共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Zhang Y Xiao J Wang H Luo X Wang J Villeneuve LR Zhang H Bai Y Yang B Wang Z 《American journal of physiology. Heart and circulatory physiology》2006,291(3):H1446-H1455
Abnormal QT prolongation (QT-P) in diabetic patients has become a nonnegligible clinical problem and has attracted increasing attention from basic scientists, because it increases the risk of lethal ventricular arrhythmias. Correction of QT-P may be an important measure in minimizing sudden cardiac death in diabetic patients. Here we report the efficacy of insulin in preventing QT-P and the associated arrhythmias and the mechanisms underlying the effects in a rabbit model of type 1 insulin-dependent diabetes mellitus (IDDM). The heart rate-corrected QT (QTc) interval and action potential duration were considerably prolonged, with frequent ventricular tachycardias. The rapid delayed rectifier K+ current (IKr) was markedly reduced in IDDM hearts, and hyperglycemia depressed the function of the human ether-a-go-go-related gene (HERG), which conducts IKr. The impairment was primarily ascribed to the enhanced oxidative damage to the myocardium, as indicated by the increased intracellular level of reactive oxygen species and simultaneously decreased endogenous antioxidant reserve and by the increased lipid peroxidation and protein oxidation. Moreover, IDDM or hyperglycemia resulted in downregulation of HERG protein level. Insulin restored the depressed IKr/HERG and prevented QTc/action potential duration prolongation and the associated arrhythmias, and the beneficial actions of insulin are partially due to its antioxidant ability. Our study represents the first documentation of oxidative stress as the major metabolic mechanism for HERG K+ dysfunction, which causes diabetic QT-P, and suggests IKr/HERG as a potential therapeutic target for treatment of the disorder. 相似文献
3.
Yunlong Bai Jingxiong Wang Hongli Shan Yanjie Lu Ying Zhang Xiaobin Luo Baofeng Yang Zhiguo Wang 《Cellular physiology and biochemistry》2007,20(5):429-440
Ceramide, a sphingolipid metabolite, has emerged as a key second messenger molecule that mediates multiple cellular functions. Its de nova synthesis and accumulation in ischemic myocardium, congestive heart failure and diabetic cardiomyopathy is associated with the abnormalities such as abnormal QT prolongation and increased risk of arrhythmias. To investigate how ceramide is involved in modulating cardiac repolarization, we performed whole-cell patch-clamp studies on HERG current (I(HERG)), a critical determinant of cardiac repolarization, expressed in HEK293 cells. Acute application (superfusion for 25 min) of membrane permeable ceramide (C2, 5 microM) did not alter I(HERG). Prolonged incubation with C2 for 10 hrs caused pronounced I(HERG) inhibition in a concentration-dependent and voltage-independent fashion and positive shift of voltage-dependent HERG activation. The IC(50) for I(HERG) suppression was 19.5 microM. C2 did not affect the inactivation property and time-dependent kinetics of I(HERG). Similar effects were observed with production of endogenous ceramide catalyzed by sphingomyelinase. Tyrosine kinase inhibitors failed to reverse C2-induced suppression of HERG function, and PKA and PKC inhibitors only slightly reversed the I(HERG) depression. Western blotting and immunocytochemical analyses indicate that C2 does not alter HERG protein expression on the cytoplasmic membrane. The inhibitory effect of C2 on I(HERG) was reversed by antioxidants vitamin E or MnTBAP. C2 caused considerable production of intracellular reactive oxygen species (ROS), which was prevented by vitamin E or MnTBAP. We conclude that ceramide depresses I(HERG) mainly via ROS overproduction and ceramide-induced I(HERG) impairment may contribute to QT prolongation in prolonged myocardial ischemia, heart failure and diabetic cardiomyopathy. 相似文献
4.
Jin-Song Bian Jie Cui Yonathan Melman Thomas V. McDonald 《Cell biochemistry and biophysics》2004,41(1):25-39
The kinetics of voltage-dependent inactivation of the rapidly activating delayed rectifier, I
Kr, are unique among K+ channels. The human ether-a-gogo-related gene (HERG) encodes the pore-forming subunit of I
Kr and shares a high degree of homology with ether-a-gogo (EAG) channels that do not inactivate. Within those segments thought to contribute to the channel pore, HERG, possesses several
serine residues that are not present in EAG channels. Two of these serines, S620 and S631, are known to be required for inactivation.
