首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The current study was designed to investigate whether the activities of TGC (total gelatinase and collagenase) as well as MMP‐9 (matrix metalloproteinase‐9, gelatinase B) secreted by the cultured fibroblasts and myoblasts were influenced by the specific extracellular substrates and by cyclic mechanical strain. Fibroblasts (Rat 2) and myoblasts (C2C12) were cultured with either fibronectin, laminin or collagen type I for 24 h and applied with or without a biaxial deformation at 1 Hz using the Flexcell FX‐4000 system. MMP‐9 activity was increased in fibroblasts when the cells were in contact with fibronectin and laminin, while in myoblasts, enhanced activity of the secreted enzyme was only observed when collagen was present. TGC activity expressed from myoblasts was increased in cells growing on all three types of extracellular proteins in response to the mechanical stimulation, but in fibroblasts, such an increase was only observed in cells grown on the laminin coating. In summary, our data demonstrate that the activities of MMP‐9 synthesized by fibroblasts tend to be regulated by the specific extracellular protein the cells are in contact with, whereas the gelatinolytic actions of proteases produced by myoblasts are more responsive to the mechanical deformation.  相似文献   

5.
Cardiac tissue from mice that do not express secreted protein acidic and rich in cysteine (SPARC) have reduced amounts of insoluble collagen content at baseline and in response to pressure overload hypertrophy compared with wild-type (WT) mice. However, the cellular mechanism by which SPARC affects myocardial collagen is not clearly defined. Although expression of SPARC by cardiac myocytes has been detected in vitro, immunohistochemistry of hearts demonstrated SPARC staining primarily associated with interstitial fibroblastic cells. Primary cardiac fibroblasts isolated from SPARC-null and WT mice were assayed for collagen I synthesis by [(3)H]proline incorporation into procollagen and by immunoblot analysis of procollagen processing. Bacterial collagenase was used to discern intracellular from extracellular forms of collagen I. Increased amounts of collagen I were found associated with SPARC-null versus WT cells, and the proportion of total collagen I detected on SPARC-null fibroblasts without propeptides [collagen-α(1)(I)] was higher than in WT cells. In addition, the amount of total collagen sensitive to collagenase digestion (extracellular) was greater in SPARC-null cells than in WT cells, indicating an increase in cell surface-associated collagen in the absence of SPARC. Furthermore, higher levels of collagen type V, a fibrillar collagen implicated in collagen fibril initiation, were found in SPARC-null fibroblasts. The absence of SPARC did not result in significant differences in proliferation or in decreased production of procollagen I by cardiac fibroblasts. We conclude that SPARC regulates collagen in the heart by modulating procollagen processing and interactions with fibroblast cell surfaces. These results are consistent with decreased levels of interstitial collagen in the hearts of SPARC-null mice being due primarily to inefficient collagen deposition into the extracellular matrix rather than to differences in collagen production.  相似文献   

6.
Human platelet-derived transforming growth factor-beta (TGF-beta 1) increases the accumulation of the extracellular matrix proteins, fibronectin and type I collagen, in mesenchymal and epithelial cells. To determine the basis for this effect, we have examined the levels of mRNAs corresponding to fibronectin and alpha 2(I) procollagen in NRK-49 rat fibroblasts and L6E9 rat myoblasts treated with TGF-beta 1. TGF-beta 1 increased severalfold the levels of mRNAs for both proteins. The kinetics of this effect were similar for both mRNA species. The increase in fibronectin and alpha 2(I) procollagen mRNAs was detectable 2 h after addition of TGF-beta 1 to the cells and their maximal levels remained constant for several days. Actinomycin D, but not cycloheximide, inhibited the increase in fibronectin and alpha 2(I) procollagen mRNA levels induced by TGF-beta 1. The results indicate that TGF-beta 1 controls the composition and abundance of extracellular matrices at least in part by inducing a coordinate increase in the levels of fibronectin and type I collagen mRNAs.  相似文献   

