首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Some bacterial genomes are known to have low CpG dinucleotide frequencies. While their causes are not clearly understood, the frequency of CpG is suppressed significantly in the genome of Mycoplasma genitalium, but not in that of Mycoplasma pneumoniae. We compared orthologous gene pairs of the two closely related species to analyze CpG substitution patterns between these two genomes. We also divided genome sequences into three regions: protein-coding, noncoding, and RNA-coding, and obtained the CpG frequencies for each region for each organism. It was found that the observed/expected ratio of CpG dinucleotides is low in both the protein-coding and noncoding regions; while that ratio is in the normal range in the RNA-coding region. Our results indicate that CpG suppression of the Mycoplasma genome is not caused by (1) biased usage amino acid; (2) biased usage of synonymous codon; or (3) methylation effects by the CpG methyltransferase in the genomes of their hosts. Instead, we consider it likely that a certain global pressure, such as genome-wide pressure for the advantages of DNA stability or replication, has the effect of decreasing CpG over the entire genome, which, in turn, resulted in the biased codon usage.  相似文献   

2.
Parvoviruses are rapidly evolving viruses that infect a wide range of hosts, including vertebrates and invertebrates. Extensive methylation of the parvovirus genome has been recently demonstrated. A global pattern of methylation of CpG dinucleotides is seen in vertebrate genomes, compared to “fractional” methylation patterns in invertebrate genomes. It remains unknown if the loss of CpG dinucleotides occurs in all viruses of a given DNA virus family that infect host species spanning across vertebrates and invertebrates. We investigated the link between the extent of CpG dinucleotide depletion among autonomous parvoviruses and the evolutionary lineage of the infected host. We demonstrate major differences in the relative abundance of CpG dinucleotides among autonomous parvoviruses which share similar genome organization and common ancestry, depending on the infected host species. Parvoviruses infecting vertebrate hosts had significantly lower relative abundance of CpG dinucleotides than parvoviruses infecting invertebrate hosts. The strong correlation of CpG dinucleotide depletion with the gain in TpG/CpA dinucleotides and the loss of TpA dinucleotides among parvoviruses suggests a major role for CpG methylation in the evolution of parvoviruses. Our data present evidence that links the relative abundance of CpG dinucleotides in parvoviruses to the methylation capabilities of the infected host. In sum, our findings support a novel perspective of host-driven evolution among autonomous parvoviruses.  相似文献   

3.
Genome size of Mycoplasma genitalium.   总被引:10,自引:3,他引:7       下载免费PDF全文
The genome size of Mycoplasma genitalium was determined by using restriction enzymes that infrequently cut its DNA. The calculated value of 577 to 590 kilobases is one-fourth smaller than the genome of Mycoplasma pneumoniae, which is considered among the smallest genomes of self-replicating organisms.  相似文献   

4.
MOTIVATION: It has been speculated that CpG dinucleotide deficiency in genomes is a consequence of DNA methylation. However, this hypothesis does not adequately explain CpG deficiency in bacteria. The hypothesis based on DNA structure constraint as an alternative explanation was therefore examined. RESULTS: By comparing real bacterial genomes and Markov artificial genomes in the second order, we found that the core structure of a restricted pattern, the TTCGAA pattern, was under represented in low GC content bacterial genomes regardless of CpG dinucleotide level. This is in contrast to the AACGTT pattern, indicating that the counterselection is context-dependent. Further study discovered nine underrepresented patterns that were supposed to be capable of inducing DNA structure constraint. In summary, most of them are in TTCGNA and TTCGAN patterns in both DNA strands. An explanation is also proposed for the strong correlation between GC content and CpG deficiency. The result of random sequence simulation showed that the occurrences of these patterns were correlated with GC content, as well as the percentage of CpG dinucleotides being trapped in these patterns. Finally, we suggest that the degree of counter-selection against these restricted patterns could be influenced by global GC content of a genome.  相似文献   

