首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fc受体是免疫细胞表面一种重要受体分子,通过与免疫球蛋白Fc段结合触发多种生物学功能,是联系体液免疫和细胞免疫的桥梁。部分硬骨鱼中已经发现了Fc受体,在斑马鱼、斑点又尾鲴和鲤鱼中都克隆到了Fc受体的γ亚基,在鲨鱼和大西洋鲑中证明有能够与免疫球蛋白结合的Fc受体存在,并在斑点叉尾鲴、河豚和虹鳟中存在着类似α亚基的Fc受体。对鱼类Fc受体的发现和研究必将为了解鱼类的免疫机制及免疫进化提供重要的资料。  相似文献   

2.
Abstract

Fc receptors (FcRs) are immunoglobulin-binding structures that enable antibodies to perform a variety of functions by forming connections between specific recognition and effector cells. Besides eliciting cytotoxicity, inducing secretion of mediators and endocytosis of opsonized particles, FcRs are involved in the regulation of antibody production, both as integral membrane proteins and as soluble molecules released from the cell surface. Most FcRs belong to the same family of proteins as their ligands (immunoglobulin superfamily). This review contains recent data obtained by use of monoclonal antibodies and cloning studies on FcRs and FcR-like molecules. The importance of fine specificity of receptor binding site(s) — that of the conformation of FcRs and their ligands in triggering signaling mechanisms — is analyzed. The regulatory function of membrane-bound and -released FcRs; the correlation between cell cycle, FcR expression, and release; as well as the possible mechanisms of these phenomena are discussed.  相似文献   

3.
4.
Protozoan pathogens secrete nanosized particles called extracellular vesicles (EVs) to facilitate their survival and chronic infection. Here, we show the inhibition by Plasmodium berghei NK65 blood stage‐derived EVs of the proliferative response of CD4+ T cells in response to antigen presentation. Importantly, these results were confirmed in vivo by the capacity of EVs to diminish the ovalbumin‐specific delayed type hypersensitivity response. We identified two proteins associated with EVs, the histamine releasing factor (HRF) and the elongation factor 1α (EF‐1α) that were found to have immunosuppressive activities. Interestingly, in contrast to WT parasites, EVs from genetically HRF‐ and EF‐1α‐deficient parasites failed to inhibit T cell responses in vitro and in vivo. At the level of T cells, we demonstrated that EVs from WT parasites dephosphorylate key molecules (PLCγ1, Akt, and ERK) of the T cell receptor signalling cascade. Remarkably, immunisation with EF‐1α alone or in combination with HRF conferred a long‐lasting antiparasite protection and immune memory. In conclusion, we identified a new mechanism by which P. berghei‐derived EVs exert their immunosuppressive functions by altering T cell responses. The identification of two highly conserved immune suppressive factors offers new conceptual strategies to overcome EV‐mediated immune suppression in malaria‐infected individuals.  相似文献   

5.
Extracellular vesicles (EVs) have emerged as a ubiquitous mechanism for transferring information between cells and organisms across all three kingdoms of life. Parasitic unicellular eukaryotes use EVs as vehicles for intercellular communication and host manipulation. Pathogenic protozoans are able to modulate the immune system of the host and establish infection by transferring a wide range of molecules contained in different types of EVs. In addition to effects on the host, EVs are able to transfer virulence factors, drug‐resistance genes and differentiation factors between parasites. In this review we cover the current knowledge on EVs from anaerobic or microaerophilic extracellular protozoan parasites, including Trichomonas vaginalis, Tritrichomonas foetus, Giardia intestinalis and Entamoeba histolytica, with a focus on their potential role in the process of infection. The role of EVs in host: parasite communication adds a new level of complexity to our understanding of parasite biology, and may be a key to understand the complexity behind their mechanism of pathogenesis.  相似文献   