7.
Fibrillar collagen is the primary component of the cardiac interstitial extracellular matrix. This extracellular matrix undergoes dramatic changes from birth to adulthood and then into advanced age. As evidence, fibrillar collagen content was compared in sections from neonates, adult, and old hearts and was found to increase at each respective age. Cardiac fibroblasts are the principle cell type that produce and control fibrillar collagen content. To determine whether fibroblast production, processing, and deposition of collagen differed with age, primary cardiac fibroblasts from neonate, adult, and old mice were isolated and cultured in 3-dimensional (3D) fibrin gels. Fibroblasts from each age aligned in fibrin gels along points of tension and deposited extracellular matrix. By confocal microscopy, wild-type neonate fibroblasts appeared to deposit less collagen into fibrillar structures than fibroblasts from adults. However, by immunoblot analysis, differences in procollagen production and processing of collagen I were not detected in neonate versus adult fibroblasts. In contrast, fibroblasts from old mice demonstrated increased efficiency of procollagen processing coupled with decreased production of total collagen. SPARC is a collagen-binding protein previously shown to affect cardiac collagen deposition. Accordingly, in the absence of SPARC, less collagen appeared to be associated with fibroblasts of each age grown in fibrin gels. In addition, the increased efficiency of procollagen alpha 1(I) processing in old wild-type fibroblasts was not detected in old SPARC-null fibroblasts. Increased levels of fibronectin were detected in wild-type neonate fibroblasts over that of adult and old fibroblasts but not in SPARC-null neonate fibroblasts versus older ages. Immunostaining of SPARC overlapped with that of collagen I but not to that of fibronectin in 3D cultures. Hence, whereas increases in procollagen processing, influenced by SPARC expression, plausibly contribute to increased collagen deposition in old hearts, other cellular mechanisms likely affect differential collagen deposition by neonate fibroblasts.  相似文献   

8.
Studies on type I procollagen produced by skin fibroblasts cultured from twins with lethal type II of osteogenesis imperfecta (OI) showed that biosynthesis of collagen (measured by L-[5-(3)H]proline incorporation into proteins susceptible to the action of bacterial collagenase) was slightly increased as compared to the control healthy infant. SDS/PAGE showed that the fibroblasts synthesized and secreted only normal type I procollagen. Electrophoretic analysis of collagen chains and CNBr peptides showed the same pattern of electrophoretic migration as in the controls. The lack of posttranslational overmodification of the collagen molecule suggested a molecular defect near the amino terminus of the collagen helix. Digestion of OI type I collagen with trypsin at 30 degrees C for 5 min generated a shorter than normal alpha2 chain which melted at 36 degrees C. Direct sequencing of an asymmetric PCR product revealed a heterozygous single nucleotide change C-->G causing a substitution of histidine by aspartic acid in the alpha2 chain at position 92. Pericellular processing of type I procollagen by the twin's fibroblasts yielded a later appearance of the intermediate pC-alpha1(I) form as compared with control cells.  相似文献   

9.
Human fibroblasts when induced to make nonhelical , defective collagen have mechanisms for degrading up to 30% of their newly synthesized collagen intracellularly prior to secretion. To determine if at least a portion of the degradation of defective collagen occurs by lysosomes, extracts of cultured HFL-1 fibroblasts were examined for proteinases capable of degrading denatured type I [3H]procollagen. The majority of the proteolytic activity against denatured [3H]-procollagen had a pH optimum of 3.5-4; it was stimulated by dithiothreitol and inhibited 95% by leupeptin, 10% by pepstatin, and 98% by leupeptin and pepstatin together. Extracts of purified lysosomes from the fibroblasts were active in degrading denatured [3H]procollagen and were completely inhibited by leupeptin and pepstatin. To demonstrate directly that human lung fibroblasts can translocate a portion of their defective collagen to lysosomes, cultured cells were incubated with cis-4-hydroxyproline and labeled with [14C]proline to cause the cells to make nonhelical [14C]procollagen. About 3% of the total intracellular hydroxy[14C]proline was found in lysosomes. If, however, the cells were also treated with NH4Cl, an inhibitor of lysosomal function, 18% of the intracellular hydroxy[14C]proline was found in lysosomes. These results demonstrate that cultured human lung fibroblasts induced to make defective collagen are capable of shunting a portion of such collagen to their lysosomes for intracellular degradation.  相似文献   

