首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Fukuda  Y Gotoh    E Nishida 《The EMBO journal》1997,16(8):1901-1908
The mitogen-activated protein kinase (MAPK) cascade consisting of MAPK and its direct activator, MAPK kinase (MAPKK), is essential for signaling of various extracellular stimuli to the nucleus. Upon stimulation, MAPK is translocated to the nucleus, whereas MAPKK stays in the cytoplasm. It has been shown recently that the cytoplasmic localization of MAPKK is determined by its nuclear export signal (NES) in the near N-terminal region (residues 33-44). However, the mechanism determining the subcellular distribution of MAPK has been poorly understood. Here, we show that introduction of v-Ras, active STE11 or constitutively active MAPKK can induce nuclear translocation of MAPK in mammalian cultured cells. Furthermore, we show evidence suggesting that MAPK is localized to the cytoplasm through its specific association with MAPKK and that nuclear accumulation of MAPK is accompanied by dissociation of a complex between MAPK and MAPKK following activation of the MAPK pathway. We have identified the MAPK-binding site of MAPKK as its N-terminal residues 1-32. Moreover, a peptide encompassing the MAPK-binding site and the NES sequence of MAPKK has been shown to be sufficient to retain MAPK to the cytoplasm. These findings reveal the molecular basis regulating subcellular distribution of MAPK, and identify a novel function of MAPKK as a cytoplasmic anchoring protein for MAPK.  相似文献   

2.
Mitogen-activated protein kinase (MAPK) was originally identified as a serine/threonine protein kinase that is rapidly activated in response to various growth factors and tumor promoters in mammalian cultured cells. The kinase cascade including MAPK and its direct activator, MAPK kinase (MAPKK), is now believed to transmit various extracellular signals into their intracellular targets in eukaryotic cells. It has been reported that activation of MAPKK and MAPK occurs during the meiotic maturation of oocytes in several species, including Xenopus laevis . Studies with neutralizing antibodies against MAPKK, MAPK phosphatases and constitutively active MAPKK or MAPK have revealed a crucial role of the MAPKK/MAPK cascade in a number of developmental processes in Xenopus oocytes and embryos.  相似文献   

3.
4.
The mitogen-activated protein kinase (MAPK) cascades, including c-Jun N-terminal kinase (JNK), are composed of a MAPK, MAPK kinase (MAPKK), and MAPKK kinase (MAPKKK). Previously, we reported that JNK-binding protein 1 (JNKBP1) enhances JNK activation induced by the TGF-β-activated kinase1 (TAK1) MAPKKK in transfected cells. We have investigated whether JNKBP1 functions as an adaptor protein for nuclear factor (NF)-κB activation mediated by TAK1 in COS-7 cells. Co-expression experiments showed that JNKBP1 interacted with not only TAK1, but also with its upstream regulators, TNF-receptor associated factors 2 and 6 (TRAF2 and TRAF6). An endogenous interaction between JNKBP1 and TRAF2 or TAK1 was confirmed by immunoprecipitation analysis. We also found that JNKBP1 could enhance the NF-κB activation induced by TAK1 and TRAF2, and could promote TRAF2 polyubiquitination. These results suggest a scaffolding role for JNKBP1 in the TRAF2-TAK1-NF-κB signaling pathway.  相似文献   

5.
Plants respond to biotic and abiotic stresses by inducing overlapping sets of mitogen-activated protein kinases (MAPKs) and response genes. To define the mechanisms of how different signals can activate a common signaling pathway, upstream activators of SIMK, a salt stress- and pathogen-induced alfalfa MAPK, were identified. Here, we compare the properties of SIMKK, a MAPK kinase (MAPKK) that mediates the activation of SIMK by salt stress, with those of PRKK, a distantly related novel MAPKK. Although both SIMKK and PRKK show strongest interaction with SIMK, SIMKK can activate SIMK without stimulation by upstream factors. In contrast, PRKK requires activation by an upstream activated MAPKK kinase. SIMKK mediates pathogen elicitor signaling and salt stress, but PRKK transmits only elicitor-induced MAPK activation. Of four tested MAPKs, PRKK activates three of them (SIMK, MMK3, and SAMK) upon elicitor treatment of cells. However, PRKK is unable to activate any MAPK upon salt stress. In contrast, SIMKK activates SIMK and MMK3 in response to elicitor, but it activates only SIMK upon salt stress. These data show that (1) MAPKKs function as convergence points for stress signals, (2) MAPKKs activate multiple MAPKs, and (3) signaling specificity is obtained not only through the inherent affinities of MAPKK-MAPK combinations but also through stress signal-dependent intracellular mechanisms.  相似文献   