We now show that a third serine, S641, which resides in the outer portion of the sixth transmembrane segment, is also critical
for normal inactivation. As with the other serines, S641 is also involved in maintaining ion selectivity of the HERG channel
and alters sensitivity to block by E4031. Larger charged or polar substitutions (S641D and S641T) disrupted C-type inactivation
in HERG. Smaller aliphatic and more conservative substitutions (S641A and S641C) facilitated C-type inactivation. Our data
show that, like S620 and S631, S641 is another key residue for the rapid inactivation. The altered inactivation of mutations
at S620, S631, and S641 were dominant, suggesting that a network of hydroxyl side chains is required for the unique inactivation,
permeation, and rectification of HERG channels. 相似文献
5.
The kinetics of voltage-dependent inactivation of the rapidly activating delayed rectifier, IKr, are unique among K+ channels. The human ether-a-gogo-related gene (HERG) encodes the pore-forming subunit of IKr and shares a high degree of homology with ether-a-gogo (EAG) channels that do not inactivate. Within those segments thought to contribute to the channel pore, HERG possesses several serine residues that are not present in EAG channels. Two of these serines, S620 and S631, are known to be required for inactivation. We now show that a third serine, S641, which resides in the outer portion of the sixth transmembrane segment, is also critical for normal inactivation. As with the other serines, S641 is also involved in maintaining ion selectivity of the HERG channel and alters sensitivity to block by E4031. Larger charged or polar substitutions (S641D and S641T) disrupted C-type inactivation in HERG. Smaller aliphatic and more conservative substitutions (S641A and S641C) facilitated C-type inactivation. Our data show that, like S620 and S631, S641 is another key residue for the rapid inactivation. The altered inactivation of mutations at S620, S631, and S641 were dominant, suggesting that a network of hydroxyl side chains is required for the unique inactivation, permeation, and rectification of HERG channels. 相似文献
6.
A model for identifying HERG K+ channel blockers 总被引:2,自引:0,他引:2
Acquired long QT syndrome (LQTS) occurs frequently as a side effect of blockade of cardiac HERG K(+) channels by commonly used medications. A large number of structurally diverse compounds have been shown to inhibit K(+) current through HERG. There is considerable interest in developing in silico tools to filter out potential HERG blockers early in the drug discovery process. We describe a binary classification model that combines a 2D topological similarity filter with a 3D pharmacophore ensemble procedure to discriminate between HERG actives and inactives with an overall accuracy of 82%, with false negative and false positive rates of 29% and 15%, respectively. This model should be generally applicable in virtual library counterscreening against HERG. 相似文献
7.
Duncan RS Ridley JM Dempsey CE Leishman DJ Leaney JL Hancox JC Witchel HJ 《Biochemical and biophysical research communications》2006,341(2):500-506
The HERG potassium channel might have a non-canonical drug binding site, distinct from the channel's inner cavity, that could be responsible for elements of closed-state pharmacological inhibition of the channel. The macrolide antibiotic erythromycin is a drug that may block unconventionally because of its size. Here we used whole-cell patch-clamp recording at 37 degrees C from heterologously expressed HERG channels in a mammalian cell line to show that erythromycin either produces a rapid open-state-dependent HERG channel inhibition, or components of both open-state-dependent and closed-state-dependent inhibition. Alanine-substitution of HERG's canonical determinants of blockade revealed that Y652 was not important as a molecular determinant of blockade, and that mutation of F656 resulted in only weak attenuation of inhibition. In computer models of the channel, erythromycin could make several direct contacts with F656, but not with Y652, in the open-state model, and erythromycin was unable to fit into a closed-state channel model. 相似文献
8.
