acids and, thus, may serve as a good predictor of what residues are most important for protein fitness. Present address (Joshua T. Herbeck): JBP Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA  相似文献   

19.
Wolbachia bacteria are common intracellular symbionts of arthropods and have been extensively studied in Drosophila. Most research focuses on two Old Word hosts, Drosophila melanogaster and Drosophila simulans, and does not take into account that some of the Wolbachia associations in these species may have evolved only after their fast global expansion and after the exposure to Wolbachia of previously isolated habitats. Here we looked at Wolbachia of Neotropical Drosophila species. Seventy-one lines of 16 Neotropical Drosophila species sampled in different regions and at different time points were analyzed. Wolbachia is absent in lines of Drosophila willistoni collected before the 1970s, but more recent samples are infected with a strain designated wWil. Wolbachia is absent in all other species of the willistoni group. Polymorphic wWil-related strains were detected in some saltans group species, with D. septentriosaltans being coinfected with at least four variants. Based on wsp and ftsZ sequence data, wWil of D. willistoni is identical to wAu, a strain isolated from D. simulans, but can be discriminated when using a polymorphic minisatellite marker. In contrast to wAu, which infects both germ line and somatic tissues of D. simulans, wWil is found exclusively in the primordial germ line cells of D. willistoni embryos. We report on a pool of closely related Wolbachia strains in Neotropical Drosophila species as a potential source for the wAu strain in D. simulans. Possible evolutionary scenarios reconstructing the infection history of wAu-like Wolbachia in Neotropical Drosophila species and the Old World species D. simulans are discussed.  相似文献   

20.
Palidwor GA  Perkins TJ  Xia X 《PloS one》2010,5(10):e13431

Background

In spite of extensive research on the effect of mutation and selection on codon usage, a general model of codon usage bias due to mutational bias has been lacking. Because most amino acids allow synonymous GC content changing substitutions in the third codon position, the overall GC bias of a genome or genomic region is highly correlated with GC3, a measure of third position GC content. For individual amino acids as well, G/C ending codons usage generally increases with increasing GC bias and decreases with increasing AT bias. Arginine and leucine, amino acids that allow GC-changing synonymous substitutions in the first and third codon positions, have codons which may be expected to show different usage patterns.

Principal Findings

In analyzing codon usage bias in hundreds of prokaryotic and plant genomes and in human genes, we find that two G-ending codons, AGG (arginine) and TTG (leucine), unlike all other G/C-ending codons, show overall usage that decreases with increasing GC bias, contrary to the usual expectation that G/C-ending codon usage should increase with increasing genomic GC bias. Moreover, the usage of some codons appears nonlinear, even nonmonotone, as a function of GC bias. To explain these observations, we propose a continuous-time Markov chain model of GC-biased synonymous substitution. This model correctly predicts the qualitative usage patterns of all codons, including nonlinear codon usage in isoleucine, arginine and leucine. The model accounts for 72%, 64% and 52% of the observed variability of codon usage in prokaryotes, plants and human respectively. When codons are grouped based on common GC content, 87%, 80% and 68% of the variation in usage is explained for prokaryotes, plants and human respectively.

Conclusions

The model clarifies the sometimes-counterintuitive effects that GC mutational bias can have on codon usage, quantifies the influence of GC mutational bias and provides a natural null model relative to which other influences on codon bias may be measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号