6.
The mitogen-activated protein kinase kinase (MAPKK)/MAP kinase (MAPK) cascade plays an important role in the growth control of mammalian cells. We have found that expression of constitutively active MAPKK induces rapid morphological changes of fibroblastic cells, which are accompanied by disruption of stress fibers and disappearance of focal adhesions. These changes took place under the conditions that inhibited cellular Ras function, suggesting a linkage between the MAPK cascade and the control of cell morphology. We further show that constitutively active MAPKK can induce expression of endogenous Fos protein, an immediately early gene product, and cause the S phase entry of G0-arrested cells. Finally, expression of the N-terminal fragment of MAPKK which encompasses the nuclear export signal sequence and the MAPK-binding site blocked both the serum-induced S phase entry of quiescent cells and the oncogenic Ras-induced morphological changes. All these results demonstrate that MAPKK is one of key molecules involved in the control of both cell morphology and cell proliferation and suggest an important role for the N-terminal region of MAPKK in the regulation of the MAPK signaling.  相似文献   

7.
The p38 mitogen-activated protein kinase (MAPK) group is represented by four isoforms in mammals (p38alpha, p38beta2, p38gamma and p38delta). These p38 MAPK isoforms appear to mediate distinct functions in vivo due, in part, to differences in substrate phosphorylation by individual p38 MAPKs and also to selective activation by MAPK kinases (MAPKKs). Here we report the identification of two factors that contribute to the specificity of p38 MAPK activation. One mechanism of specificity is the selective formation of functional complexes between MAPKK and different p38 MAPKs. The formation of these complexes requires the presence of a MAPK docking site in the N-terminus of the MAPKK. The second mechanism that confers signaling specificity is the selective recognition of the activation loop (T-loop) of p38 MAPK isoforms. Together, these processes provide a mechanism that enables the selective activation of p38 MAPK in response to activated MAPKK.  相似文献   

8.
Mitogen-activated protein kinases (MAPKs) are integral to the mechanisms by which cells respond to physiological stimuli and a wide variety of environmental stresses. In Caenorhabditis elegans, the stress response is controlled by a c-Jun N-terminal kinase (JNK)-like mitogen-activated protein kinase (MAPK) signaling pathway, which is regulated by MLK-1 MAPK kinase kinase (MAPKKK), MEK-1 MAPK kinase (MAPKK), and KGB-1 JNK-like MAPK. In this study, we identify the shc-1 gene, which encodes a C. elegans homolog of Shc, as a factor that specifically interacts with MEK-1. The shc-1 loss-of-function mutation is defective in activation of KGB-1, resulting in hypersensitivity to heavy metals. A specific tyrosine residue in the NPXY motif of MLK-1 creates a docking site for SHC-1 with the phosphotyrosine binding (PTB) domain. Introduction of a mutation that perturbs binding to the PTB domain or the NPXY motif abolishes the function of SHC-1 or MLK-1, respectively, thereby abolishing the resistance to heavy metal stress. These results suggest that SHC-1 acts as a scaffold to link MAPKKK to MAPKK activation in the KGB-1 MAPK signal transduction pathway.  相似文献   