5.
The small genome Mollicutes whose DNAs are completely sequenced (Mycoplasma genitalium, Mycoplasma pneumoniae, Mycoplasma pulmonis, and Ureaplasma urealyticum [parvum]) lack a gene (ndk) for the presumably essential nucleoside diphosphate kinase (NDPK). We hypothesized that other activities might replace NDPK activity. We found in M. genitalium G37(T), Mycoplasma pneumoniae FH(T), Mycoplasma fermentans PG18(T), and Mycoplasma capricolum subsp. capricolum Kid(T) that their 6-phosphofructokinases (6-PFKs), phosphoglycerate kinases (PGKs), pyruvate kinases (PKs), and acetate kinases (AKs), besides reactant ADP/ATP, could use other ribo- and deoxyribo-purine and pyrimidine NDPs and NTPs. These activities could compensate for the absence of an orthologous ndk gene in the Mycoplasmataceae. They suggest a metabolically varied and consequential role for unrelated and perhaps unsuspected "replacement" or compensatory enzymes that may confound metabolic prediction. We partially purified and biochemically characterized the PKs, 6-PFKs, PGKs, and AKs from M. capricolum subsp. capricolum Kid(T) and M. fermentans PG18(T).  相似文献   

6.
7.
A highly abundant and heterogeneous small RNA about 205 to 210 bases long named MP200 RNA has been identified in Mycoplasma pneumoniae. It was localized on the genome within a 319-bp-long intergenic space of the pyruvate dehydrogenase (pdh) gene cluster. A database search at the DNA level revealed the highest similarity to a sequence located within the pdh gene cluster of Mycoplasma genitalium that was also shown to be transcribed into two abundant, but smaller RNAs than the ones in Mycoplasma pneumoniae. The RNAs from both M. pneumoniae and M. genitalium have the potential to code for cysteine-rich 29- and 23-amino-acid-long peptides, but so far, these peptides have not been identified experimentally in bacterial protein extracts.  相似文献   

8.
Simple sequence repeats (SSRs) composed of extensive tandem iterations of a single nucleotide or a short oligonucleotide are rare in most bacterial genomes, but they are common among Mycoplasma. Some of these repeats act as contingency loci in association with families of surface antigens. By contraction or expansion during replication, these SSRs increase genetic variance of the population and facilitate avoidance of the immune response of the host. Occurrence and distribution of SSRs are analyzed in complete genomes of 11 Mycoplasma and 3 related Mollicutes in order to gain insights into functional and evolutionary diversity of the SSRs in Mycoplasma. The results revealed an unexpected variety of SSRs with respect to their distribution and composition and suggest that it is unlikely that all SSRs function as contingency loci or recombination hot spots. Various types of SSRs are most abundant in Mycoplasma hyopneumoniae, whereas Mycoplasma penetrans, Mycoplasma mobile, and Mycoplasma synoviae do not contain unusually long SSRs. Mycoplasma hyopneumoniae and Mycoplasma pulmonis feature abundant short adenine and thymine runs periodically spaced at 11 and 12 bp, respectively, which likely affect the supercoiling propensities of the DNA molecule. Physiological roles of long adenine and thymine runs in M. hyopneumoniae appear independent of location upstream or downstream of genes, unlike contingency loci that are typically located in protein-coding regions or upstream regulatory regions. Comparisons among 3 M. hyopneumoniae strains suggest that the adenine and thymine runs are rarely involved in genome rearrangements. The results indicate that the SSRs in the Mycoplasma genomes play diverse roles, including modulating gene expression as contingency loci, facilitating genome rearrangements via recombination, affecting protein structure and possibly protein-protein interactions, and contributing to the organization of the DNA molecule in the cell.  相似文献   

9.
10.
A prokaryotic CpG-specific methylase from Spiroplasma, SssI methylase, is now widely used to study the effect of CpG methylation in mammalian cells, and can processively modify cytosines in CpG dinucleotides in the absence of Mg2+. In the presence of Mg2+, we found (i) that the methylation reaction is distributive rather than processive as a result of the decreased affinity of SssI methylase for DNA, and (ii) that a type I-like topoisomerase activity is present in SssI methylase preparations. This topoisomerase activity was still present in SssI methylase further purified by either SDS-polyacrylamide or isoelectric focusing gel electrophoresis. We show that methylase and topoisomerase activities are not functionally interdependent, since conditions exist where only one or the other enzymatic activity is detectable. The catalytic domains of SssI methylase and prokaryotic topoisomerases show similarity at the amino acid level, further supporting the idea that the topoisomerase activity is a genuine activity of SssI methylase. Mycoplasmas, including Spiroplasma, have the smallest genomes of all living organisms; thus, this condensation of two enzymatic activities into the same protein may be a result of genome economy, and may also have functional implications for the mechanism of methylation.  相似文献   

