共查询到20条相似文献,搜索用时 0 毫秒
1.
Cai Liang Haiyan Yan Zhenlei Zhang Xingfeng Xiang Miao Zhang Feifei Qi Linli Zhou Fangwei Wang 《EMBO reports》2018,19(4)
Heterochromatin protein‐1 (HP1) is a key component of heterochromatin. Reminiscent of the cohesin complex which mediates sister‐chromatid cohesion, most HP1 proteins in mammalian cells are displaced from chromosome arms during mitotic entry, whereas a pool remains at the heterochromatic centromere region. The function of HP1 at mitotic centromeres remains largely elusive. Here, we show that double knockout (DKO) of HP1α and HP1γ causes defective mitosis progression and weakened centromeric cohesion. While mutating the chromoshadow domain (CSD) prevents HP1α from protecting sister‐chromatid cohesion, centromeric targeting of HP1α CSD alone is sufficient to rescue the cohesion defects in HP1 DKO cells. Interestingly, HP1‐dependent cohesion protection requires Haspin, an antagonist of the cohesin‐releasing factor Wapl. Moreover, HP1α CSD directly binds the N‐terminal region of Haspin and facilitates its centromeric localization. The need for HP1 in cohesion protection can be bypassed by centromeric targeting of Haspin or inhibiting Wapl activity. Taken together, these results reveal a redundant role for HP1α and HP1γ in the protection of centromeric cohesion through promoting Haspin localization at mitotic centromeres in mammalian cells. 相似文献
2.
The central spindle is important for the completion of cytokinesis. Genetic and biochemical approaches have identified a tetrameric complex, made up of a mitotic kinesin-like protein and a Rho-GTPase activating protein, that mediates central spindle assembly. 相似文献
3.
4.
Benjamin J Alper Godwin Job Rajesh K Yadav Sreenath Shanker Brandon R Lowe Janet F Partridge 《The EMBO journal》2013,32(17):2321-2335
Heterochromatin assembly in fission yeast depends on the Clr4 histone methyltransferase, which targets H3K9. We show that the histone deacetylase Sir2 is required for Clr4 activity at telomeres, but acts redundantly with Clr3 histone deacetylase to maintain centromeric heterochromatin. However, Sir2 is critical for Clr4 function during de novo centromeric heterochromatin assembly. We identified new targets of Sir2 and tested if their deacetylation is necessary for Clr4‐mediated heterochromatin establishment. Sir2 preferentially deacetylates H4K16Ac and H3K4Ac, but mutation of these residues to mimic acetylation did not prevent Clr4‐mediated heterochromatin establishment. Sir2 also deacetylates H3K9Ac and H3K14Ac. Strains bearing H3K9 or H3K14 mutations exhibit heterochromatin defects. H3K9 mutation blocks Clr4 function, but why H3K14 mutation impacts heterochromatin was not known. Here, we demonstrate that recruitment of Clr4 to centromeres is blocked by mutation of H3K14. We suggest that Sir2 deacetylates H3K14 to target Clr4 to centromeres. Further, we demonstrate that Sir2 is critical for de novo accumulation of H3K9me2 in RNAi‐deficient cells. These analyses place Sir2 and H3K14 deacetylation upstream of Clr4 recruitment during heterochromatin assembly. 相似文献
5.
A method is suggested for isolation of highly purified mouse centromeric heterochromatin. Treatment of mouse liver nuclei with decreasing concentrations of Ca2+ resulted in the gradual unraveling of chromatin in the nucleus and at 0.1 mM Ca2+ electron microscopy revealed several dense particles per nucleus, surrounded by decondensed chromatin. These particles, assumed to represent centromere regions of interphase chromosomes by in situ hybridization with radioactive mouse satellite DNA and by differential staining for centromere heterochromatin, were isolated in preparative amounts and their DNA and protein composition was analyzed. The preparation represented practically pure mouse centromere heterochromatin, since more than 90% of its DNA was satellite DNA. 相似文献
6.