9.
In response to extracellular stimuli, mitogen-activated protein kinase (MAPK, also known as ERK), which localizes to the cytoplasm in quiescent cells, translocates to the nucleus and then relocalizes to the cytoplasm again. The relocalization of nuclear MAPK to the cytoplasm was not inhibited by cycloheximide, confirming that the relocalization is achieved by nuclear export, but not synthesis, of MAPK. The nuclear export of MAPK was inhibited by leptomycin B (LMB), a specific inhibitor of the nuclear export signal (NES)-dependent transport. We have then shown that MAP kinase kinase (MAPKK, also known as MEK), which mostly localizes to the cytoplasm because of its having NES, is able to shuttle between the cytoplasm and the nucleus constantly. MAPK, when injected into the nucleus, was rapidly exported from the nucleus by coinjected wild-type MAPKK, but not by the NES-disrupted MAPKK. In addition, injection of the fragment corresponding to the MAPK-binding site of MAPKK into the nucleus, which would disrupt the binding of MAPK to MAPKK in the nucleus, significantly inhibited the nuclear export of endogenous MAPK. Taken together, these results suggest that the relocalization of nuclear MAPK to the cytoplasm involves a MAPKK-dependent, active transport mechanism.  相似文献   

10.
A novel protein kinase, TOPK (T-LAK cell-originated protein kinase), was isolated from a lymphokine-activated killer T (T-LAK) cell subtraction cDNA fragment library. The open reading frame of the TOPK gene encodes a protein of 322 amino acids, possessing a protein kinase domain profile. The cap site analysis of the 5'-end of TOPK mRNA revealed two forms, a major full-length form and a minor spliced form at the 5'-site, both encoding the same protein. A BLAST homology search and phylogenetic analysis indicated that TOPK is related to dual specific mitogen-activated protein kinase kinase (MAPKK). The transfection of the TOPK gene to COS-7 cells up-regulated a phosphorylation of p38 MAPK but not ERK1/2 or SAPK/JNK. Gel precipitation study indicated that TOPK protein can be associated with p38 in vitro. Tissue distribution of TOPK mRNA expression was specific for the testis, T-LAK cells, activated lymphoid cells, and lymphoid tumors. On the other hand, deactivated T-LAK cells did not show TOPK mRNA expression. These data suggest that TOPK is a newly identified member of a novel MEK3/6-related MAPKK that may be enrolled in the activation of lymphoid cells and support testicular functions.  相似文献   

11.
Several protein kinases, including Mos, maturation-promoting factor (MPF), mitogen-activated protein (MAP) kinase, and MAP kinase kinase (MAPKK), are activated when Xenopus oocytes enter meiosis. De novo synthesis of the Mos protein is required for progesterone-induced meiotic maturation. Recently, bacterially synthesized maltose-binding protein (MBP)-Mos fusion protein was shown to be sufficient to initiate meiosis I and MPF activation in fully grown oocytes in the absence of protein synthesis. Here we show that MAP kinase is rapidly phosphorylated and activated following injection of wild-type, but not kinase-inactive mutant, MBP-Mos into fully grown oocytes. MAP kinase activation by MBP-Mos occurs within 20 min, much more rapidly than in progesterone-treated oocytes. The MBP-Mos fusion protein also activates MPF, but MPF activation does not occur until approximately 2 h after injection. Extracts from oocytes injected with wild-type but not kinase-inactive MBP-Mos contain an activity that can phosphorylate MAP kinase, suggesting that Mos directly or indirectly activates a MAPKK. Furthermore, activated MBP-Mos fusion protein is able to phosphorylate and activate a purified, phosphatase-treated, rabbit muscle MAPKK in vitro. Thus, in oocytes, Mos is an upstream activator of MAP kinase which may function through direct phosphorylation of MAPKK.  相似文献   