Ficker E Thomas D Viswanathan PC Dennis AT Priori SG Napolitano C Memmi M Wible BA Kaufman ES Iyengar S Schwartz PJ Rudy Y Brown AM 《American journal of physiology. Heart and circulatory physiology》2000,279(4):H1748-H1756
Hereditary long QT syndrome (hLQTS) is a heterogeneous genetic disease characterized by prolonged QT interval in the electrocardiogram, recurrent syncope, and sudden cardiac death. Mutations in the cardiac potassium channel HERG (KCNH2) are the second most common form of hLQTS and reduce the delayed rectifier K(+) currents, thereby prolonging repolarization. We studied a novel COOH-terminal missense mutation, HERG R752W, which segregated with the disease in a family of 101 genotyped individuals. When the mutant cRNA was expressed in Xenopus oocytes it produced enhanced rather than reduced currents. Simulations using the Luo-Rudy model predicted minimal shortening rather than prolongation of the cardiac action potential. Consequently, a normal or shortened QT interval would be expected in contrast to the long QT observed clinically. This anomaly was resolved by our observation that the mutant protein was not delivered to the plasma membrane of mammalian cells but was retained intracellularly. We found that this trafficking defect was corrected at lower incubation temperatures and that functional channels were now delivered to the plasma membrane. However, trafficking could not be restored by chemical chaperones or E-4031, a specific blocker of HERG channels. Therefore, HERG R752W represents a new class of trafficking mutants in hLQTS. The occurrence of different classes of misprocessed channels suggests that a unified therapeutic approach for altering HERG trafficking will not be possible and that different treatment modalities will have to be matched to the different classes of trafficking mutants. 相似文献
9.
Ju P Pages G Riek RP Chen PC Torres AM Bansal PS Kuyucak S Kuchel PW Vandenberg JI 《The Journal of biological chemistry》2009,284(2):1000-1008
Ion flow in many voltage-gated K(+) channels (VGK), including the (human ether-a-go-go-related gene) hERG channel, is regulated by reversible collapse of the selectivity filter. hERG channels, however, exhibit low sequence homology to other VGKs, particularly in the outer pore helix (S5) domain, and we hypothesize that this contributes to the unique activation and inactivation kinetics in hERG K(+) channels that are so important for cardiac electrical activity. The S5 domain in hERG identified by NMR spectroscopy closely corresponded to the segment predicted by bioinformatics analysis of 676 members of the VGK superfamily. Mutations to approximately every third residue, from Phe(551) to Trp(563), affected steady state activation, whereas mutations to approximately every third residue on an adjacent face and spanning the entire S5 segment perturbed inactivation, suggesting that the whole span of S5 experiences a rearrangement associated with inactivation. We refined a homology model of the hERG pore domain using constraints from the mutagenesis data with residues affecting inactivation pointing in toward S6. In this model the three residues with maximum impact on activation (W563A, F559A, and F551A) face out toward the voltage sensor. In addition, the residues that when mutated to alanine, or from alanine to valine, that did not express (Ala(561), His(562), Ala(565), Trp(568), and Ile(571)), all point toward the pore helix and contribute to close hydrophobic packing in this region of the channel. 相似文献
10.
11.
Molecular determinants of voltage-dependent human ether-a-go-go related gene (HERG) K+ channel block 总被引:3,自引:0,他引:3
Sánchez-Chapula JA Navarro-Polanco RA Culberson C Chen J Sanguinetti MC 《The Journal of biological chemistry》2002,277(26):23587-23595
The structural determinants for the voltage-dependent block of ion channels are poorly understood. Here we investigate the voltage-dependent block of wild-type and mutant human ether-a-go-go related gene (HERG) K(+) channels by the antimalarial compound chloroquine. The block of wild-type HERG channels expressed in Xenopus oocytes was enhanced as the membrane potential was progressively depolarized. The IC(50) was 8.4 +/- 0.9 microm when assessed during 4-s voltage clamp pulses to 0 mV. Chloroquine also slowed the apparent rate of HERG deactivation, reflecting the inability of drug-bound channels to close. Mutation to alanine of aromatic residues (Tyr-652 or Phe-656) located in the S6 domain of HERG greatly reduced the potency of channel block by chloroquine (IC(50) > 1 mm at 0 mV). However, mutation of Tyr-652 also altered the voltage dependence of the block. In contrast to wild-type HERG, block of Y652A HERG channels was diminished by progressive membrane depolarization, and complete relief from block was observed at +40 mV. HERG channel block was voltage-independent when the hydroxyl group of Tyr-652 was removed by mutating the residue to Phe. Together these findings indicate a critical role for Tyr-652 in voltage-dependent block of HERG channels. Molecular modeling was used to define energy-minimized dockings of chloroquine to the central cavity of HERG. Our experimental findings and modeling suggest that chloroquine preferentially blocks open HERG channels by cation-pi and pi-stacking interactions with Tyr-652 and Phe-656 of multiple subunits. 相似文献
12.