During chromosome duplication, it is essential to replicate not only the DNA sequence, but also the complex nucleoprotein structures of chromatin. Pericentric heterochromatin is critical for silencing repetitive elements and plays an essential structural role during mitosis. However, relatively little is understood about its assembly and maintenance during replication. The Mi2/NuRD chromatin remodeling complex tightly associates with actively replicating pericentric heterochromatin, suggesting a role in its assembly. Here we demonstrate that depletion of the catalytic ATPase subunit CHD4/Mi-2β in cells with a dampened DNA damage response results in a slow-growth phenotype characterized by delayed progression through S phase. Furthermore, we observe defects in pericentric heterochromatin maintenance and assembly. Our data suggest that chromatin assembly defects are sensed by an ATM-dependent intra-S phase chromatin quality checkpoint, resulting in a temporal block to the transition from early to late S phase. These findings implicate Mi-2β in the maintenance of chromatin structure and proper cell cycle progression. 相似文献
7.
8.
Repeated DNA in heterochromatin presents enormous difficulties for whole-genome sequencing; hence, sequence organization in a significant portion of the genomes of multicellular organisms is relatively unknown. Two sequenced BACs now allow us to compare telomeric retrotransposon arrays from Drosophila melanogaster telomeres with an array of telomeric retrotransposons that transposed into the centromeric region of the Y chromosome >13 MYA, providing a unique opportunity to compare the structural evolution of this retrotransposon in two contexts. We find that these retrotransposon arrays, both heterochromatic, are maintained quite differently, resulting in sequence organizations that apparently reflect different roles in the two chromosomal environments. The telomere array has grown only by transposition of new elements to the chromosome end; the centromeric array instead has grown by repeated amplifications of segments of the original telomere array. Many elements in the telomere have been variably 5'-truncated apparently by gradual erosion and irregular deletions of the chromosome end; however, a significant fraction (4 and possibly 5 or 6 of 15 elements examined) remain complete and capable of further retrotransposition. In contrast, each element in the centromere region has lost ≥ 40% of its sequence by internal, rather than terminal, deletions, and no element retains a significant part of the original coding region. Thus the centromeric array has been restructured to resemble the highly repetitive satellite sequences typical of centromeres in multicellular organisms, whereas, over a similar or longer time period, the telomere array has maintained its ability to provide retrotransposons competent to extend telomere ends. 相似文献
9.
A high resolution procedure for analyzing human centromeric heterochromatin is described. The combined use of decondensation agents of pericentromeric heterochromatin and electron microscopy of whole mounted chromosomes allows a more precise identification of centromere and pericentromeric regions. 相似文献
10.
Accurate segregation of the genetic material during cell division requires that sister chromatids are kept together by cohesion proteins until anaphase, when the chromatids become separated and distributed to the two daughter cells. Studies in yeast revealed that chromatid cohesion is essential for viability and is triggered by the conserved protein Eco1 (Ctf7). Cohesion must be established already in S phase in order to tie up sister chromatids instantly after replication, but how this crucial timing is achieved remains enigmatic. Here, we report that in yeast and humans Eco1 is directly physically coupled to the replication protein PCNA, a ring-shaped cofactor of DNA polymerases. Binding to PCNA is crucial, as yeast Eco1 mutants deficient in Eco1-PCNA interaction are defective in cohesion and inviable. Our study thus indicates that PCNA, a central matchmaker for replication-linked functions, is also crucially involved in the establishment of cohesion in S phase. 相似文献
11.
Centromeres are epigenetically defined chromatin domains marked by the presence of the histone H3 variant CENP-A. Here we review recent structural and biochemical work on CENP-A, and advances in understanding the mechanisms that propagate and read centromeric chromatin domains. 相似文献
12.