12.
Mammalian mitogen-activated protein kinase (MAPK) cascades control various cellular events, ranging from cell growth to apoptosis, in response to external stimuli. A conserved docking site, termed DVD, is found in the mammalian MAP kinase kinases (MAPKKs) belonging to the three major subfamilies, namely MEK1, MKK4/7, and MKK3/6. The DVD sites bind to their specific upstream MAP kinase kinase kinases (MAPKKKs), including MTK1 (MEKK4), ASK1, TAK1, TAO2, MEKK1, and Raf-1. DVD site is a stretch of about 20 amino acids immediately on the C-terminal side of the MAPKK catalytic domain. Mutations in the DVD site strongly inhibited MAPKKs from binding to, and being activated by, their specific MAPKKKs, both in vitro and in vivo. DVD site mutants could not be activated by various external stimuli in vivo. Synthetic DVD oligopeptides inhibited specific MAPKK activation, both in vitro and in vivo, demonstrating the critical importance of the DVD docking in MAPK signaling.  相似文献   

13.
In this study, we attempt to target the mitogen-activated protein kinase (MAPK) pathway in acute myeloid leukemia (AML) cells using a recombinant anthrax lethal toxin (LeTx). LeTx consists of protective antigen (PrAg) and lethal factor (LF). PrAg binds cells, is cleaved by furin, oligomerizes, binds three to four molecules of LF, and undergoes endocytosis, releasing LF into the cytosol. LF cleaves MAPK kinases, inhibiting the MAPK pathway. We tested potency of LeTx on a panel of 11 human AML cell lines. Seven cell lines showed cytotoxic responses to LeTx. Cytotoxicity of LeTx was mimicked by the specific mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 (MEK1/2) inhibitor U0126, indicating that LeTx-induced cell death is mediated through the MEK1/2-extracellular signal-regulated kinase (ERK1/2) branch of the MAPK pathway. The four LeTx-resistant cell lines were sensitive to the phosphatidylinositol 3-kinase inhibitor LY294002. Co-treatment of AML cells with both LeTx and LY294002 did not lead to increased sensitivity, showing a lack of additive/synergistic effects when both pathways are inhibited. Flow cytometry analysis of MAPK pathway activation revealed the presence of phospho-ERK1/2 only in LeTx-sensitive cells. Staining for Annexin V/propidium iodide and active caspases showed an increase in double-positive cells and the absence of caspase activation following treatment, indicating that LeTx-induced cell death is caspase-independent and nonapoptotic. We have shown that a majority of AML cell lines are sensitive to the LF-mediated inhibition of the MAPK pathway. Furthermore, we have demonstrated that LeTx-induced cytotoxicity in AML cells is nonapoptotic and dependent on phospho-ERK1/2 levels.  相似文献   

14.
The major components of the mitogen-activated protein kinase (MAPK) cascades are MAPK, MAPK kinase (MAPKK), and MAPKK kinase (MAPKKK). Recent rapid progress in identifying members of MAPK cascades suggests that a number of such signaling pathways exist in cells. To date, however, how the specificity and efficiency of the MAPK cascades is maintained is poorly understood. Here, we have identified a novel mouse protein, termed Jun N-terminal protein kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1), by a yeast two-hybrid screen, using JNK3 MAPK as the bait. Of the mammalian MAPKs tested (JNK1, JNK2, JNK3, ERK2, and p38alpha), JSAP1 preferentially coprecipitated with the JNKs in cotransfected COS-7 cells. JNK3 showed a higher binding affinity for JSAP1, compared with JNK1 and JNK2. In similar cotransfection studies, JSAP1 also interacted with SEK1 MAPKK and MEKK1 MAPKKK, which are involved in the JNK cascades. The regions of JSAP1 that bound JNK, SEK1, and MEKK1 were distinct from one another. JNK and MEKK1 also bound JSAP1 in vitro, suggesting that these interactions are direct. In contrast, only the activated form of SEK1 associated with JSAP1 in cotransfected COS-7 cells. The unstimulated SEK1 bound to MEKK1; thus, SEK1 might indirectly associate with JSAP1 through MEKK1. Although JSAP1 coprecipitated with MEK1 MAPKK and Raf-1 MAPKKK, and not MKK6 or MKK7 MAPKK, in cotransfected COS-7 cells, MEK1 and Raf-1 do not interfere with the binding of SEK1 and MEKK1 to JSAP1, respectively. Overexpression of full-length JSAP1 in COS-7 cells led to a considerable enhancement of JNK3 activation, and modest enhancement of JNK1 and JNK2 activation, by the MEKK1-SEK1 pathway. Deletion of the JNK- or MEKK1-binding regions resulted in a significant reduction in the enhancement of the JNK3 activation in COS-7 cells. These results suggest that JSAP1 functions as a scaffold protein in the JNK3 cascade. We also discuss a scaffolding role for JSAP1 in the JNK1 and JNK2 cascades.  相似文献   