10.
11.
Increasing evidence supports the idea that the finite proliferative life span of normal fibroblasts is a differentiation-like phenomenon. If this were correct, an ordered sequence of differential gene expression should be associated with the in vitro progression of cells from low passage to high passage (senescence). To define the pattern of expression of fibroblast differentiation-associated genes during this in vitro progression, we have determined the temporal pattern of expression of extracellular matrix (ECM) genes in Syrian hamster dermal fibroblasts as a function of passage level and percentage of proliferative life span in vitro. Steady-state mRNA levels were determined by Northern and dot blot analyses of total cellular RNA hybridized with cDNA probes specific for fibronectin, procollagen alpha 1III, and procollagen alpha 1I. Cells were analyzed at 24 hr postconfluence to minimize the presence of actively proliferating cells, and because maximal levels of fibronectin, alpha 1III, and alpha 1I mRNAs were observed 24 hr postconfluence. Unique, multiphasic patterns of expression of each of these ECM components were observed as the cells progressed from low passage to high passage. As the cells reached midhigh passage, fibronectin mRNA levels increased. This midpassage increase in fibronectin was followed by an increase in the level of alpha 1III mRNA as the cells reached the end of their in vitro proliferative life span, and then alpha 1I when the cells entered the postmitotic senescent phase, at which time the level of fibronectin mRNA also declined. A similar overlapping cascade pattern of up-regulation of these genes is seen during development and wound repair. This suggests that as cultured fibroblasts reach the end of their proliferative life span, they reinitiate a gene expression program used in tissue development and repair.  相似文献   

12.
13.
This is a study of the processing of procollagen to collagen in cultures of skin and tendon fibroblasts. Processing was markedly increased by growing cells for 2-4 days postconfluence and then adding ascorbate to the medium for 2 days prior to labeling with [3H] proline. With this system, more than two-thirds of the pro-alpha chains of type I procollagen in the culture medium, and more than 90% of those in the cell layer, were rapidly processed to pC-alpha, pN-alpha, or alpha chains. Purified, exogenous procollagen was also rapidly processed in cell-free culture medium. The results showed for the first time that exogenous procollagen can be processed in conditioned cell-free medium. The system was then used to compare the processing of procollagen in the medium of normal fibroblasts, cells from one bovine and four human variants of osteogenesis imperfecta, and those from eight human variants of the Ehlers-Danlos syndrome. The cells could be divided into three groups, based on their ability to process type I procollagen: normal, consistently slow, and very slow. The cause of the decreased processing was shown to be associated with either a mutation causing a shortening of an alpha chain or decreased activity of procollagen N-proteinase in cell-free culture medium. Decreased processing of procollagen to collagen occurred with cultured fibroblasts from patients with different forms of both osteogenesis imperfecta and Ehlers-Danlos syndrome. Both of these disease syndromes are associated with abnormalities in the structure or metabolism of procollagen in fibrous connective tissues, bones, and teeth. The results show that defects in the structure, synthesis, or processing of procollagen are readily demonstrated with cultured fibroblasts.  相似文献   

14.
Mechanical forces regulate lung maturation in the fetus by promoting type II epithelial differentiation. However, the cell surface receptors that transduce these mechanical cues into cellular responses remain largely unknown. When distal lung type II epithelial cells isolated from embryonic day 19 rat fetuses were cultured on flexible plates coated with laminin, fibronectin, vitronectin, collagen, or elastin and exposed to a level of mechanical strain (5%) similar to that observed in utero, transmembrane signaling responses were induced under all conditions, as measured by ERK activation. However, mechanical stress maximally increased expression of the type II cell differentiation marker surfactant protein C when cells were cultured on laminin substrates. Strain-induced alveolar epithelial differentiation was inhibited by interfering with cell binding to laminin using soluble laminin peptides (IKVIV or YIGSR) or blocking antibodies against integrin beta1, alpha3, or alpha6. Additional studies were carried out with substrates coated directly with different nonactivating anti-integrin antibodies. Blocking integrin beta1 and alpha6 binding sites inhibited both cell adhesion and differentiation, whereas inhibition of alpha3 prevented differentiation without altering cell attachment. These data demonstrate that various integrins contribute to mechanical control of type II lung epithelial cell differentiation on laminin substrates. However, they may act via distinct mechanisms, including some that are independent of their cell anchoring role.  相似文献   