6.
Intracellular trafficking in the trypanosomatids   总被引:1,自引:0,他引:1  
Trypanosomes are members of the kinetoplastida, a group of divergent protozoan parasites responsible for considerable morbidity and mortality worldwide. These organisms have highly complex life cycles requiring modification of their cell surface together with engagement of immune evasion systems to effect survival; both processes intimately involve the membrane trafficking system. The completion of three trypanosomatid and several additional protist genomes in the last few years is providing an exciting opportunity to evaluate, at the molecular level, the evolution and diversity of membrane trafficking across deep evolutionary time as well as to analyse in unprecedented detail the membrane trafficking systems of trypanosomes.  相似文献   

7.
Fu  Yajing  Cheng  Yuanxiong  Wu  Yuntao 《中国病毒学》2020,35(3):266-271
Currently there is no effective antiviral therapy for SARS-CoV-2 infection, which frequently leads to fatal inflammatory responses and acute lung injury. Here, we discuss the various mechanisms of SARS-CoV-mediated inflammation. We also assume that SARS-CoV-2 likely shares similar inflammatory responses. Potential therapeutic tools to reduce SARS-CoV-2-induced inflammatory responses include various methods to block FcR activation. In the absence of a proven clinical FcR blocker, the use of intravenous immunoglobulin to block FcR activation may be a viable option for the urgent treatment of pulmonary inflammation to prevent severe lung injury. Such treatment may also be combined with systemic anti-inflammatory drugs or corticosteroids. However, these strategies, as proposed here, remain to be clinically tested for effectiveness.  相似文献   

8.
Toll样受体是机体天然免疫系统最重要的模式识别受体之一,通过识别病原寄生虫的病原相关分子模式,活化依赖和非依赖于髓样分化因子88的信号转导通路,诱导干扰素、炎症因子、趋化因子等的表达以及树突状细胞的成熟,抵御病原寄生虫的感染。因此,以下综述了Toll样受体对原病寄生虫,尤其对动物寄生性原虫与蠕虫感染的模式识别与天然免疫应答机制,以进一步理解病原寄生虫与宿主相互作用的复杂性,为寄生虫病的有效防治提供理论参考。  相似文献   

9.
In primates and rodents, the extended FcR family is comprised of three subsets: classical FcRs, structurally diverse cell surface receptors currently designated FCRL1-FCRL6, and intracellular proteins FCRLA and FCRLB. Using bioinformatic analysis, we revealed the FcR-like genes of the same three subsets in the genome of dog, another representative of placental mammals, and in the genome of short-tailed opossum, a representative of marsupials. In contrast, a single FcR-like gene was found in the current version of the chicken genome. This in silico finding was confirmed by the gene cloning and subsequent Southern blot hybridization. The chicken FCRL gene encodes a cell surface receptor with the extracellular region composed of four Ig-like domains of the D1-, D2-, D3-, and D4-subtypes. The gene is expressed in lymphoid and non-lymphoid tissues. Phylogenetic analysis of the mammalian and chicken genes suggested that classical FcRs, FCRLA, and FCRLB emerged after the mammalian-avian split but before the eutherian-marsupial radiation. The data obtained show that the repertoire of the classical FcRs and surface FcR-like proteins in mammalian species was shaped by an extensive recombination process, which resulted in domain shuffling and species-specific gain and loss of distinct exons or entire genes.  相似文献   

10.
微囊泡(microvesicle)是细胞释放到胞外的膜性囊泡,其能将所含的蛋白质、脂类和核酸分子转运给其他细胞,从而介导细胞间通讯。作为严格细胞内寄生的微生物,病毒能利用微囊泡的生物合成和扩散途径进行病毒粒子的组装、出芽和传递,同时将病毒蛋白或基因组包装入微囊泡中。这些病毒修饰的囊泡能介导病毒在机体内的感染和扩散,或导致免疫细胞损伤以及耐受抗体的中和,从而逃避宿主免疫应答,引起持续性感染。重要的是,微囊泡介导的病毒感染打破了对病毒在体内扩散和感染时必须有病毒粒子存在的传统认知。对微囊泡与病毒感染进行综述,以促进对微囊泡介导病毒感染和抑制宿主免疫应答分子机制的了解。  相似文献   