15.
We have investigated the regulation and localization of mitogen-activated protein kinase (MAPK) and mitogen-activated protein kinase kinase (MAPKK) in both cytosolic and nuclear fractions of glomerular mesangial cells. p42 MAPK was localized by both immunoblot and kinase activity in both cytosol and nucleus and was rapidly activated, in both fractions, by fetal bovine serum and TPA. Downregulation of protein kinase C (PKC) by TPA inhibited stimulation of cytosolic p42 MAPK, but unexpectedly had no effect on stimulated p42 MAPK in the nucleus. Next we studied the upstream kinase p45 MAPKK by indirect immunofluorescence microscopy, Western blot analysis, and kinase specific activity. Unlike MAPK, p45 MAPKK is almost exclusively cytosolic in resting cells and kinase activity stimulated by TPA is restricted to the cytosol. Interestingly, PKC downregulation for 24 h with TPA dramatically enhanced nuclear MAPKK as assessed by all three techniques. Cytosolic stimulated MAPKK was attenuated in PKC downregulation. Collectively these results show that in mesangial cells: (i) p42 MAPK and p45 MAPKK localize in both the cytosol and the nucleus, and (ii) PKC exerts a negative effect on nuclear MAPKK activity as documented by PKC downregulation, which augments p45 MAPKK nuclear mass and activity. These results indicate that the dual regulation of these two kinases is under differential control in the cytosol and the nucleus.  相似文献   

16.
Two members of the mitogen-activated protein kinase (MAPK) family have been previously characterized in Plasmodium falciparum, but in vitro attempts at identifying MAP kinase kinase (MAPKK) homologues have failed. Here we report the characterization of a novel plasmodial protein kinase, PfPK7, whose top scores in blastp analysis belong to the MAPKK3/6 subgroup of MAPKKs. However, homology to MAPKKs is restricted to regions of the C-terminal lobe of the kinase domain, whereas the N-terminal region is closer to fungal protein kinase A enzymes (PKA, members of the AGC group of protein kinases). Hence, PfPK7 is a 'composite' enzyme displaying regions of similarity to more than one protein kinase family, similar to a few other plasmodial protein kinases. PfPK7 is expressed in several developmental stages of the parasite, both in the mosquito vector and in the human host. Recombinant PfPK7 displayed kinase activity towards a variety of substrates, but was unable to phosphorylate the two P. falciparum MAPK homologues in vitro, and was insensitive to PKA and MEK inhibitors. Together with the absence of a typical MAPKK activation site in its T-loop, this suggests that PfPK7 is not a MAPKK orthologue, despite the fact that this enzyme is the most 'MAPKK-like' enzyme encoded in the P. falciparum genome. This is consistent with recent observations that the plasmodial MAPKs are not true orthologues of the ERK1/2, p38 or JNK MAPKs, and strengthens the evidence that classical three-component module-dependent MAPK signalling pathways do not operate in malaria parasites, a feature that has not been described in any other eukaryote.  相似文献   

17.
Genome analyses have shown that plants contain gene families encoding various components of mitogen-activated protein kinase (MAPK) signaling pathways. Previous reports have described the involvement of MAPK pathways in stress and pathogen responses of leaves and suspension-cultured cells. Here we show that auxin treatment of Arabidopsis roots transiently induced increases in protein kinase activity with characteristics of mammalian ERK-like MAPKs. The MAPK response we monitored was the result of hormonal action of biologically active auxin, rather than a stress response provoked by auxin-like compounds. Auxin-induced MAPK pathway signaling was distinguished genetically in the Arabidopsis auxin response mutant axr4, in which MAPK activation by auxin, but not by salt stress, was significantly impaired. Perturbation of MAPK signaling in roots using inhibitors of a mammalian MAPKK blocked auxin-activated transgene expression in BA3-GUS seedlings, while potentiating higher than normal levels of MAPK activation in response to auxin. Data presented here indicate that MAPK pathway signaling is positively involved in auxin response, and further suggest that interactions among MAPK signaling pathways in plants influence plant responses to auxin.  相似文献   