Defective S phase chromatin assembly causes DNA damage,activation of the S phase checkpoint,and S phase arrest 总被引:1,自引:0,他引:1
The S phase checkpoint protects the genome from spontaneous damage during DNA replication, although the cause of damage has been unknown. We used a dominant-negative mutant of a subunit of CAF-I, a complex that assembles newly synthesized DNA into nucleosomes, to inhibit S phase chromatin assembly and found that this induced S phase arrest. Arrest was accompanied by DNA damage and S phase checkpoint activation and required ATR or ATM kinase activity. These results show that in human cells CAF-I activity is required for completion of S phase and that a defect in chromatin assembly can itself induce DNA damage. We propose that errors in chromatin assembly, occurring spontaneously or caused by genetic mutations or environmental agents, contribute to genome instability. 相似文献
13.
Functional separation of the requirements for establishment and maintenance of centromeric heterochromatin 总被引:1,自引:0,他引:1
Partridge JF DeBeauchamp JL Kosinski AM Ulrich DL Hadler MJ Noffsinger VJ 《Molecular cell》2007,26(4):593-602
The establishment and maintenance of centromeric heterochromatin in fission yeast require the RITS complex. Comprised of centromeric siRNAs, the chromodomain protein Chp1, Argonaute (Ago1), and Tas3, RITS couples the cellular RNAi pathway with assembly of constitutive heterochromatin. However, the mechanisms governing RITS-dependent establishment versus maintenance of centromeric heterochromatin remain unresolved. Here, we report that a mutant Tas3 protein that cannot bind Ago1 supports the maintenance of centromeric heterochromatin but cannot mediate efficient de novo establishment from cells transiently depleted for the histone H3 lysine 9 methyltransferase Clr4. In contrast, centromeric heterochromatin efficiently assembles in mutant cells transiently depleted for dicer. This mutant therefore allows ordering of the events leading to establishment of centromeric heterochromatin and places lysine 9 methylation of histone H3 upstream of dicer function. 相似文献
14.
Andreas Weith 《Chromosoma》1985,91(3-4):287-296
The fine structure of constitutive heterochromatin and euchromatin was compared in electron microscope whole-mount preparations of Tenebrio molitor (Insecta, Coleoptera) spermatocyte nuclei. Tenebrio molitor pachytene chromosomes display extended segments of centromeric heterochromatin and thus are especially suitable for this purpose. When nuclei were incubated in solutions containing different concentrations of NaCl or of MgCl2, two levels of chromatin fine structures were observed in the euchromatic segments: nucleosome fibers (0.1 mM–20 mM NaCl) and supranucleosomal fibers with 28 nm in diameter (40 mM–100 mM NaCl, 0.2 mM–1.0 mM MgCl2). The fine structure in the heterochromatic segments was the same as that in the euchromatic segments in all NaCl concentrations and in MgCl2 concentrations up to 0.4 mM. In higher MgCl2 concentrations the heterochromatin remained more compact than the euchromatin and consisted of 37-nm-thick fibers in 0.6 mM MgCl2 and of 65-nm-thick fibers in 1.0 mM MgCl2. After the 37-nm and the 65-nm fibers had been dispersed in Mg2+-free solutions they could be recondensed by incubation in 0.6 mM and 1.0 mM MgCl2, respectively. It is concluded that a Mg2+-sensitive component of the heterochromatin is responsible for the folding of the nucleosome chain to heterochromatin-specific supranucleosomal structures. 相似文献
15.