11.
Homologous recombination between repeated DNA elements in the genomes of Mycoplasma species has been hypothesized to be a crucial causal factor in sequence variation of antigenic proteins at the bacterial surface. To investigate this notion, studies were initiated to identify and characterize the proteins that form part of the homologous DNA recombination machinery in Mycoplasma pneumoniae as well as Mycoplasma genitalium. Among the most likely participants of this machinery are homologs of the Holliday junction migration motor protein RuvB. In both M. pneumoniae and M. genitalium, genes have been identified that have the capacity to encode RuvB homologs (MPN536 and MG359, respectively). Here, the characteristics of the MPN536- and MG359-encoded proteins (the RuvB proteins from M. pneumoniae strain FH [RuvB(FH)] and M. genitalium [RuvB(Mge)], respectively) are described. Both RuvB(FH) and RuvB(Mge) were found to have ATPase activity and to bind DNA. In addition, both proteins displayed divalent cation- and ATP-dependent DNA helicase activity on partially double-stranded DNA substrates. The helicase activity of RuvB(Mge), however, was significantly lower than that of RuvB(FH). Interestingly, we found RuvB(FH) to be expressed exclusively by subtype 2 strains of M. pneumoniae. In strains belonging to the other major subtype (subtype 1), a version of the protein is expressed (the RuvB protein from M. pneumoniae strain M129 [RuvB(M129)]) that differs from RuvB(FH) in a single amino acid residue (at position 140). In contrast to RuvB(FH), RuvB(M129) displayed only marginal levels of DNA-unwinding activity. These results demonstrate that M. pneumoniae strains (as well as closely related Mycoplasma spp.) can differ significantly in the function of components of their DNA recombination and repair machinery.  相似文献   

12.
为了解广州市儿童呼吸道支原体感染情况,用一条共同的上游引物,二条特异性的下游引物建立的PCR方法能同时扩增MP的691bp和MG的438bp粘附因子基因片段,但不会扩增其他支原体和细菌的DNA。  相似文献   

13.
Latent episomal genomes of Epstein-Barr virus, a human gammaherpesvirus, represent a suitable model system for studying replication and methylation of chromosomal DNA in mammals. We analyzed the methylation patterns of CpG dinucleotides in the latent origin of DNA replication of Epstein-Barr virus using automated fluorescent genomic sequencing of bisulfite-modified DNA samples. We observed that the minimal origin of DNA replication was unmethylated in 8 well-characterized human cell lines or clones carrying latent Epstein-Barr virus genomes as well as in a prototype virus producer marmoset cell line. This observation suggests that unmethylated DNA domains can function as initiation sites or zones of DNA replication in human cells. Furthermore, 5' from this unmethylated region we observed focal points of de novo DNA methylation in nonrandom positions in the majority of Burkitt's lymphoma cell lines and clones studied while the corresponding CpG dinucleotides in viral genomes carried by lymphoblastoid cell lines and marmoset cells were completely unmethylated. Clustering of highly methylated CpG dinucleotides suggests that de novo methylation of unmethylated double-stranded episomal viral genomes starts at discrete founder sites in vivo. This is the first comparative high-resolution methylation analysis of a latent viral origin of DNA replication in human cells.  相似文献   

14.
The only natural postsynthetic modification known to occur in mammalian DNA is the methylation in the 5 position of deoxycytidines. Of the four 5'-CpN-3' dinucleotides (ie. CpG, CpC, CpA, and CpT), the dinucleotide which contains the highest proportion of deoxycytidines methylated is CpG, with 40 to 80% methylation in different mammalian genomes. It has also been shown that CpA, CpT, and CpC are methylated as well but to a much lower extent. Here we report the result of a full nearest neighbour analysis (together with quantitation of methylation levels in the 4 CpN dinucleotides) for DNA from human spleen. Using the values we have calculated the overall frequencies for all the methylated dinucleotides in the human genome. Because of the relative underrepresentation (by 7 to 10 fold) of the CpG dinucleotide, only 45.5% of total mC was present in mCpG, with 54.5% in mCpA, mCpT plus mCpC. These calculations have implications for studies into the function and significance of DNA methylation in mammalian cells.  相似文献   

15.
A DNA fragment has been isolated from the genome of Mycoplasma pirum by use of a genetic probe derived from the conserved region within the genes for the major adhesins of Mycoplasma genitalium and Mycoplasma pneumoniae. A gene encoding an adhesin-like polypeptide was localized, and sequence analysis indicated a G + C content of only 28%, with A- and T-rich codons being preferentially used. A total of 91% of positions 3 were either A or T. The deduced polypeptide is 1,144 amino acids long (126 kDa) and shows 26% identity with the adhesins of M. genitalium and M. pneumoniae. Other features in common with these two membrane proteins include a similar hydropathic profile and a proline-rich C terminus. Antibodies were prepared by using as an immunogen a peptide derived from the C terminus of the M. pirum adhesin-like polypeptide and were found to recognize on immunoblots a 126-kDa polypeptide from an M. pirum cellular extract. The characterization of the adhesin-like gene is a first step toward a better understanding of the mechanisms allowing this human mycoplasma to attach to host cells.  相似文献   