18.
The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in cellular responses to inflammatory stimuli and environmental stress. Activation of p38 is mediated through phosphorylation by upstream MAPKK, which in turn is activated by MAPKKK. However, the mechanism of how different upstream MAP2Ks and MAP3Ks specifically contribute to p38 activation in response to different stimuli is still not clearly understood. By using double-stranded RNA-mediated interference (RNAi) in Drosophila cells, we demonstrate that D-MKK3 is a major MAP2K responsible for D-p38 activation by UV, heat shock, NaCl or peptiodglycan (PGN). Stimulation of UV and PGN activates D-p38 through D-MEKK1, heat shock-induced activation of D-p38 signals through both D-MEKK1 and D-ASK1. On the other hand, maximal activation of D-p38 by NaCl requires the expression of four MAP3Ks.  相似文献   

19.
Herein, we investigated the activity of mitogen-activated protein kinase (MAPK), a key component of downstream signaling events, which is activated subsequent to platelet-derived growth factor (PDGF)-BB stimulation. Specifically, p42(MAPK) activity peaked 60 min after addition of PDGF-BB, declined thereafter, and was determined not to be a direct or necessary component of glycosaminoglycan (GAG) synthesis. PDGF-BB also activated MAPK kinase 2 (MAPKK2) but had no effect on MAPKK1 and Raf-1 activity. Chemical inhibition of Janus kinase, phosphatidylinositol 3-kinase, Src kinase, or tyrosine phosphorylation inhibition of the PDGF beta-receptor (PDGFR-beta) did not abrogate PDGF-BB-induced p42(MAPK) activation or its threonine or tyrosine phosphorylation. A dominant negative cytoplasmic receptor for hyaluronan-mediated motility variant 4 (RHAMMv4), a regulator of MAPKK-MAPK interaction and activation, did not inhibit PDGF-BB-induced p42(MAPK) activation nor did a construct expressing PDGFR-beta with cytoplasmic tyrosines mutated to phenylalanine. However, overexpression of a dominant negative PDGFR-beta lacking the cytoplasmic signaling domain abrogated p42(MAPK) activity. These results suggest that PDGF-BB-mediated activation of p42(MAPK) requires the PDGFR-beta but is independent of its tyrosine phosphorylation.  相似文献   

20.
Mitogen-activated protein kinases (MAPKs) are activated through cascades or modules consisting of a MAPK, a MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK). Investigating the molecular basis of activation of the c-Jun N-terminal kinase (JNK) subgroup of MAPK by the MAPKKK MEKK2, we found that strong and specific JNK1 activation by MEKK2 was mediated by the MAPKK JNK kinase 2 (JNKK2) rather than by JNKK1 through formation of a tripartite complex consisting of MEKK2, JNKK2, and JNK1. No scaffold protein was required for the MEKK2-JNKK2-JNK1 tripartite-complex formation. Expression of JNK1, JNKK2, and MEKK2 significantly augmented the coprecipitation of, respectively, MEKK2-JNKK2, MEKK2-JNK1, and JNKK2-JNK1, indicating that the interaction of MEKK2, JNKK2, and JNK1 is synergistic. Finally, the JNK1 was activated more efficiently in the MEKK2-JNKK2-JNK1 complex than was the JNK1 excluded from the complex. Thus, formation of a signaling complex through synergistic interaction of a MAPKKK, a MAPKK, and a MAPK molecule like MEKK2-JNKK2-JNK1 is likely to be responsible for the efficient, specific flow of information via MAPK cascades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号