Perera D Tilston V Hopwood JA Barchi M Boot-Handford RP Taylor SS 《Developmental cell》2007,13(4):566-579
Bub1 is a component of the spindle assembly checkpoint (SAC), a surveillance mechanism that ensures genome stability by delaying anaphase until all the chromosomes are stably attached to spindle microtubules via their kinetochores. To define Bub1's role in chromosome segregation, embryogenesis, and tissue homeostasis, we generated a mouse strain in which BUB1 can be inactivated by administration of tamoxifen, thereby bypassing the preimplantation lethality associated with the Bub1 null phenotype. We show that Bub1 is essential for postimplantation embryogenesis and proliferation of primary embryonic fibroblasts. Bub1 inactivation in adult males inhibits proliferation in seminiferous tubules, reducing sperm production and causing infertility. In culture, Bub1-deficient fibroblasts fail to align their chromosomes or sustain SAC function, yielding a highly aberrant mitosis that prevents further cell divisions. Centromeres in Bub1-deficient cells also separate prematurely; however, we show that this is a consequence of SAC dysfunction rather than a direct role for Bub1 in protecting centromeric cohesion. 相似文献
16.
Faithful segregation of sister chromatids during cell division requires properly regulated cohesion between the sister centromeres.
The sister chromatids are attached along their lengths, but particularly tightly in the centromeric regions. Therefore specific
cohesion proteins may be needed at the centromere. Here we show that Drosophila MEI-S332 protein localizes to mitotic metaphase centromeres. Both overexpression and mutation of MEI-S332 increase the number
of apoptotic cells. In mei-S332 mutants the ratio of metaphase to anaphase figures is lower than wild type, but it is higher if MEI-S332 is overexpressed.
In chromosomal squashes centromeric attachments appear weaker in mei-S332 mutants than wild type and tighter when MEI-S332 is overexpressed. These results are consistent with MEI-S332 contributing
to centromeric sister-chromatid cohesion in a dose-dependent manner. MEI-S332 is the first member identified of a predicted
class of centromeric proteins that maintain centromeric cohesion.
Received: 11 December 1998; in revised form: 4 August 1999 / Accepted: 13 August 1999 相似文献
17.
18.
The aim of the present study was to test the hypothesis about the relation between segregation of chromosomes 14 and 18 and the deterioration of mouse fertility and vitality. The analysis was possible because C-banding on chromosome 14 and chromosome 18 of the CBA/Kw and KE strains show size polymorphism. A small sized C-band on chromosome 14 is characteristic for the CBA/Kw mice, while the KE mice show small C-bands on chromosomes 18. Thus, if fertility parameters are affected in a centromere-dependent manner, we should observe non-random inheritance of both chromosome pairs in recombinant inbred (RI) strains. The results showed statistically significant preferential segregation of chromosomes 14 and 18 with small C-bands. Most of the RI strains inherited chromosome 14 from the CBA/Kw strain and chromosome 18 from the KE strain, and did not manifest a deterioration of fertility and vitality. On the contrary, RI strains that inherited chromosomes 14 and 18 from one of the parental strains, particularly the KE strain, stopped breeding or had difficulties in producing the next generation. 相似文献
19.
20.
Matsunaga S Takata H Morimoto A Hayashihara K Higashi T Akatsuchi K Mizusawa E Yamakawa M Ashida M Matsunaga TM Azuma T Uchiyama S Fukui K 《Cell reports》2012,1(4):299-308
Cohesion is essential for the identification of sister chromatids and for the biorientation of chromosomes until their segregation. Here, we have demonstrated that an RNA-binding motif protein encoded on the X chromosome (RBMX) plays an essential role in chromosome morphogenesis through its association with chromatin, but not with RNA. Depletion of RBMX by RNA interference (RNAi) causes the loss of cohesin from the centromeric regions before anaphase, resulting in premature chromatid separation accompanied by delocalization of the shugoshin complex and outer kinetochore proteins. Cohesion defects caused by RBMX depletion can be detected as early as the G2 phase. Moreover, RBMX associates with the cohesin subunits, Scc1 and Smc3, and with the cohesion regulator, Wapl. RBMX is required for cohesion only in the presence of Wapl, suggesting that RBMX is an inhibitor of Wapl. We propose that RBMX is a cohesion regulator that maintains the proper cohesion of sister chromatids. 相似文献