15.
Epithelial cells from human post-partal amniotic membrane in primary culture secreted two major matrix proteins, fibronectin and procollagen type III, and small amounts of laminin and basement membrane collagens (types IV and AB). Identified in the culture medium by immunoprecipitation, these components were located by immunofluorescence to a pericellular matrix beneath the cell monolayer. Deposition of fibronectin, laminin and procollagen type III occurred under freshly seeded spreading cells. In the matrix of confluent cultures, fibronectin and procollagen type III had a moss-like distribution. Matrix laminin had predominantly a punctate pattern and was sometimes superimposed on the fibronectin-procollagen type III matrix. In the human amniotic membrane in vivo, laminin, type IV collagen and fibronectin were located to a narrow basement membrane directly beneath the epithelial cells. Fibronectin and procollagen type III were detected in the underlying thick acellular compact layer. Fibronectin secreted by amniotic epithelial cells is a disulfide-bonded dimer of slightly higher apparent molecular weight (240 kilodaltons) than fibronectins isolated from human plasma or fibroblast cultures. Laminin was detected in small amounts in the culture medium. Laminin antibodies precipitated a polypeptide of about 400 kilodaltons, and two polypeptides with slightly faster mobility in electrophoresis under reducing conditions than fibronectin. Procollagen type III was by far the major collagenous protein whereas little or no production of procollagen type I could be observed. Basement membrane collagens were identified as minor components in the medium by immunoprecipitation (type IV) or chemical methods (αA and αB chains).  相似文献   

16.
The human vocal folds are a complex layering of cells and extracellular matrix. Vocal fold extracellular matrix uniquely contributes to the biomechanical viscoelasticity required for human phonation. We investigated the adhesion of vocal fold stellate cells, a novel cell type first cultured by our laboratory, and fibroblasts to eight vocal fold extracellular matrix components: elastin, decorin, fibronectin, hyaluronic acid, laminin and collagen types I, III and IV. Our data demonstrate that these cells adhere differentially to said substrates at 5 to 120 min. Cells were treated with hyaluronidase and Y-27632, a p160ROCK-specific inhibitor, to test the role of pericellular hyaluronan and Rho-ROCK activation in early and mature adhesion. Reduced adhesion resulted; greater inhibition of fibroblast adhesion was observed. We modulated the fibronectin affinity exhibited by both cell types using Nimesulide, an inhibitor of fibronectin integrin receptors alpha5beta1 and alphavbeta3. Our results are important in understanding vocal fold pathologies, wound healing, scarring, and in developing an accurate organotypic model of the vocal folds.  相似文献   

17.
In vitro procollagen production rates can be determined by culturing cells in the presence of [3H]proline and measuring the subsequent formation of [3H]hydroxyproline. Values of actual procollagen production can be calculated if the total radioactivity and the specific activity of the newly synthesized procollagen is known. A simple microanalytical method for measuring procollagen specific activity in order to determine procollagen production by lung fibroblasts in vitro is reported. Confluent fibroblasts (IMR-90) were cultured in fresh medium containing [3H]proline, and [3H]hydroxyproline production and prolyl hydroxylation were measured. Hydroxyproline specific activity of nondialyzable procollagen in culture medium as well as extracellular and intracellular free proline specific activity were determined by an ultramicromethod in which the radiolabeled amino acids were reacted with [14C]dansyl chloride of known specific activity [Airhart et al. (1979) Anal. Biochem. 96, 45-55]. Procollagen production rates were readily determined by this method using 5 to 20 microCi [3H]proline and approximately 10(6) cells. It was found that 3H-procollagen production rate into culture medium was constant after a lag of 1.6 h, while procollagen production rate (0.23 pmol/microgram DNA . h) was constant from time zero to 9 h. The specific activities of extracellular and intracellular free proline were not constant during the labeling period, nor were they equal to procollagen specific activity. These data indicate that free proline pool specific activities are not a valid measure of procollagen specific activity. The experimental approach described obviates the need to define or characterize the proline precursor pool from which procollagen is synthesized, and may be readily applied to determine fibroblast procollagen production rates in vitro.  相似文献   