Ridley JM Milnes JT Benest AV Masters JD Witchel HJ Hancox JC 《Biochemical and biophysical research communications》2003,306(2):388-393
Class Ia antiarrhythmic drugs, including procainamide (PROC), are associated with cardiac sodium channel blockade, delayed ventricular repolarisation and with a risk of ventricular pro-arrhythmia. The HERG K(+) channel is frequently linked to drug-induced pro-arrhythmia. Therefore, in this study, interactions between PROC and HERG K(+) channels were investigated, with particular reference to potency and mechanism of drug action. Whole-cell patch-clamp recordings of HERG current (I(HERG)) were made at 37 degrees C from human embryonic kidney (HEK 293) cells stably expressing the HERG channel. Following activating pulses to +20 mV, I(HERG) tails were inhibited by PROC with an IC(50) value of approximately 139 microM. I(HERG) blockade was found to be both time- and voltage-dependent, demonstrating contingency upon HERG channel gating. However, I(HERG) inhibition by PROC was relieved by depolarisation to a highly positive membrane potential (+80 mV) that favoured HERG channel inactivation. These data suggest that PROC inhibits the HERG K(+) channel by a primarily 'open' or 'activated' channel state blocking mechanism and that avidity of drug-binding is decreased by extensive I(HERG) inactivation. The potency of I(HERG) blockade by PROC is much lower than for other Class Ia agents that have been studied previously under analogous conditions (quinidine and disopyramide), although the blocking mechanism appears similar. Thus, differences between the chemical structure of PROC and other Class Ia antiarrhythmic drugs may help provide insight into chemical determinants of blocking potency for agents that bind to open/activated HERG channels. 相似文献
13.
14.
Acute stress provokes lethal cardiac arrhythmias in the hereditary long QT syndrome. Here we provide a novel molecular mechanism linking beta-adrenergic signaling and altered human ether-a-go-go related gene (HERG) channel activity. Stress stimulates beta-adrenergic receptors, leading to cAMP elevations that can regulate HERG K+ channels both directly and via phosphorylation by cAMP-dependent protein kinase (PKA). We show that HERG associates with 14-3-3epsilon to potentiate cAMP/PKA effects upon HERG. The binding of 14-3-3 occurs simultaneously at the N- and C-termini of the HERG channel. 14-3-3 accelerates and enhances HERG activation, an effect that requires PKA phosphorylation of HERG and dimerization of 14-3-3. The interaction also stabilizes the lifetime of the PKA-phosphorylated state of the channel by shielding the phosphates from cellular phosphatases. The net result is a prolongation of the effect of adrenergic stimulation upon HERG activity. Thus, 14-3-3 interactions with HERG may provide a unique mechanism for plasticity in the control of membrane excitability and cardiac rhythm. 相似文献
15.