16.
DNA methylation (5-methylcytosine) in mammalian genomes predominantly occurs at CpG dinucleotides, is maintained by DNA methyltransferase1 (Dnmt1), and is essential for embryo viability. The plant genome also has 5-methylcytosine at CpG dinucleotides, which is maintained by METHYLTRANSFERASE1 (MET1), a homolog of Dnmt1. In addition, plants have DNA methylation at CpNpG and CpNpN sites, maintained, in part, by the CHROMOMETHYLASE3 (CMT3) DNA methyltransferase. Here, we show that Arabidopsis thaliana embryos with loss-of-function mutations in MET1 and CMT3 develop improperly, display altered planes and numbers of cell division, and have reduced viability. Genes that specify embryo cell identity are misexpressed, and auxin hormone gradients are not properly formed in abnormal met1 embryos. Thus, DNA methylation is critical for the regulation of plant embryogenesis and for seed viability.  相似文献   

17.
18.
Changes in DNA methylation patterns is a prominent characteristic of human tumors. Tumor cells display reduced levels of genomic DNA methylation and site-specific CpG island hypermethylation. Methylation of CpG dinucleotides is catalyzed by the enzyme family of DNA methyltransferases (DNMTs). In this review, the role of DNA methylation and DNMTs as key determinants of carcinogenesis is further elucidated. The chromatin modifying proteins that are known to interact with DNMTs are also described. Finally, the role of DNMTs as potential therapeutic targets is addressed.  相似文献   

19.
Five complete bacterial genome sequences have been released to the scientific community. These include four (eu)Bacteria, Haemophilus influenzae, Mycoplasma genitalium, M. pneumoniae, and Synechocystis PCC 6803, as well as one Archaeon, Methanococcus jannaschii. Features of organization shared by these genomes are likely to have arisen very early in the history of the bacteria and thus can be expected to provide further insight into the nature of early ancestors. Results of a genome comparison of these five organisms confirm earlier observations that gene order is remarkably unpreserved. There are, nevertheless, at least 16 clusters of two or more genes whose order remains the same among the four (eu)Bacteria and these are presumed to reflect conserved elements of coordinated gene expression that require gene proximity. Eight of these gene orders are essentially conserved in the Archaea as well. Many of these clusters are known to be regulated by RNA-level mechanisms in Escherichia coli, which supports the earlier suggestion that this type of regulation of gene expression may have arisen very early. We conclude that although the last common ancestor may have had a DNA genome, it likely was preceded by progenotes with an RNA genome. Received: 10 March 1996 / Accepted: 20 May 1997  相似文献   

20.
《Epigenetics》2013,8(3):151-154
Expression of the bacterial CG methyltransferase M?HhaI in mammalian cells appears to generate significant biological effects, while biological effects of the expression of the non-CG methyltransferase M?EcoRII in human cells have not been detected. The association of cytosine methylation with the CG site in mammals is also associated with clustering of CG sites near 5´ control regions (CG-islands) of human genes. Moreover spontaneous deamination of 5-methylcytosine at these sites is thought to lead to the well known deficiency of CG sites in genomes where endogenous CG methyltransferases are expressed. Since these associations are generally taken to imply a biological function for the CG dinucleotide that is associated with its selective methylation by endogenous DNA methylation systems, we have asked whether or not CWG or CCWGG sites are clustered in regions flanking human genes and whether or not an overall deficiency of CWG or CCWGG occurs in the human genome. Using build 36.1, of the human genome, we inspected the regions flanking the 28,501 well known gene loci in the human genome. Our analysis confirmed the expected clustering of CG sites near the 5´ region of known genes and open reading frames. In contrast to the CG site, neither the CWG site nor the CCWGG site recognized by the bacterial methyltransferase M?EcoRII were clustered in any particular region near known genes and open reading frames. Moreover, neither the CCWGG nor the CWG site was depleted in the human genome, again in sharp contrast to the known genomic deficiency of CpG sites. Our findings suggest that in contrast to CG site recognition, human cytosine methyltransferases recognize CWG and CCWGG only at very low frequency if at all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号