11.
Freshwater populations of three-spined sticklebacks (Gasterosteus aculeatus) in northern Germany are found as distinct lake and river ecotypes. Adaptation to habitat-specific parasites might influence immune capabilities of stickleback ecotypes. Here, naive laboratory-bred sticklebacks from lake and river populations were exposed reciprocally to parasite environments in a lake and a river habitat. Sticklebacks exposed to lake conditions were infected with higher numbers of parasite species when compared with the river. River sticklebacks in the lake had higher parasite loads than lake sticklebacks in the same habitat. Respiratory burst, granulocyte counts and lymphocyte proliferation of head kidney leucocytes were increased in river sticklebacks exposed to lake when compared with river conditions. Although river sticklebacks exposed to lake conditions showed elevated activation of their immune system, parasites could not be diminished as effectively as by lake sticklebacks in their native habitat. River sticklebacks seem to have reduced their immune-competence potential due to lower parasite diversity in rivers.  相似文献   

12.
Therapeutic monoclonal antibodies are the fastest growing class of biological therapeutics for the treatment of various cancers and inflammatory disorders. In cancer immunotherapy, some IgG1 antibodies rely on the Fc-mediated immune effector function, antibody-dependent cellular cytotoxicity (ADCC), as the major mode of action to deplete tumor cells. It is well-known that this effector function is modulated by the N-linked glycosylation in the Fc region of the antibody. In particular, absence of core fucose on the Fc N-glycan has been shown to increase IgG1 Fc binding affinity to the FcγRIIIa present on immune effector cells such as natural killer cells and lead to enhanced ADCC activity. As such, various strategies have focused on producing afucosylated antibodies to improve therapeutic efficacy. This review discusses the relevance of antibody core fucosylation to ADCC, different strategies to produce afucosylated antibodies, and an update of afucosylated antibody drugs currently undergoing clinical trials as well as those that have been approved.  相似文献   

13.
Interactions involving several parasite species (multi-parasitized hosts) or several host species (multi-host parasites) are the rule in nature. Only a few studies have investigated these realistic, but complex, situations from an evolutionary perspective. Consequently, their impact on the evolution of parasite virulence and transmission remains poorly understood. The mechanisms by which multiple infections may influence virulence and transmission include the dynamics of intrahost competition, mediation by the host immune system and an increase in parasite genetic recombination. Theoretical investigations have yet to be conducted to determine which of these mechanisms are likely to be key factors in the evolution of virulence and transmission. In contrast, the relationship between multi-host parasites and parasite virulence and transmission has seen some theoretical investigation. The key factors in these models are the trade-off between virulence across different host species, variation in host species quality and patterns of transmission. The empirical studies on multi-host parasites suggest that interspecies transmission plays a central role in the evolution of virulence, but as yet no complete picture of the phenomena involved is available. Ultimately, determining how complex host–parasite interactions impact the evolution of host–parasite relationships will require the development of cross-disciplinary studies linking the ecology of quantitative networks with the evolution of virulence.  相似文献   

14.
In this paper we investigate the relationship between the chronic burden of mid‐gut parasites (eugregarine trophozooites) and the effect of an acute haemolymph challenge (a nylon insert) on two important insect immune effector systems (phenol oxidase (PO) and the encapsulation response) in a field‐population of damselflies. PO levels in the haemolymph, and the magnitude of the encapsulation response were maintained, regardless of chronic and subsequent acute experimental immune challenges. The maintenance of these effector systems is therefore probably an important life‐history requirement in these damselflies. Investment in mid‐gut PO levels was significantly negatively related to the animal's chronic parasite burden after an acute experimental challenge in the haemolymph, suggesting that maintaining PO levels across two physiological compartments (haemolymph and mid‐gut) is costly. The results suggest that the immune effector system activity in different physiological compartments in an insect's body is affected by chronic parasite burdens in the face of the demands imposed by an acute immune insult.  相似文献   