Coupled K+-water flux through the HERG potassium channel measured by an osmotic pulse method
下载免费PDF全文

The streaming potential (V(stream)) is a signature feature of ion channels in which permeating ions and water molecules move in a single file. V(stream) provides a quantitative measure of the ion and water flux (the water-ion coupling ratio), the knowledge of which is a prerequisite for elucidating the mechanisms of ion permeation. We have developed a method to measure V(stream) with the whole-cell patch-clamp configuration. A HEK293 cell stably expressing the HERG potassium channel was voltage clamped and exposed to hyperosmotic solutions for short periods of time (<1 s) by an ultrafast solution switching system (the osmotic pulse [quick jump-and-away] method). The reversal potentials were monitored by a series of voltage ramps before, during, and after the osmotic pulse. The shifts of the reversal potentials immediately after the osmotic jump gave V(stream). In symmetrical K+ solutions (10 mM), the V(stream)s measured at different osmolalities showed a linear relationship with a slope of -0.7 mV/DeltaOsm, from which the water-ion coupling ratio (n, the ratio of the flux of water to the flux of cations; Levitt, D.G., S.R. Elias, and J.M. Hautman. 1978. Biochim. Biophys. Acta. 512:436-451) was calculated to be 1.4. In symmetrical 100 mM K+ solutions, the coupling ratio was decreased significantly (n = 0.9), indicating that the permeation process through states with increased ion occupancy became significant. We presented a diagrammatic representation linking the water-ion coupling ratio to the mode of ion permeation and suggested that the coupling ratio of one may represent the least hydrated ion flux in the single-file pore. 相似文献
16.
17.
Ionic currents were recorded from Xenopus oocytes injected with RNA isolated from chick or mouse brain. Three currents were studied: a rapid tetrodotoxin-sensitive Na+ current (Ina), an early outward K+ current sensitive to 4-aminopyridine (IA), and an inward current activated by the excitatory amino acid receptor agonist kainate. Oligonucleotides (60-80 bases long) complementary to rat brain Na+ channel sequences were prehybridized to chick brain RNA. These DNA sequences, upon injection into oocytes, specifically inhibited expression of INa relative to IA and the kainate-induced current in a dose-dependent manner. By contrast, prehybridization of oligonucleotides complementary to sequences either from the Drosophila Shaker locus (which codes for an early K+ current in Drosophila muscle) or from a homologous clone from mouse brain did not block the expression of the early outward K+ current induced in the oocytes by mRNA from chick or mouse brain. This method provides a convenient means for testing the functional role of cloned DNA species. 相似文献
18.
19.
Qin D Huang B Deng L El-Adawi H Ganguly K Sowers JR El-Sherif N 《Biochemical and biophysical research communications》2001,283(3):549-553
Type I diabetic cardiomyopathy has consistently been shown to be associated with decrease of repolarising K(+) currents, but the mechanisms responsible for the decrease are not well defined. We investigated the streptozotocin (STZ) rat model of type I diabetes. We utilized RNase protection assay and Western blot analysis to investigate the message expression and protein density of key cardiac K(+) channel genes in the diabetic rat left ventricular (LV) myocytes. Our results show that message and protein density of Kv2.1, Kv4.2, and Kv4.3 are significantly decreased as early as 14 days following induction of type I diabetes in the rat. The results demonstrate, for the first time, that insulin-deficient type I diabetes is associated with early downregulation of the expression of key cardiac K(+) channel genes that could account for the depression of cardiac K(+) currents, I(to-f) and I(to-s). These represent the main electrophysiological abnormality in diabetic cardiomyopathy and is known to enhance the arrhythmogenecity of the diabetic heart. The findings also extend the extensive list of gene expression regulation by insulin. 相似文献
20.
Smith AJ Partridge CJ Asipu A Mair LA Hunter M Sivaprasadarao A 《Biochemical and biophysical research communications》2006,348(3):1123-1131
ATP-sensitive potassium (KATP) channels play a central role in glucose-stimulated insulin secretion (GSIS) by pancreatic beta-cells. Activity of these channels is determined by their open probability (Po) and the number of channels present in a cell. Glucose is known to reduce Po, but whether it also affects the channel density is unknown. Using INS-1 model beta-cell line, we show that the expression of K(ATP) channel subunits, Kir6.2 and SUR1, is high at low glucose, but declines sharply when the ambient glucose concentration exceeds 5mM. In response to glucose deprivation, channel synthesis increases rapidly by up-regulating translation of existing mRNAs. The effects of glucose deprivation could be mimicked by pharmacological activation of 5'-AMP-activated protein kinase with 5-aminoimidazole-4-carboxamide ribonucleotide and metformin. Pancreatic beta-cells which have lost their ability for GSIS do not show such changes implicating a possible (patho-)physiological link between glucose-regulated KATP channel expression and the capacity for normal GSIS. 相似文献