18.
D Cockayne  K R Cutroneo 《Biochemistry》1988,27(8):2736-2745
Nuclei were isolated from control and dexamethasone-treated (2 h) embryonic chick skin fibroblasts and transcribed in vitro. Nuclei isolated from dexamethasone-treated fibroblasts transcribed less pro alpha 1(I) and pro alpha 2(I) mRNAs but not beta-actin mRNA. Fibroblasts receiving dexamethasone and [5,6-3H]uridine also demonstrated decreased synthesis of nuclear type I procollagen mRNAs but not beta-actin mRNA. In fibroblasts treated with cycloheximide the newly synthesized nuclear type I procollagen mRNA species were markedly decreased. An enhanced inhibitory effect was observed when fibroblasts were treated with cycloheximide plus dexamethasone. Since the studies above demonstrate that active protein synthesis is required to maintain the constitutive expression of the type I procollagen genes, we determined if glucocorticoids regulate DNA-binding proteins with sequence specificity for the alpha 2(I) procollagen gene. Nuclear protein blots were probed with the 32P-end-labeled pBR322 vector DNA and 32P-end-labeled alpha 2(I) procollagen promoter containing DNA. Nonhistone proteins remained bound to labeled DNA at stringency washes of 0.05 and 0.1 M NaCl. As the ionic strength was increased to 0.2 and 0.3 M NaCl, the nonhistone-protein DNA binding was preferentially lost. Only the low molecular weight proteins remained bound to labeled DNA at the highest ionic strength, indicating nonspecific binding of these nuclear proteins. Dexamethasone treatment resulted in an increase of binding of nonhistone proteins to vector- and promoter-labeled DNAs over that observed in control fibroblasts at stringency washes of 0.05 and 0.1 M NaCl and to a lesser extent at 0.2 M NaCl. The binding specificities of nonhistone proteins for the alpha 2(I) procollagen promoter containing DNA were calculated. Three nonhistone DNA-binding proteins of Mr 90,000, 50,000, and 30,000 had altered specificities following dexamethasone treatment.  相似文献   

19.
Myometrial growth and remodeling during pregnancy depends on increased synthesis of interstitial matrix proteins. We hypothesize that the presence of mechanical tension in a specific hormonal environment regulates the expression of extracellular matrix (ECM) components in the uterus. Myometrial tissue was collected from pregnant rats on Gestational Days 0, 12, 15, 17, 19, 21, 22, 23 (labor), and 1 day postpartum and ECM expression was analyzed by Northern blotting. Expression of fibronectin, laminin beta2, and collagen IV mRNA was low during early gestation but increased dramatically on Day 23 during labor. Expression of fibrillar collagens (type I and III) peaked Day 19 and decreased near term. In contrast, elastin mRNA remained elevated from midgestation onward. Injection of progesterone (P4) on Days 20-23 (to maintain elevated plasma P4 levels) delayed the onset of labor, caused dramatic reductions in the levels of fibronectin and laminin mRNA, and prevented the fall of collagen III mRNA levels on Day 23. Treatment of pregnant rats with the progesterone receptor antagonist RU486 on Day 19 induced preterm labor on Day 20 and a premature increase in mRNA levels of collagen IV, fibronectin, and laminin. Analysis of the uterine tissue from unilaterally pregnant rats revealed that most of the changes in ECM gene expression occurred specifically in the gravid horn. Our results show a decrease in expression of fibrillar collagens and a coordinated temporal increase in expression of components of the basement membrane near term associated with decreased P4 and increased mechanical tension. These ECM changes contribute to myometrial growth and remodeling during late pregnancy and the preparation for the synchronized contractions of labor.  相似文献   

20.
We report the effect of Fab' (anti-60k) to a 60,000 mol wt gelatin binding domain of fibronectin (1981, J. Biol. Chem. 256:5583) on diploid fibroblast (IMR-90) extracellular fibronectin and collagen organization. Anti-60k Fab' did not inhibit IMR-90 attachment or proliferation in fibronectin-depleted medium. Fibroblasts cultured with preimmune Fab' deposited a dense extracellular network of fibronectin and collagen detectable by immunofluorescence, while anti-60k Fab' prevented extracellular collagen and fibronectin fibril deposition. Matrix fibronectin and collagen deposition remained decreased in cultures containing anti-60k Fab' until cells became bilayered or more dense, when fibronectin and collagen began to appear in lower cell layers. Anti-60k Fab' added to confluent cultures 24 h before fixation and staining had no effect on matrix fibronectin or collagen, so anti- 60k Fab' did not simply block immunostaining. Confluent cultures grown in anti-60k Fab' and labeled for 24 h with [3H]proline incorporated identical amounts of [3H]proline and [3H]hydroxyproline, but [3H]hydroxyproline deposition in the cell layer was significantly decreased by anti-60k Fab' (P less than 0.01). Extracellular matrix collagen does not appear to form a scaffold for fibronectin deposition, as neither gelatin nor a gelatin-binding fragment of plasma fibronectin inhibited deposition of matrix fibronectin. Our results suggest that interstitial collagens and fibronectin interact to form a fibrillar component of the extracellular matrix, and that fibronectin is required for normal collagen organization and deposition by fibroblasts in vitro. Domain-specific antibodies to fibronectin are powerful tools to study the biological role of fibronectin in extracellular matrix organization and other processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号