15.
Innate immune receptors evolved to sense conserved molecules that are present in microbes or are released during non-physiological conditions. Activation of these receptors is essential for early restriction of microbial infections and generation of adaptive immunity. Among the conserved molecules sensed by innate immune receptors are the nucleic acids, which are abundantly contained in all infectious organisms including virus, bacteria, fungi and parasites. In this review we focus in the innate immune proteins that function to sense nucleic acids from the intracellular bacterial pathogen Legionella pneumophila and the importance of these processes to the outcome of the infection.  相似文献   

16.
The innate immune system is the body’s first defense against invading microorganisms, relying on the recognition of bacterial-derived small molecules by host protein receptors. This recognition event and downstream immune response rely heavily on the specific chemical features of both the innate immune receptors and their bacterial derived ligands. This review presents a chemist’s perspective on some of the most crucial and complex components of two receptors (NOD1 and NOD2): starting from the structural and chemical characteristics of bacterial-derived small molecules, to the specific proposed models of molecular recognition of these molecules by immune receptors, to the subsequent post-translational modifications that ultimately dictate downstream immune signaling. Recent advances in the field are discussed, as well as the potential for the development of targeted therapeutics.  相似文献   

17.
Parasitism has been argued as one of the major costs of breeding sociality in birds. However, there is no clear evidence for an increased parasite pressure associated with the evolutionary transition from solitary to colonial breeding. I used the pairwise comparative method to test whether colonial bird species incur in a greater risk of infection and if they must to face with a greater diversity of blood parasites (Haematozoa), by comparing pairs of congeners that included one solitary and one colonial breeding species. The richness, both in terms of number of species and number of genera, as well as the prevalence of blood parasites resulted higher in colonial species than in their solitary breeding sisters, while controlling for differences in research effort and other potentially confounding effects. These results point towards higher transmission rates of blood parasites among colonial hosts. Given the detrimental effects of blood parasites on their host fitness, the higher risk of infection and the exposition to a more diverse parasite fauna may have imposed an important cost associated to the evolution of avian coloniality. This may help to explain why colonial species have larger immune system organs, as well as to explore differences in other host life history traits potentially shaped by blood parasites.  相似文献   

18.
Programmed cell death (apoptosis) is an important regulator of the host's response during infection with a variety of intracellular protozoan parasites. Parasitic pathogens have evolved diverse strategies to induce or inhibit host-cell apoptosis, thereby modulating the host's immune response, aiding dissemination within the host or facilitating intracellular survival. Here, we review the molecular and cell-biological mechanisms of the pathogen-induced modulation of host-cell apoptosis and its effects on the parasite-host interaction and the pathogenesis of parasitic diseases. We also discuss the previously unrecognized phenomenon of apoptotic cell death in (unicellular) protozoan parasites and its potential implications.  相似文献   

19.
Epstein-Barr virus (EBV) is an oncogenic virus that ubiquitously establishes life-long persistence in humans. To ensure its survival and maintain its B cell transformation function, EBV has developed powerful strategies to evade host immune responses. Emerging evidence has shown that microRNAs (miRNAs) are powerful regulators of the maintenance of cellular homeostasis. In this review, we summarize current progress on how EBV utilizes miRNAs for immune evasion. EBV encodes miRNAs targeting both viral and host genes involved in the immune response. The miRNAs are found in two gene clusters, and recent studies have demonstrated that lack of these clusters increases the CD4+ and CD8+ T cell response of infected cells. These reports strongly indicate that EBV miRNAs are critical for immune evasion. In addition, EBV is able to dysregulate the expression of a variety of host miRNAs, which influence multiple immune-related molecules and signaling pathways. The transport via exosomes of EBV-regulated miRNAs and viral proteins contributes to the construction and modification of the inflammatory tumor microenvironment. During EBV immune evasion, viral proteins, immune cells, chemokines, pro-inflammatory cytokines, and pro-apoptosis molecules are involved. Our increasing knowledge of the role of miRNAs in immune evasion will improve the understanding of EBV persistence and help to develop new treatments for EBV-associated cancers and other diseases.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号